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ABSTRACT 
Many information sources use multiple modalities, such as 

textbooks, which contain both text and diagrams.   Each 

captures information that is hard to express in the other, and 

evidence suggests that multimodal information leads to bet-

ter retention and transfer in human learners.  This paper 

describes a system that captures textbook knowledge, using 

simplified English text and sketched versions of diagrams.  

We present experimental results showing it can use cap-

tured knowledge to answer questions from the textbook’s 

curriculum.   

Categories and Subject Descriptors 

I.2.4 Knowledge Representation Formalisms and Methods  

INTRODUCTION 
Researchers from psychology and learning sciences have 

examined the question of whether, and under what condi-

tions, people learn better from multimodal presentations of 

information than from single-modality information (e.g. 

[13][16]).  Many of these studies have shown that subjects 

are able to perform better on tests of retention and transfer 

when they were presented with multimodal information 

sources, such as animations with narration or text with dia-

grams.  Indeed, many traditional sources of instructional 

material contain multiple modalities. For example, text-

books contain both text and diagrams.  To exploit such ma-

terials, knowledge capture systems should be able to inte-

grate information across modalities into coherent chunks of 

knowledge.   

There are multiple theories as to how and why multimodal 

sources of information lead to better recall and transfer per-

formance.  The multimedia learning theory [16] posits that 

instead of passively absorbing information, learners cogni-

tively engage with it in an active attempt to understand.  

Under this theory, multimedia presentations of information 

lead to better understanding because learners actively en-

gage in sense making activities as they attempt to integrate 

information from the two modalities, and it is this active 

engagement with the material that leads to deeper learning.  

Our knowledge capture system is based on this theory, 

which asserts that such learning is a five step process: 

1) Selecting relevant words for processing in verbal work-

ing memory 

2) Selecting relevant images for processing in visual 

working memory 

3) Organizing selected words into verbal mental model 

4) Organizing selected images into visual mental model 

5) Integrating verbal and visual representations along with 

existing knowledge. 

In our model steps 1 and 2 (selection) are done manually by 

dividing the text and diagrams into discrete chunks.  Text 

chunks are determined by paragraph structure in the text 

and by diagram references in the text.  Each diagram is its 

own diagram chunk.  Step 3, developing a representation 

from the text, is done using the EA NLU natural language 

understanding system described below.  Extraction of in-

formation from the diagrams (step 4) is accomplished via 

the CogSketch sketch understanding system.  The final step, 

Integration, uses the Structure Mapping Engine model of 

analogy and similarity to perform the cognitive task of 

comparing and integrating the two representations. 

After describing each of these steps in more detail, we 

present an experiment in which we use our system to learn a 

chapter of content from a physics textbook: Basic Machines 

[3]. The system is evaluated on its ability to answer the 

homework questions provided by the publisher. 

SYSTEM ARCHITECTURE 
The parsing of the text and the initial interpretation of the 

diagrams were done using two existing systems: The CogS-

ketch sketch understanding system for the diagrams and the 

EA NLU system for the text.  This section briefly summa-

rizes them and describes the methodology used to convert 

experiment materials from the original source format to the 

format they require using an example from our evaluation 

materials. 
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CogSketch 
CogSketch1 [11] is the first open-domain sketch under-

standing system.  Each object in a CogSketch sketch is a 

glyph.  Glyphs have ink and content.  The ink consists of 

polylines, i.e., lists of points representing what the user 

drew. The content is a symbolic token used to represent 

what the glyph denotes.  In CogSketch, users indicate the 

type of the content of the glyph in terms of concepts from 

an underlying knowledge base.  This is one form of concep-

tual labeling.  Our KB contents are drawn from Research-

Cyc, which contains over 30,000 concepts, plus our own 

extensions.  In addition to conceptual labels, the content of 

glyphs can also be given names, natural language strings 

that can be used to refer to the content of the glyph.   

CogSketch automatically computes a number of qualitative 

spatial relations and attributes for glyphs in a sketch.  The 

relations computed include the RCC-8 qualitative relations 

[7] that describe all possible topological relations between 

two-dimensional shapes (e.g. disconnected, edge-

connected, partially-overlapping).  RCC-8 relations are also 

used to guide the computation of additional spatial relation-

ships, such as positional relations like right/left.   

In addition to standard glyphs, CogSketch also allows users 

to create annotation glyphs.  An annotation glyph is a glyph 

that indicates an important property in the sketch, e.g. phys-

ical quantities like length or height.  Like other glyphs, an-

notation glyphs consist of both ink and the entity that is 

represented by the glyph.  Unlike other glyphs, annotation 

glyphs also refer to other glyphs in the sketch depicting the 

entity that they are providing information about.  For exam-

ple, if an annotation glyph represents the length of a lever, 

it has a reference to the lever glyph whose length it defines.  

Figure 1 shows an example of a CogSketch sketch.  Each 

object is a glyph, and the resistance arm and effort arm 

glyphs are LengthIndicator annotation glyphs which 

are tied to the glyph representing the lever since they pro-

vide information about its properties.  The resistance arm 

and effort arm labels are names used to identify the objects.  

The other labels in the sketch are also name labels (e.g. 

“R”).  Spatial relationships computed include things like the 

                                                                 

1 CogSketch is available on the web at: 

http://spatiallearning.org/projects/cogsketch_index.html 

fulcrum being RCC8-EC (edge connected) to the lever 

glyph and the lever glyph being above the fulcrum glyph. 

For our multimodal knowledge capture system, CogSketch 

is used to create the sketched equivalent of a textbook dia-

gram.  Then CogSketch creates an output case consisting of 

facts that describe the objects in the sketch and the qualita-

tive spatial relationships between them.   

EA NLU 
The EA NLU (Explanation Agent Natural Language Under-

standing) system [14][18] uses Allen’s parser [1], the 

COMLEX lexicon, and ResearchCyc KB contents to parse 

and interpret English text.  Input to EA NLU is in QRG-CE 

(QRG Controlled English), a simplified language that we 

developed to simplify parsing and to allow us to focus on 

semantics.  Translation to simplified English is far more 

intuitive and time-efficient than translating directly to pre-

dicate calculus.  QRG-CE allows new vocabulary terms to 

be introduced in texts, unlike other controlled languages, 

which is essential for knowledge capture. The input to EA 

NLU is a chunk of text from the source material that has 

been translated into QRG-CE.  The output is a case consist-

ing of facts representing the semantic content of the text. 

SME 
The Structure Mapping Engine (SME) [8] is a cognitive 

model of analogy and similarity based on Structure Map-

ping theory [12].  SME takes as input two cases, a base 

case and a target case.  Each input case consists of a set of 

entities, attributes and relations.  Given these two cases, 

SME produces one to three mappings between them by 

aligning their common structure.  Each mapping contains: 

(1) a set of correspondences between elements (entities, 

attributes and relationships) in the base and elements in the 

target, (2) the structural evaluation score which is a numer-

ical measure of similarity and (3) candidate inferences 

which are inferences that are carried over from the base to 

the target based upon their common structure.  Structural 

evaluation prefers mappings which align higher-order rela-

tions.  In addition to allowing SME to choose the best 

alignment of elements, it can be provided with required 

correspondences.  Required correspondences force a cor-

respondence between a given element in the base and one in 

the target, so that mappings must be consistent with this 

correspondence.    

System Architecture and Integration 
Our system is composed of five components, including 

those described in the preceding sections.  Figure 2 shows 

how these systems fit together to form our multimodal 

knowledge capture system (MMKCap).  First, the original 

text is manually divided into chunks during the selection 

step.  A chunk is defined as either (1) a distinct paragraph 

from the source material or (2) a portion of a paragraph that 

all pertains to a given diagram (as specified via a figure tag 

in the text, i.e., “as shown in Figure 1-1”).  Since our cur-

 

Figure 1. An example of a CogSketch sketch.  Each object 

is a glyph.  The resistance arm and effort arm glyphs are 

annotation glyphs.    

 

 



rent model is concerned with multimodal integration as 

opposed to the intricacies of NLP or image processing, 

there are several steps taken to simplify the input for 

processing.  Text is translated to controlled English and 

diagrams are sketched using CogSketch.  

 

During the translation to QRG-CE, changes are limited to: 

1) Sentences that do not contribute topical information 

can be deleted: e.g., “[Machines] have taken much of 

the backache and drudgery out of the sailor’s lift.” or 

“Machines are your friends.”  Future versions should 

distinguish between useful and non-content sentences 

automatically, but for now this is done by hand. 

2) Long sentences or sentences containing conjunctions 

are broken into shorter, easier to parse sentences.  

(compare Figures 3 and 4 for an example of original 

text and its simplified counterpart) 

3) The mathematical steps in worked examples in the text 

(involving equations and numerical substitutions) are 

hand-represented in predicate calculus to make the 

steps in the problem solving process clear, and availa-

ble for later use.  This is another step that we hope to 

be able to automate in the near future.   

4) Summary information at the end of the chapter is ex-

cluded for now.  This information is redundant (by de-

finition).  Later we plan to develop a method to use 

summary information as a first pass check of our know-

ledge capture  

After the text has been translated into QRG-CE, each chunk 

is run through the EA NLU system.  The output from EA 

NLU is a case containing facts representing the semantic 

content of the text.  If the original text contained a reference 

to a diagram, a fact is manually added that provides a link 

from the discourse to the sketch (see the sketchForDis-

course fact in figure 5). 

Each diagram from the source material is sketched using 

CogSketch.  Figure 3 shows an example of a text-diagram 

chunk from the original text and Figure 4 shows the same 

chunk after the text has been translated into QRG-CE and 

the diagram has been sketched using CogSketch.  A strict 

set of guidelines dictates how each diagram is translated 

into a sketch: 

 Objects in the sketch are drawn to preserve existing 

spatial relationships  

 Objects in the sketch are only labeled in the sketch if 

they are labeled in the source diagram. 

 Objects labeled with conceptual information in the 

source diagram (i.e. Fulcrum) are given a conceptual 

label in CogSketch 

 Objects that only have identifying labels in the original 

source (i.e. “A”) are labeled using the glyph name in 

CogSketch.  Note that names in CogSketch are case in-

sensitive, so labels in the text that rely on case sensitiv-

ity must be changed to be distinguishable in CogSketch 

 If an object is labeled with a numerical value in the 

source material then an annotation glyph is used in 

CogSketch with that numerical value. 

 

These guidelines are meant to assure that, as much as poss-

ible, the sketched diagram adheres to the spirit of the source 

material.  In particular, we are careful to make sure that we 

do not encode any inferences that might be drawn about the 

diagram at this stage of the process.  Once the diagram is 

drawn it is stored as a sketch case containing facts about the 

You will find that all levers have three basic parts: the fulcrum 

(F), a force or effort (E), and a resistance (R). Look at the 

lever in figure 1-1.  You see the pivotal point (fulcrum) (F); 

the effort (E), which is applied at a distance (A) from the ful-

crum; and a resistance (R), which acts at a distance (a) from 

the fulcrum.  Distances A and a are the arms of the lever. 

 

Figure 3. An example of a text and diagram chunk taken from 

our source text: Basic Machines.  In this particular example, 

you can see references in the text to labels in the diagram (e.g. 

“fulcrum (F)” refers to the part of the diagram annotated with 

the same label “F”. 

selection selection

EANLU CogSketch

SME

pre-processing

KB

Input Text Input Diagram

Output: Integrated Case
 

Figure 2. Architecture diagram of our multimodal 

knowledge capture system.    



objects in the sketch and the spatial relationships between 

them.  Both EA NLU and CogSketch make use of the Re-

searchCyc KB contents when constructing the output cases. 

 

The case resulting from processing the text with EA NLU 

contains 14 facts and is shown in Figure 5.  The case result-

ing from sketching and processing the diagram contains 203 

facts.   In addition to the labels for objects, it also contains 

qualitative spatial relationships between objects in the 

sketch, such as those in Figure 6.  The visualQuantityQuan-

titativeMeasurement fact lets us know that the glyph A1 is 

actually an annotation glyph which indicates that it has the 

potential to have a numerical quantity associated with it. 

 

After both the text case and the sketch case have been con-

structed, they are run through a pre-processing routine that 

prepares them for integration.  The purpose of the prepro-

cessing is to look for potential required correspondences to 

constrain the mapping between the two cases.  Required 

correspondences are created under two circumstances: (1) If 

there is a label on the diagram that is specifically referred to 

in the text (for example, in Figure : “you see the pivotal 

point (fulcrum) (F)” where “F” refers directly to a label in 

the diagram.  In this case, a correspondence is created be-

tween the entity F in the text case and the glyph object that 

is labeled with the namestring “F” in the sketch case).  (2) If 

there is a spatial preposition in the text case (as determined 

by a relation that is an instance of the Cyc concept Rela-

tiveLocationalPredicate) a correspondence is 

created between the entities in the text case that appear in 

the spatial preposition fact and the objects in the sketch that 

are of the same type (note that if they were labeled they 

would have already been addressed in step 1).  A list of 

chapter labels is maintained that corresponds to the name-

string labels found in Step one.  We have found that the 

same labels will often be used throughout a chapter (e.g. F 

to identify the fulcrum) but will only be explicitly explained 

in the text once.  Text and diagram pairs are integrated one 

at a time, preserving the order in which they appear in the 

text. 

After the required correspondences have been created, SME 

is run with the text case as the base case and the sketch case 

as the target case.  The best mapping, i.e. the mapping with 

the highest structural evaluation score, is used to create the 

result of the integration step.  Since the diagram case was 

used as the target case, the facts from the target case are 

transferred to a new case and form the basis for the inte-

grated case.  Then, the candidate inferences from the map-

ping are also added to the new integrated case – this is how 

the information from the text gets integrated with the infor-

mation from the diagram. Text chunks that did not have any 

Chunk 1: 

A lever has three basic parts.   

A fulcrum is a basic part of a lever.   

A force is a basic part of a lever. 

A weight is a basic part of a lever. 

 

Chunk 2: 

F is the fulcrum 

R is the weight 

E is the force  

A2 is the distance between the weight and the fulcrum.  

A1 is the distance between the force and the fulcrum.  

A1 is an arm of the lever.   

A2 is an arm of the lever. 

 

Figure4. The text and diagram from Figure 3 after the text 

has been translated to QRG-CE and the diagram has been 

sketched in CogSketch.  The text has been manually divided 

into two chunks: chunk 1 contains the text that does not refer 

to the diagram and chunk 2 is the text that does. 

(isa lever6354 Lever) 

(isa a2 LeverArm) 

(possessiveRelation lever6354 a2) 

(isa f Fulcrum) 

(isa e ForceVector) 

(isa r Weight) 

(isa a2 Distance) 

(between r f a2) 

(isa a1 Distance) 

(between e f a1) 

(isa a1 LeverArm) 

(isa lever6231 Lever) 

(possessiveRelation lever6231 a1) 

(possessiveRelation lever6231 a2) 

(sketchForDiscourse  

"kb-resource://Figure1-1.sk"  

(DrsCaseFn DRS-3446218074-8197)) 

 

Figure 5. The output generated from running the simplified 

text through the EA NLU system. The sketchForDis-

course fact ties the sketch to the text and is added manually. 

(enclosesHorizontally  

   (GlyphFn Object-4 Layer-2) 

   (GlyphFn Object-147 Layer-2)) 

(rcc8-EC (GlyphFn Object-4 Layer-2) 

         (GlyphFn Object-141 Layer-2)) 

(visualQuantityQuantitativeMeasurement 

     ((ConceptKnownAsFn "A1") 

      (GlyphFn Object-4 Layer-2)) A1) 

(above Object-145 Object-4) 

 

Figure 6. An example of some of the facts generated by 

CogSketch about the qualitative spatial relationships in the 

sketched diagram. 

 



associated diagrams are not subject to the integration 

process, and instead the text case is treated as the final out-

come of the knowledge capture process.   

EXPERIMENT 
In order to evaluate our multimodal knowledge capture 

system, we ran an experiment to examine its ability to cap-

ture the knowledge in one chapter of a physics textbook on 

basic machines. 

Materials 
The source material for this experiment was Chapter 1: 

Levers from [3], a US Navy training manual.  The original 

chapter contained 8 pages of text and 15 diagrams.  The 

book also includes homework assignments, with questions 

tied to each chapter, providing an external benchmark to 

evaluate how well the system was able to capture the know-

ledge in the chapter.   

There were 29 questions about levers, but 14 of them re-

quired solving equations, a capability which is still being 

incorporated in our system.  Consequently, we focused on 

the 15 questions that did not require equations. 

Evaluation 
For each of the 15 questions, the information and the query 

it contained were hand-translated into predicate calculus, to 

avoid errors in question-parsing.  For questions containing 

diagrams, each diagram was sketched following the same 

procedure used for diagrams in the text.  The same multi-

modal integration process was used to combine diagram 

and translated text information.  Each question was as-

signed to a category based on the type of query it involved, 

since learning problem-solving methods is not being tackled 

in this project.  The breakdown in terms of number of ques-

tions of each type is: 

1) True/False questions {2} 

2) Text queries: information that can be directly queried 

for {6} 

3) Diagram concept queries: queries that involved identi-

fying which diagram matches a given concept (i.e. 

which diagram is an example of a first class lever) {3} 

4) Diagram measurement queries: a diagram is given and 

a measurement is asked for (i.e. what is the length of 

the resistance arm in the given diagram?) {4} 

Example Questions 
True/False questions (see Figure 8) were answered by creat-

ing a query that directly asked for the information in the 

question.  The same technique was used for text query ques-

tions (see Figure 7).  Figure 9 shows an example of the type 

of query that was developed to ask the system for the re-

quested information. 

 

True/False and text query questions primarily draw on the 

information from the text content of the chapter and, for the 

most part, do not utilize the integrated cases created by the 

multimodal knowledge capture system.  These types of 

questions serve to demonstrate the effectiveness of EA 

NLU in capturing the knowledge in the natural language 

component of the input.  The other types of questions, dia-

gram concept and diagram measurement queries, however, 

both rely heavily on the integration portion of the know-

ledge capture.  Often the labels or tags that are used to find 

the answer to the questions come directly from the text ac-

companying a diagram. 

 

Figure 8: Example of a true/false question 

(termToSolveFor  

    (querySentenceOfQuery 

        BasicMachines1-5 

        (and (refersToTypeOf 

               ?tool InclinedPlane) 

             (isa ?tool ?collection))) 

    BasicMachines1-5 

    ?collection) 

 

Figure 9: Query for the question in Figure 7 

 

Figure 7: Example of a text query 



Diagram concept queries and diagram measurement queries 

are both special case queries that are handled using SME.  

Examples of diagram concept and diagram measurement 

queries are shown in Figure 10 and Figure 11 respectively. 

To solve a diagram concept query the system looks for cas-

es that contain a fact tying either an integrated case or dis-

course-only case to the concept being queried for, with pre-

ference given to integrated cases (in an integrated case, 

these facts are created automatically during integration, 

based on sentences in the text such as “…figure 1-4 is a 

good example of a second-class lever”).  In the example in 

Figure 10, the system would look for a case that has a dia-

gram that has been tied to the concept “third class lever”.  

Once a suitable diagram has been retrieved, the system 

compares the known diagram to each of the diagrams in the 

question using SME.  The diagram with the highest struc-

tural evaluation score is returned as the system’s answer to 

the question.   

Measurement from diagram queries are evaluated in a simi-

lar way to diagram concept queries.  The system looks for 

an existing case that has a diagram (or discourse) contain-

ing the type of object that the measurement is requested for.  

In the example here, the system would be looking for resis-

tance arms.  Once a sketch is retrieved, it is mapped to the 

sketched diagram from the problem and the mapping is 

examined.  The glyph in the problem sketch that matches to 

the glyph in the retrieved sketch that is labeled with the 

target term is assumed to be the corresponding element in 

the query diagram.  If the selected glyph is an annotation, 

the corresponding numerical value is returned.  If it is not 

an annotation, or does not have a value associated with it, 

then the glyph is returned as the answer to the query. 

Results 
The system was run over all 15 questions in the evaluation 

set and the results were checked for correctness.  Of the 15 

questions in our evaluation set, the system gets 12 of them 

correct (80%).  This is statistically significant (P < 10
-5

). 

Failure Analysis 
A close examination of the failures provides additional in-

sights and suggests improvements.  One of the three failed 

questions is a diagram/concept matching question, while the 

other two are measurement from diagram questions.  The 

diagram/concept matching question that fails is the example 

in Figure 10.  Figure 12 shows the diagram that is retrieved 

as the example of a third class lever from the text.  It is 

compared (via SME) to the sketched versions of the levers 

in the problem in Figure 10.   

Two of the sketches are shown in Figure 13.  The system 

should match to the top sketch (option A - which is an ex-

ample of a third class lever) but instead matches to the bot-

tom sketch (option C – which is an example of a first class 

lever).  This mistake occurs because our system currently 

cannot recognize that the lever in the top of Figure 13 needs 

to be flipped over the horizontal axis, so that the fulcrum is 

underneath the lever in order for the comparison to work 

correctly.  As the pictures are currently drawn, the matching 

system is overwhelmed by the number of spatial relation-

ships in common between the retrieved sketch and the 

sketch in the bottom of Figure 13 (e.g. the fulcrum being 

below the lever and the force and weight being above) and 

those relations override the important one, which is the 

placement of the fulcrum relative to the weight and effort.  

This suggests verifying properties of the match, i.e., that 

forces are being applied in ways consistent with the learned 

 

Figure 12. The figure from the text that shows an 

example of a third class lever. 

 

1-9. What part illustrates a third-

class lever? 

 

1. A 

2. B 

3. C 

4. D 

Figure 10: Example of a match diagram/concept question 

 

 

Figure 11: Example of a measurement from dia-

gram question 

 



definition.  If verification fails, then rerepresentation tech-

niques based on spatial properties, like flipping or rotating 

one of the sketches, could be tried.   

 

The other two failures, the diagram measurement queries, 

illustrate another shortcoming of our problem solving strat-

egy of using a simple, unevaluated match to produce an 

answer.  The problem in Figure 11 is the one of the two 

failed questions of this type.  Our current problem solver 

expects there to be a single annotation glyph it can match 

against to compute the answer.  Here, what is required is to 

realize that the length is the sum of the two glyphs that are 

in the diagram.  Again, this is more a failure of our problem 

solver than of the knowledge capture process. 

RELATED WORK 
Our work is related to a variety of systems from the know-

ledge capture and learning by reading communities.  Fergu-

son’s JUXTA [9] system reasoned about juxtaposition dia-

grams, diagrams that use comparison to illustrate physical 

principles, by using information from both the diagram and 

the caption.  JUXTA relied on a pre-defined mapping from 

shapes to domain-specific meaning and required all of the 

captions to be hand-translated to qualitative physics repre-

sentations.  Bulko’s BEATRIX [4] system was able to solve 

the coreference problem for physics problems that con-

tained both text and a diagram.  It relied on a blackboard 

architecture to align objects in the diagram with their refer-

ences in the text.  BEATRIX relied on hand-coded know-

ledge sources to identify potential objects in the diagrams in 

its system.  The Figure Understander [17] was also devel-

oped to integrated text and diagram representations in the 

physics domain.  Figure Understander was used to input 

problems into a magnetic fields problem solving system.  

The system relied on a system of figure semantics that re-

lated shading and patterns in the diagram with a semantic 

interpretation for the items (for example, a circle with white 

shading represented a loop of conducting wire, while black 

shading represented an immobile supporting object).  In 

contrast to these approaches, our system uses the more flex-

ible concept labeling feature of CogSketch to allow users to 

enter objects and attach meaning without relying on a pre-

defined library of mappings. 

Watanabe and Nagao [19] used a combination of spatial 

information and simple parsing rules to categorize the text 

associated with diagrams in a Japanese pictorial book of 

flora.  Their method was specifically aimed at being able to 

classify the type of text (whether it described a plant spe-

cies, plant part, etc) based on a combination of textual and 

spatial information and was limited to the domain of Japa-

nese wild flowers.  They also hand-coded the spatial rela-

tionships between text and diagrams.  Currently we do not 

take advantage of this type of information since we do not 

capture information about the placement of the conceptual 

label text.  This suggests an interesting area of future work 

for our system, i.e., developing methods to capture the in-

formation that can be gleaned from the placement of a label 

in a textbook diagram. 

The HALO project [6][5] also addressed learning from 

textbooks and solving problems with the captured know-

ledge.  The AURA system provided an interface for subject 

matter experts to input the knowledge from 50 pages of 

textbooks in each of physics, chemistry, and biology. The 

associated question answering system used a controlled 

language to allow users to input AP-like test questions for 

the system to solve.  The approach used in AURA focused 

on human-generated knowledge and on conceptual know-

ledge and tables (diagrams were excluded).  We view this 

approach as complementary to ours. 

Our work can be viewed as a particular form of learning by 

reading.  The closest systems are Mobius [2] and Learning 

Reader [10].  Mobius was used to see how existing NL and 

KR components could be combined to learn from text.  It 

focused on two narrow domains (how human hearts and 

simple engines work), but was tested with a variety of para-

graphs written by different people about those topics.  Its 

knowledge base was small and hand-coded for the domain, 

and its learned knowledge was evaluated by hand inspec-

tion.  Learning Reader, like our work, uses simplified Eng-

lish and ResearchCyc KB contents, but a DMAP parser 

instead of the more traditional EANLU system used here.  

Learning Reader was tested via automatically generated 

quizzes, and incorporated a process of rumination, where 

the system asked itself questions off-line to improve its per-

formance later on.  Both Mobius and Learning Reader were 

purely text-based, unlike our multimodal approach.  The 

system described here will be part of a next-generation 

learning by reading system, incorporating ideas from Learn-

ing Reader. 

 

 

 

 

Figure 13. Sketched levers from the problem in Figure 8.  

The top sketch is the correct answer (option A) and the 

bottom sketch is the erroneous answer picked by our system 

(option C) 



CONCLUSIONS AND FUTURE WORK 
We have described our model of multimodal knowledge 

capture that is inspired by Mayer’s theory of multimedia 

understanding.  We have also described the results of an 

experiment indicating that structure mapping is a powerful 

tool for integrating knowledge from multiple modalities.  

Our first step in future work is to integrate an existing alge-

braic problem solver into our system to expand the range of 

questions that the system can handle.  

There are many additional improvements that we plan to 

make, including automating the translation of example 

problems and test problems and perhaps even some of the 

text-diagram chunking.  This project began using a hard 

copy of the source textbook, in future work we hope to ex-

amine electronic sources to see what additional leverage we 

can get from tags and links within the documents.   

As mentioned above, we plan to investigate further how we 

process the sketched diagrams.  One avenue for this is to 

process spatial information about label location, which will 

be incorporated into CogSketch.  Also, the sketches in this 

source were fairly simple.  However, prior work [15] has 

shown that parsing diagrams can be much more complex 

and require the use of functional knowledge about the enti-

ties in a sketch and even naïve physics.  We hope to devel-

op a robust algorithm for diagram parsing and to integrate it 

into our multimodal knowledge capture system.   
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