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Abstract 

Understanding conceptual change is an important problem 
in modeling human cognition and in making integrated AI 
systems that can learn autonomously. This paper describes a 
model of explanation-based conceptual change, integrating 
sketch understanding, analogical processing, qualitative 
models, truth-maintenance, and heuristic-based reasoning 
within the Companions cognitive architecture. Sketch 
understanding is used to automatically encode stimuli in the 
form of comic strips. Qualitative models and conceptual 
quantities are constructed for new phenomena via analogical 
reasoning and heuristics. Truth-maintenance is used to 
integrate conceptual and episodic knowledge into 
explanations, and heuristics are used to modify existing 
conceptual knowledge in order to produce better 
explanations. We simulate the learning and revision of the 
concept of force, testing the concepts learned via a 
questionnaire of sketches given to students, showing that 
our model follows a similar learning trajectory. 

 Introduction   

Learning domain theories and changing them over time is a 
familiar task for humans, but an unsolved problem in 
Artificial Intelligence.  The psychological task of 
conceptual change is a radical restructuring of knowledge 
(Carey, 1988), whereby concepts are differentiated 
(Dykstra et al, 1992), recontextualized, respecified 
(diSessa et al, 2004), and ontologically reorganized.  
Current computational models of conceptual change (e.g. 
Ram, 1993) do not work with automatically encoded 
stimuli, nor are they capable of modeling developmental 
trajectories found in the cognitive development literature.  
This paper describes a model of conceptual change, built 
on the Companions cognitive architecture (Forbus et al, 
2009).  Our system integrates sketch understanding to 
automatically encode stimuli, analogical processing to 
retrieve and apply relevant qualitative models, truth 
maintenance to manage explanations, and heuristics to 
modify conceptual knowledge in the face of anomalies. 
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We provide the system with a sequence of hand-drawn 
comic strips as stimuli for learning, automatically encoded 
using CogSketch (Forbus et al, 2008).  Throughout the 
course of learning, we assess the system’s knowledge of 
force dynamics, using a sketch-based questionnaire from 
diSessa et al (2004) and Ioannides & Vosniadou (2002).  
We compare the simulation’s answers to those of students 
from grades K though 9 from the literature.  We 
demonstrate that the system can induce and revise a 
domain theory of force dynamics from automatically-
encoded relational knowledge, and that its concept of force 
changes with experience similarly to those of students. 

We begin by discussing the task of learning a model of a 
physical domain and summarizing related work.  We then 
discuss the individual components that our model uses, and 
then explain the unified system.  We present the simulation 
results, and discuss future work. 

Learning Physical Domains 

Our system learns a physical domain from a sequence of 
input stimuli.  This task has been investigated in cognitive 
science, machine learning, and computational scientific 
discovery.  Systems such as QMN (Dzeroski & 
Todorovski, 1995) and MISQ (Richards et al, 1992) 
compute variable dependencies and qualitative constraints 
from numerical input data, which is important for learning 
physical domains.  Similarly, Inductive Process Modeling 
(Bridewell et al, 2008) induces quantitative models from 
numerical data, which is useful for computational scientific 
discovery with numerical observations.  Other scientific 
discovery systems such as BACON (Langley et al, 1987) 
introduced new quantities from observables.  Our model is 
inspired by the experiential learning model of Forbus & 
Gentner (1986), and operates at the naïve physics level 
identified in that framework.   Our model is closest to 
Falkenhainer’s (1990) PHINEAS, which created 
qualitative models to interpret qualitative observations.  
Like PHINEAS, our system creates and revises QP models.  
Our system uses a cognitive simulation of analogical 
retrieval instead of the ad hoc indexing scheme used in 
PHINEAS, which it relies on to retrieve relevant domain 
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Figure 2: Example learning stimulus. 

concepts, in contrast with PHINEAS’ use of purely first-
principles qualitative simulation. 
 Computational models of conceptual change should 
satisfy three constraints: (1) They should learn similar 
preconceptions as human novices, given similar 
experience, (2) their concepts should evolve along 
trajectories similar to those seen in human learners, and (3) 
their explanations should be comparable to those provided 
by human learners.  An earlier Companions-based 
simulation by Friedman & Forbus (2009) illustrated that 
the same combination of techniques described here could 
satisfy the first and third constraints, using analogical 
generalization and statistical learning to generate initial 
models and to provide human-like explanations of its 
reasoning.  Consequently, we focus on the second 
constraint here, examining the trajectories of conceptual 
change as anomalous information comes in.    

Qualitative Process Theory 

We use qualitative process (QP) theory (Forbus, 1984) to 
formally represent qualitative models.  In QP theory, 
objects have continuous parameters such as position, 
rotation, and temperature, represented as quantities.  The 
sole mechanism assumption states that all changes in a 
physical system are caused directly or indirectly by 
processes.  Our model uses this assumption as a criterion 
for when an explanation is satisfactory.  Figure 1 illustrates 
the representation for processes.  Participants are the 
entities which are involved in instances of the process.  
Preconditions and quantity conditions describe when the 
process instance is active.   Consequences are assertions 
that hold whenever a process instance is active.  QP theory 
can represent a range of models: Forbus (1984) illustrates 
how QP theory process models can represent Newtonian 
dynamics, Galilean (medieval impetus) dynamics, and 
Aristotelian dynamics.  Figure 1 (left, right) shows two 
early QP process models of motion generated by our 
simulation.  The rightmost model resembles a component 
of the medieval impetus model of motion, similar to 

preconceptions held by many physics novices (Ioannides & 
Vosniadou, 2002). 

CogSketch 

CogSketch (Forbus et al, 2008) is an open-domain 
sketching system.  CogSketch interprets the ink drawn by 
the user, and computes spatial and positional relations 
(e.g., above, rightOf, touches) between objects.  
Further, CogSketch supports multiple subsketches within a 
single sketch.  We use this feature to create comic strips 
that serve as stimuli, where each subsketch in a stimulus 
can represent a change in behavior.  Figure 2 depicts a 
stimulus from our simulation.  Each subsketch represents a 
change in the physical system illustrated.   Within each 
subsketch, CogSketch automatically encodes qualitative 
spatial relationships between the entities depicted, using 
positional and topological relationships.  For example, the 
wheelbarrow is above and touching the ground in all three 
states, but the person and the wheelbarrow are not in 
contact in the first state.  The arrows between the 
subsketches indicate temporal order, via the 
startsAfterEndingOf relation.  Physical quantities 
such as area and positional coordinates are also computed 
by CogSketch.  Using quantity data and temporal relations, 
the system can identify changes in physical quantities 
across states, which we refer to as physical behaviors.  
After physical behaviors are identified, they are stored in 
the scenario case using relations such as increasing and 
decreasing to represent the direction of quantity change. 

Process  m1 

Participants: 

Entity e 

Conditions:  

nil 

Consequences: 

hasQuantity(e, rate) 

i+(AxisPos(Horizontal, e), rate) 

rate > 0 

  

 

Heuristic addConceptualQtyCd 

Participants: 

CurrentState s 

ProcessInstance p 

ProcessType t 

Conditions: 

startsAfterEndingOf(s, p) 

isa(p, t) 

Consequences: 

exists(q) 

ConceptualQuantity q 

revise(t, addQuantityCond(q)) 

 

Process  m2 

Participants: 

Entity e 

Conditions: 

q(e) > 0 

Consequences: 

hasQuantity(e, rate) 

Q+(rate, q(e)) 

i+(AxisPos(Horizontal, e), rate) 

 

 

Figure 1: Left: an early QP process model of movement m1, created by the simulation; Middle: a heuristic that 

revises process models by adding a conceptual quantity; Right: the result of revising m1 with the heuristic.  

Quantity q, a placeholder force-like quantity, is respecifiable by other heuristics.  Note: Q+ is the QP relationship 

of qualitative proportionality, and i+ is the QP direct influence relationship. 



Analogical processing 

Our simulation uses similarity-based retrieval to find 
concepts to use in explaining new behaviors.  We use 
MAC/FAC (Forbus et al, 1995) to model retrieval and 
SME (Falkenhainer et al, 1989) to model analogical 
matching.  Given a probe case and case library, MAC/FAC 
efficiently retrieves a case from the case library that is 
similar to the probe.  For scalability, its first stage 
estimates similarity via dot products on vectors 
automatically produced from the structured, relational 
representations used as cases.  At most three descriptions 
are passed to the second stage, which then uses SME to 
compare their full relational versions to the probe, in 
parallel, to find the best.  SME is based on Gentner’s 
(1983) structure-mapping theory.  Given two structured 
relational representations, SME computes one or two 
mappings which represent how they can be aligned.  A 
mapping consists of correspondences which describe 
“what goes with what” in the two descriptions, candidate 
inferences that can be projected from one description to the 
other, and a numerical score indicating their degree of 
similarity.  The simulation also uses SME mappings 
between similar scenarios to find differences in aligned 
quantities.   This allows the system to generate domain 
knowledge hypotheses such as qualitative proportionalities. 

Explanation-based Conceptual Change 

Our model of conceptual change is driven by the 
explanation of stimuli.  When a new stimulus is 
encountered, the system identifies changes in continuous 
parameters (e.g. position) and changes in relations between 
entities (e.g. surface contact, or directionality).  It then 
explains these changes with existing models from similar 
past experiences. If necessary, the system creates new 
process models (e.g. Figure 1: left, right) and quantities to 
achieve a coherent explanation using heuristics (e.g. Figure 
1: middle), using a simplicity bias to minimize the amount 
of revisions to its domain theory.  This overall behavior 
involves four main operations: (1) retrieval of cases and 

concepts, (2) intrascenario explanation, (3) interscenario 
explanation, and (4) retroactive explanation.   We discuss 
the general knowledge organization, and then describe 
each of these operations and their contribution to the larger 
process of conceptual change. 

A tiered network model of conceptual knowledge 

The organization of domain knowledge is depicted most 
easily in a tiered network, as in Figure 3.  The top tier of 
the network shows explanations.  Each explanation is a set 
of TMS justifications from the well-founded support for a 
physical behavior.  The justifications that provide the well-
founded support reside in a Truth Maintenance System 
(TMS) (Forbus & de Kleer, 1993) in the middle tier.  The 
TMS contains a persistent record of inferences, including 
justifications for QP model instantiations.  The nodes in the 
TMS represent facts from the stimuli and inferences made 
about them.  The domain theory, consisting of QP models 
and hypothesized quantities created by the system, are 
plotted on the bottom tier, and are used as antecedents of 
TMS justifications.  The directed edge e1e2 in the 
explanation tier represents a preference for e2 over e1, and 
the directed edge m1m2 in the domain theory expresses a 
preference for model m2 over m1, which are shown in 
Figure 1.  These preferences between explanations and 
domain knowledge help guide future learning.  
Explanations and models are revised throughout the 
learning process, but the earlier versions remain, as a 
knowledge trace.  Figure 3 shows the tiered network before 
model m1 from Figure 1 is revised (left), after it is revised 
as m2 (middle), and after a preference is computed for 
explanation e2 over e1 (right).  The TMS associates 
physical behaviors with the conceptual knowledge that was 
used for explanation.  This permits the retrieval and reuse 
of knowledge in similar scenarios, which drives the 
incremental process of conceptual change. 
 The physical behaviors and their supporting justification 
structure are stored within a set of scenario cases in long 
term memory.  Most scenarios describe more than one 
physical behavior, such as Figure 2 which describes the 
translation of the agent and the translation of the 
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m2 q

e1
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m2 q

e1 e2

 
 

Figure 3: A tiered network.  Nodes in the explanation layer (E) represent explanations composed of well-founded TMS 

support.  The TMS layer (T) contains TMS nodes (circles) and justifications (triangles) that support physical 

behaviors.  The conceptual knowledge layer (C) consists of processes and quantities.  Left: before a model revision; 

Middle: after revising m1 as m2 using new quantity q (see Figure 1) Right: after computing a preference for e2 over e1. 



wheelbarrow.  The relations linking the justifications to 
explanations (e.g. e1 and e2) are stored in each scenario 
case as well.  A single case library containing all 
qualitative states the system has previously encountered 
(e.g. the three in Figure 2) is used for all retrievals. 

Retrieving Cases and Conceptual Knowledge 

Upon receiving a new stimulus, such as a foot kicking a 
ball along a surface, the system attempts to retrieve similar 
previously observed physical behaviors by using 
MAC/FAC.  The state within which the physical behavior 
occurs serves as the probe.  After retrieving a similar state 
from memory, such as a boy pushing a wheelbarrow to the 
right along a surface (Figure 2, middle), the system imports 
the domain knowledge used in the previous explanation 
into the current logical context, using the preference 
relations to select the current best explanation. 

This method of similarity-based retrieval of past 
scenarios is the system’s only manner of accessing existing 
conceptual knowledge.  This constraint limits the search 
space of applicable domain knowledge, which reduces 
processing load.  The act of explanation, discussed next, 
interprets the stimulus using this domain knowledge. 

Intrascenario explanation 

The process of intrascenario explanation explains the 
physical behaviors in a scenario using retrieved domain 
knowledge and heuristics.  In some cases, first-principles 
reasoning with previous domain knowledge can explain the 
behaviors.  In other cases, the system must revise its 
models or generate new domain knowledge.  For example, 
suppose that the boy pushing the wheelbarrow (Figure 2) 
was the only previous stimulus the system had observed, 
and it only had the model of rightward movement m1 
(Figure 1, left; Figure 3) as a result.  To explain why 
something slows down and stops moving without collision, 
the system might hypothesize a conceptual quantity q to 
mitigate movement, and revise the process model 
accordingly as model m2 (Figure 1, right; Figure 3).  This 
stage of intrascenario explanation is complete when all 
physical behaviors, such as movement, are explained using 
first-principles reasoning with domain knowledge. 

During intrascenario explanation, the system might 
encounter an anomaly, such as: (1) a physical quantity 
changes in the scenario but no process model exists which 
could explain this in the domain theory; (2) a physical 
behavior starts or stops unexpectedly, due to an existing 
process model; or (3) conflicting assumptions are made 
about conceptual quantities.   When an anomaly is 
encountered, domain knowledge is created or modified via 
explanation heuristics (e.g. Figure 1, middle).  
Syntactically, explanation heuristics have participants and 
conditions, like QP process models.  However, their 
consequences describe operations on domain theory 
constructs, including revising process models or 
introducing new ones.  When a physical behavior cannot 
be explained, explanation heuristics whose conditions are 

satisfied are found and applied in order of estimated 
simplicity.  The simplicity metric is based on what 
operations the heuristics suggest, in order of increasing 
complexity: asserting that a new process instance is active 
in a state, revising a process model, revising a 
hypothesized quantity, hypothesizing a new process model, 
and hypothesizing a new quantity.  The system instantiates 
process models and executes explanation heuristics until 
all physical behaviors in the state are explained.  Heuristics 
allow incremental revisions for gradual conceptual change.  
The heuristic in Figure 1 revises a model and introduces a 
new conceptual quantity.  Other heuristics respecify a 
quantity by changing its conditions for existence (e.g. it 
may only exist between two objects) or various dimensions 
of its existence (e.g. directional vs. adirectional, static vs. 
dynamic).  The system currently uses 20 heuristics: 16 for 
intrascenario explanation and four for interscenario 
explanation. 

Revising domain knowledge involves making changes to 
the formal specification of a quantity or model.  Here, the 
system copies and revises m1 to create m2 (Figure 3, 
center).  This preserves the old process model or quantity 
specification, so that previous explanations that employ m1 
are guaranteed to be valid, albeit outdated.  m1m2 states 
that m2 is preferred over m1.  The result of the intrascenario 
explanation process is a series of well-founded 
explanations in the TMS, linking the physical behaviors to 
the domain knowledge that explains them.  This potentially 
results in new and revised domain knowledge. 

Interscenario explanation 

Certain domain knowledge, such as qualitative 
proportionalities, can be induced by comparing two similar 
scenarios and explaining differences in behavior.  This is 
achieved by the process of interscenario explanation.  
Suppose that the system has just finished explaining the 
behaviors within a new scenario of a foot kicking a small 
ball along a surface.  Interscenario explanation begins by 
retrieving one prior scenario with MAC/FAC.  If the 
normalized SME similarity score between the old and new 
scenario is above a threshold, the system performs 
interscenario analysis.  Suppose that the retrieved scenario 
is a highly similar scenario of a foot kicking a larger ball 
along a surface, only a shorter distance.  The system aligns 
the knowledge from the cases as well as QP knowledge 
from the respective intrascenario explanations to compare 
the quantity changes due to processes.   Suppose these 
explanations employed the model m2 in Figure 1.  The 
system would align the rate parameters and the q 
influences, and could infer that size inversely influences q.  
Like intrascenario explanation, the inferences and 
conceptual knowledge revision in interscenario explanation 
are driven by declarative explanation heuristics. 

Retroactive explanation 

So far, we have described how the system makes local 
hypotheses and revisions, and annotates its conceptual and 



 
Figure 4: Example testing scenario. 

explanatory preferences.  These local changes must be 
propagated so that previous scenarios are explained using 
preferred domain knowledge.  This is the process of 
retroactive explanation.  This involves (1) accessing a 
previous scenario, (2) determining which domain 
knowledge currently used is not preferred by the system, 
and (3) attempting to explain the behaviors using preferred 
domain knowledge.  If retroactive explanation fails to 
incorporate the preferred domain knowledge into new 
explanations, the failure is recorded and the old 
explanation remains the favored explanation.  Unlike 
intrascenario and interscenario explanation, this process 
does not generate or change domain knowledge. 

Simulation 

We tested our conceptual change model on the domain of 
force dynamics.  The system was given ten hand-drawn 
comic strips as training stimuli to learn models of motion.  
After each training stimulus, we use a sketched 
questionnaire designed to assess the development of the 
concept of force in human students, from diSesssa et al 
(2004) and Ioannides & Vosniadou (2002).  We compare 
the test results of the simulation with results of human 
students.  Though the simulation learns more rapidly than 
people, we demonstrate that the simulation’s concept of 
force changes along a trajectory comparable to that of 
human students.  We first discuss the results of the original 
experiments, then describe the simulation setup and 
compare its results to the trajectory of human models. 

The changing meaning of force in students 

Ioannides & Vosniadou (2002) conducted an experiment to 
assess students’ mental models of force.  They used a 
questionnaire of scenarios, each of which asked the student 
about the existence of forces on objects, varying from 
stationary bodies, bodies being pushed by humans, and 
bodies in stable and unstable positions.  They found that 
several mental models of force were held by the students: 
 
1. Internal Force (11 students): A force exists on all 

objects, or only on big/heavy objects.  Force is 
proportional to size/weight. 

2. Internal Force Affected by Movement (4 students): 
Same as (1), but also that moving and unstable objects 
have less force than stationary objects. 

3. Internal and Acquired (24 students): A force exists due 
to size/weight, but objects acquire additional force when 
set into motion. 

4. Acquired (18 students): Force is a property of objects 
that are in motion, or have the potential to act on other 
objects.  There is no force on stationary objects. 

5. Acquired and Push/Pull (15 students): Same as (4), but a 
force exists on an object, regardless of movement, when 
an agent pushes or pulls it. 

6. Push/Pull (1 student): A force only exists when objects 
are pushed or pulled by an agent. 

7. Gravity and Other (20 students): Mention of gravity and 
additional forces. 

8. Mixed (12 students): Responses were internally 
inconsistent, and did not fall within the other categories. 

 
The frequencies of responses by grade are listed in Table 

1.  These data suggest that young students favor the 
Internal model of force, and transition, via the 
Internal/Acquired model, to the Acquired model of force.  
By grade 9, students tend to adopt the Acquired/Push-Pull 
and Gravity/Other models.  Ioannides & Vosniadou (2002) 
call these last models synthetic models, formed by 
selectively incorporating instructional knowledge into an 
intuitive conceptual framework. 
 

Concept of Force K 4th 6th 9th Total 

Internal 7 4 

  

11 

Internal/Movement 2 2 

  

4 

Internal/Acquired 4 10 9 1 24 

Acquired 

 

5 11 2 18 

Acquired/Push-Pull 

  

5 10 15 

Push-Pull 

   

1 1 

Gravity/Other 

 

3 1 16 20 

Mixed 2 6 4   12 

Table 1: Frequencies of meaning of force, by grade. 

The simulation experiment 

As can be seen from Table 1, conceptual change for 
children in this domain takes place over years, during 
which time they are exposed to massive amounts of 
information.  Moreover, they are engaged in a wide range 
of activities, so even when exposed to motion, they may 
not be attending to it.  Providing this amount of input and a 
similarly varied workload is beyond the state of the art in 
cognitive simulation.   Consequently, we provide a much 
smaller and much more highly refined set of stimuli.  We 
provided 10 comic strips, for a total of 58 comic strip 
frames and 22 instances of movement.  These were created 
using CogSketch, as shown in Figure 2. The simulation 
computes relational and quantity changes between adjacent 
states in the comic strip as a means of detecting motion.  
For each training stimulus, the system does intrascenario 
explanation, and then retrieves a similar scenario to do 
interscenario stimulation.  If models were changed or 
quantities were respecified, the system does retroactive 
explanation. 

 By segmenting the comic strips into qualitative states, 
the system did not have to find the often-fuzzy boundaries 
between physical behaviors and is not dealing with noise.  
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Figure 5: Changes in the simulation’s concept of force. 

Furthermore, the sketched data conveys relative changes in 
position, but not relative changes in velocity, so the system 
cannot differentiate velocity from acceleration, which is 
difficult for novice students (Dykstra et al, 1992).  Finally, 
our learning stimuli were highly analogous, and there are 
only a small number of memory items, simplifying 
anomaly identification and explanation.  We believe that 
this is why our simulation learns much faster than children. 

We also used CogSketch to encode all ten comparison 
scenarios from the diSessa et al (2004) replication of the 
above experiment.  These constitute the testing 
questionnaire given to the system after each training 
stimulus.  Each comparison scenario contains two sketches 
that vary over a single variable such as the size of the rock 
in Drawing A and Drawing B in Figure 4.  Like the 
students, the system is asked whether forces exist on the 
rock in each sketch, and how the forces differ in type or 
amount between sketches.  This is accomplished by asking 
the system which conceptual quantities affect the rock in 
Drawing A, and the same for Drawing B.  The system is 
then asked to compare the conceptual quantities acting on 
the rocks, and for those that are comparable, to say which 
is greater.  From the system’s answers, we can determine 
(1) the conditions under which a force-like quantity exists, 
and (2) the effect of factors such as size, height, and 
affecting agents on the properties of the force-like quantity.  
We use the same coding strategy as Ioannides & 
Vosniadou (2002) to determine which model of force the 
system has learned, given its answers during testing.  The 
system had no initial model of motion or specification of a 
force quantity, so it relied on intrascenario and 
interscenario explanation to generate and revise its 
knowledge of force. 

We use an interscenario explanation similarity threshold 
t = 0.95, so the system only attempts interscenario 
explanation when the examples are extremely similar.  The 
stimuli in our sketch corpus are highly similar with 
minimal distracters, so we expected very rapid learning 
and an abundance of interscenario analyses. 

Figure 5 illustrates the transitions in the concept of force 
across 10 independent trials with different training 
stimulus order.  The simulation starts without any process 
models or quantities to represent force, and transitions to 
the Internal Force concept 2/10 times, and a size indifferent 

internal force model 8/10 times, which was not reported by 
Ioannides & Vosniadou (2002).  We believe that this 
Internal Force concept without a qualitative proportionality 
to size/weight is a potential predecessor of the concepts of 
force identified in the original experiment.  The rest of the 
transitions follow a similar trajectory to the student data in 
Table 1.  Each trial of the simulation completed an average 
of six model revisions and four respecifications of a 
placeholder force-like quantity during its learning. 

Discussion & Future Work 

We have described a model of conceptual change built on 
the Companions architecture which integrates a variety of 
AI techniques to learn models of motion from sketched 
comic strips.  Our experiment indicates that the model does 
indeed learn concepts of force dynamics given reasonable 
stimuli, and that the trajectories its concepts take are 
similar to those of human learners.  This satisfies our three 
constraints for modeling conceptual change. 
 Each individual component of the system contributes to 
the larger process of conceptual change.  Sketch 
understanding is used to automatically encode scenarios 
for learning and testing.  Intrascenario explanation uses 
existing conceptual knowledge to explain the scenarios.  
When existing knowledge does not suffice, declarative 
heuristics are used to revise or create conceptual 
knowledge (e.g. hypothesizing and respecifying a force-
like quantity).  These local conceptual changes are 
recorded within TMS justification structure, which 
integrates conceptual and episodic knowledge into 
explanations.  Retroactive explanation incrementally 
propagates local conceptual changes to other, previous 
scenarios (e.g. using new meanings of force in previous 
contexts).  Finally, analogical processing is used to retrieve 
relevant conceptual knowledge based on similarities of 
behaviors and to hypothesize qualitative relationships 
between quantities (e.g. hypothesizing that force is 
qualitatively proportional to size). 

A number of extensions will be required to more fully 
model human conceptual change.  First, as noted above, 
our simulation is given only noise-free relevant data.   
Based on other experiments involving MAC/FAC, we 
expect that truly irrelevant data will not be a serious 
problem, since similarity-based retrieval scales well.  
Noisy data will require more work, as will incorporating 
other methods of change detection so that other domains 
can be modeled.  Encoding is historically a serious 
problem; in early studies of heat, for example, the velocity 
of the mercury in a thermometer was measured instead of 
its final state, by analogy with measurements of motion 
(Wiser & Carey, 1983).   Our model currently responds to 
anomalies by changing its concepts, but people have other 
responses.  Chinn and Brewer (1993) identify a taxonomy 
of human responses to anomalous data, most of which 
involve avoiding conceptual revision.   Similarly, Feltovich 
et al (2001) identified strategies called knowledge shields 



that people employ to avoid conceptual change.  Modeling 
this conservatism is an important next step. 

One reason for human conservatism may be that initial 
concepts are introduced slowly, as local generalizations 
based on experience (Forbus & Gentner, 1986).  
Incorporating a model of local causal generalizations (e.g, 
Friedman & Forbus, 2009) would expand the range of the 
model and provide a statistical basis for how and when to 
be conservative. 

The explanation heuristics that our system uses to 
modify its concepts do not exhaust the range of those 
available to people.  Assuming QP models as 
representations for conceptual structure, we estimate that 
our current heuristics cover perhaps half of the heuristics 
that people use.  We plan on exploring a wider range of 
heuristics, and other domains, as a means of finding a 
sufficient set of heuristics. 

Finally, the model so far only deals with experiential 
learning.  But social interaction and language-learning play 
important roles in conceptual change as well: Calling a 
phenomena a “flow”, for instance, invites particular 
inferences about it (Gentner 2003), and one source of 
misconceptions is combining incorrect preconceptions with 
instruction.  Moreover, the learning science literature 
argues for the importance of discussion, hypothetical 
situations, and analogies in fostering lasting conceptual 
change in scientific domains (Stephens & Clement, to 
appear).  We anticipate incorporating these social aspects 
into our model of conceptual change, as learning from 
human interaction is a primary goal of Companion 
cognitive systems.  
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