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Abstract 

Our goal is to enable military planners to rapidly critique 
alternative battle plans by simulating multiple outcomes of 
adversarial plans. We describe a novel simulator, SimPath, 
that combines qualitative reasoning, a geographic 
information system (GIS), and targeted probabilistic 
calculations to envision how adversarial battle plans can 
play out.  We outline the problem and describe the overall 
operation of the simulator.  We then explain how qualitative 
process theory is extended with actions to model military 
tasks, how envisioning is factored to reduce combinatorial 
explosions, and how probabilities are computed for 
transitions and used to filter possibilities.  Empirical results, 
including an experiment conducted by an independent 
evaluator, are summarized.  The results show that it is 
possible to identify dozens of possible outcomes on each of 
9 combinations of adversarial plans (COAs) in under two 
minutes.  We close with a discussion of future work.  

Introduction  

In battle planning, military personnel consider multiple 
alternative courses of action (COAs), as well as possible 
adversarial plans.  The uncertainty in an enemy’s plans and 
of battlefield outcomes is part of what makes this task so 
difficult.  Traditional numerical simulations provide little 
help, since they require extensive setup, many ad hoc 
numerical assumptions, and significant computational 
power to produce even one possible outcome for one 
scenario.  Monte Carlo simulation can be used to generate 
samples from the space of possible outcomes, but at the 
cost of even more computational power and without any 
guarantee that the space of behaviors is sampled 
adequately.  In principle, qualitative simulation should be 
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perfect for this application.  In qualitative simulation, the 
infinite space of possibilities is characterized by a finite 
(but possibly large) set of states, called an envisionment.  
Envisionments could be analyzed to detect possible 
opportunities and blind alleys (Price, 2000) and used to 
track execution as a battle unfolds.   However, military 
battles are far more complex than previous QR domains.  
First, military tasks combine aspects of continuous change 
with intent (e.g., deciding to break off an attack if one’s 
losses are too heavy).  Second, reasoning about COAs 
requires complex geospatial reasoning.  Third, battlefield 
envisionments can be very large, due to the number of 
entities involved.  Fourth, probabilities must be estimated 
for state transitions, both to prune truly unlikely 
possibilities and to help track execution.  These tough 
challenges are part of what DARPA’s Deep Green program 
(Surdu and Kittka, 2008) is tackling. 
 This paper describes SimPath, our qualitative simulator 
for military operations.  We begin by outlining the problem 
and discussing the overall structure of the simulator.  Next 
we describe the modeling of military tasks, extensions to 
qualitative process theory (Forbus, 1984), and role of 
qualitative spatial representations.  The computation of 
probabilities is described, including their use in filtering.  
Empirical evaluation results are discussed next, closing 
with future work. 

A brief guide to Courses of Action 

Figure 1 illustrates a simple pair of COAs.  The red 
diamonds and blue rectangles represent enemy and friendly  
Mechanized Infantry Battalions, respectively.  Much of the 
COA is specified graphically, including arrows (here 
indicating Avenues of Approach) and symbols denoting 
particular tasks.  Military tasks, such as Destroy and Fix 
(i.e., prevent the other unit(s) from moving), often involve 
multiple sequential actions, and being adversarial, have 
highly uncertain outcomes.    Military organizations are 
hierarchical, with tasks at one echelon being implemented 
by tasks at the echelon below it, specified by COAs at their 
level, and so on.  This is a simple COA: many involve a 
dozen or more units even at the highest-level echelon, 
which can expand to many more lower-echelon units. 
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 COAs are highly spatial and are specified with graphical 
symbols, including different kinds of regions (e.g., 
engagement areas, where a commander intends to fight an 
enemy force) and paths (e.g. avenues of approach, the 
route an attacking force is taking).   These spatial symbols 
decompose terrain into functionally meaningful units 
relative to the COA, and hence form a kind of qualitative 
spatial representation (Forbus, Usher, & Chapman, 2003). 
 Military planners operate under a harsh information 
environment: Opponents hide their intent and capabilities, 
and information about one’s own units can be incomplete.  
Consequently, planners must consider multiple possible 
opponent COAs, and often consider multiple COAs for 
themselves.  War-gaming, i.e., playing out the possible 
outcomes of these plans, is largely a manual process today.  
There are three reasons for this.  (1) Many parameters are 
unknown.  (2) Quantitative models are not close to the 
accuracy of models in science and engineering, due to the 
variety of factors involved, some of them psychological.  
(3) Multi-trajectory numerical simulation methods, such as 
Monte Carlo simulation, require massive amounts of 
computation to achieve reasonable accuracy. 
 This problem is a natural match for qualitative 
reasoning.  Many of the qualitative spatial representations 
have already been articulated by domain experts.  The 
dynamics of battles can be represented at an appropriate 
level of precision by qualitative states and transitions.   
However, it is not enough to know that a unit may or may 
not survive an engagement; planners also want to know the 
probabilities of different outcomes, which requires a 
quantitative component.  Quantitative calculations can also 
help constrain qualitative envisionment, thus the system we 
describe is a hybrid qualitative/quantitative simulator. 

SimPath Overview 

The input to SimPath consists of three Blue COAs and 
three Red COAs.  Each COA uses its own terrain and task 
graphics.  The output is a futures graph, an envisionment 
with probabilities for each state transition, representing 
how all nine COA pairs might play out.   
 Given the properties of COAs, it might first appear that 
envisioning would be completely intractable.  After all, 
envisioning is exponential for most domains, and the 
addition of human intent to the vast number of physically 
relevant quantities (e.g., vehicle/weapon properties, 

attrition, ranges) means that the potential number of states 
is astronomical.  Fortunately, the domain also imposes 
significant constraints over purely physical domains: Units 
are constrained by the COAs to do what they are tasked to 
do, as opposed to considering all possible actions.  
Moreover, a COA constrains units’ spatial locations, and 
movement rates constrain when they can be in particular 
locations.  This allows us to factor the envisionment into 
much smaller and more tractable problems. 
 Here is the core idea underlying SimPath: (1) Spatial 
reasoning is performed to find the possible spatial 
intersections of units, based on where they might be during 
the COA.  A geographic information system is used to 
ground the qualitative spatial reasoning (Donlon and 
Forbus, 1999); while there are interesting innovations in 
SimPath’s spatial reasoning, we do not consider them 
further in this paper for brevity.  (2) Temporal reasoning is 
performed to identify which of the spatial intersections are 
possible, using interval calculations over possible speeds 
for the units involved.  (3) Each of these spatio-temporal 
intersections becomes an engagement, which typically 
represents a battle, where the dynamics of the interactions 
between units must be simulated.  Envisionments are 
constructed for each engagement separately, thereby 
factoring the futures graph and drastically reducing its size. 
Engagements are envisioned sequentially, so that results of 
earlier engagements constrain subsequent engagements 
(e.g., a unit that is destroyed is no longer a participant). (4) 
When an envisionment for an engagement is constructed, a 
stochastic simulator (described below) calculates 
probabilities for each state transition.  Transitions that are 
extremely unlikely are pruned, further reducing the graph. 
The rest of this paper focuses on qualitatively modeling 
military tasks so they can be effectively envisioned, and on 
computing probabilities, since these are some of the most 
innovative components of SimPath. 

Qualitative modeling of military tasks 

Over time, military doctrine has codified tasks in semi-
formal representations, consisting of natural language plus 
graphical descriptions.  Qualitative representations are 
useful for formalizing military tasks because they unfold 
over time and often have continuous effects.  Moreover, 
they do not have fixed outcomes, since their results depend 
on context, including what the opponent does.  The 
representation must ultimately be compositional so that 
models can be constructed independently and combined 
algorithmically. Many aspects of them can be cleanly 
expressed in QP theory (Forbus, 1984).  However, other 
aspects require significant extensions, notably discrete 
actions such as deciding to break off an engagement.   

Compositionality 

We achieve compositionality by first reducing military 
tasks to sequences and combinations of a smaller set of 
about twenty types of primitive behaviors, such as 

Figure 1: Example Course of Action 



ConductTacticalManeuver and AssaultEnemyPosition.  
These behaviors may still interact with enemy behaviors in 
complex ways, so they are further reduced to an even 
smaller set of process instances.  The vocabulary of these 
processes is quite small and directly mirrors the types of 
capabilities that units have, such as mobility 
(MovementProcess), combat (DirectFireProcess), 
obstacle crossing or preparing defenses.  As per QP theory, 
these processes have conditions that determine when they 
are active, and consequences that represent influences 
between quantities (see Table 1).  The set of influences that 
hold in a situation constitute a qualitative differential 
equation, including in addition causal information. The 
vocabulary of influences consists of direct influences (i+, 
i-) which are essentially positive and negative constituents 
of qualitative derivatives, and indirect influences (qprop+, 
qprop-) which express monotonic functional dependencies.  
By reducing 156 types of military tasks down to four types 
of qualitative influences, the envisionment algorithm is 
able to compose their effects in a domain-independent 
way. 

The engagement envisionment algorithm 

Envisioning engagements is implemented very similarly to 
the original QPT algorithm.  In order to envision possible 
next states, we begin with an initial qualitative state.  This 
contains a set of inequalities on continuous quantities, and 
the set of all possible process instances and model 
fragments, some of which are initially active. 
 The algorithm has 3 main steps.  Given an initial state, 
(1) resolve active influences on the quantities to determine 
whether they are increasing or decreasing, (2) identify the 
possible thresholds or limit hypotheses that the quantities 
could next encounter, (3) for each consistent combination 
of those quantity limits, identify which processes and 
model fragments would be active, and construct possible 
next states and explicit transitions.  This process is 
repeated until no more states can be produced. 
 Specifically, SimPath resolves influences on a quantity 
by identifying all the direct influences on it and if there are 

competing influences, determining which direction of 
influence will dominate.  This may involve numerically 
comparing rates of processes or looking for explicit 
inequalities in the current state.  If there are no direct 
influences, it looks for qualitative proportionalities.  Recall 
that these may be nonlinear and cannot be arithmetically 
combined to determine dominance.  If there are competing 
indirect influences on a quantity, its direction of change 
cannot be resolved. 
 Limit analysis consists of finding possible thresholds for 
each changing quantity.  The inequality conditions on the 
instantiated processes and model fragments define the 
universe of limits to consider.  The resolved direction in 
which a quantity is changing determines which limits could 
be encountered next.  For unresolved quantities, both 
possible directions are hypothesized. 
 The limit hypotheses correspond to possible changes 
from the current state.  The possible next states are defined 
by the consistent combinations of quantity changes taken 
from among the cross-product of limit hypotheses.  I.e., all 
consistent combinations of thresholds being reached or not 
reached are considered, as determined by a depth-first 
search.  Pruning by consistency is important for 
maintaining accuracy, with the side-effect of greatly 
reducing the size of the envisionment. 
 To determine which processes will be active in a new 
state, the envisioner queries the conditions on all process 
instances and determine if they are entailed by the states’s 
inequalities.  Once the consistent relationships and active 
processes are determined, a next situation object is 
constructed and compared to existing situations in the 
futures graph.  If such a situation already exists, a 
transition is added from the current situation to that 
situation, otherwise the new situation is added to the 
futures graph. 

Sequencing processes 

Because military tasks are intentional rather than causal, 
they often involve executing sequences of behaviors, and 
the envisionment need not branch through all physically 
possible behaviors simultaneously.  For example, in most 
contexts a unit will engage targets of opportunity on their 
way to their objective and will complete that engagement 
before proceeding on.  Sequencing ensures that the unit 
will not be moving towards two destinations at once and 
end up in inconsistent locations. To implement sequencing, 
we implemented a Boolean condition in the form of an 
after predicate and a started predicate.  The after predicate 
prevents one process from becoming active until after the 
other has started.  When a process is history-dependent, it 
causes the envisioner to record the precondition processes 
that have started and to consult this record to enforce 
sequential process activation. 

Discrete actions & decisions 

Although the majority of military tasks have non-
negligible durations, there are some that are effectively 

Process Quantities Conditions Consequences 

Movement 
D Distance to 

destination 

F Unit force 

strength 

S Speed 

D > 0 

F > 0 

(i- D, S) 

Direct 

Fire 

D Target range 

W Weapon range 

F Unit force 

strength 

E Enemy force 

strength 

R Rate of fire 

H Hit rate 

P Defensive 

preparations 

D < W 

F > 0 

E > 0 

(i- E, H) 

(qprop+ H, R) 

(qprop- H, P) 

Table 1: Example process types 



instantaneous.  A decision to withdraw, or to change 
formation, or reinforce another unit is essentially an action.  
We treat actions as atomic, guaranteed transformations of 
the current state that are run to exhaustion at the beginning 
of each envisionment cycle.  Actions are represented as 
quantity-conditioned model fragments (like processes) but 
instead of influences, their consequences are add-lists and 
delete-lists of Boolean conditions (Forbus, 1989). 
 Actions are primarily used to manipulate intent, the will 
to pursue some coherent activity.  When that activity can 
change based on quantitative thresholds, we represent 
intent explicitly as a Boolean condition on the processes 
that support the activity.  Actions to start or terminate an 
activity simply add or retract the intent condition from the 
current state.  This makes it possible to model activities 
such as Follow-and-Assume, in which one unit follows 
another and takes over its task when the lead unit is no 
longer capable. 
 Modeling actions and intent this way also enables us to 
represent simple decision processes that may branch 
directly on the initial situation rather than be influenced 
over time.  For example, when faced with an 
overwhelmingly superior force, a commander may 
withdraw before suffering losses.  Instantaneous actions 
allow us to model that behavior. 

Modeling space and terrain 

While spatial reasoning helps determine what engagements 
to envision, spatial considerations also contribute to the 
envisionment itself and to the calculation of probabilities 
afterward.  Within an engagement envisionment, the key 
spatial representation is relative distance.  That is, space is 
projected down to one dimensional distance quantities. 
 Working with distance quantities introduces some 
complexities, since projection inevitably loses information.  
First, the ‘as the crow flies’ distances may not reflect 
actual travel distances.  A route may take units closer 
together and then farther apart (think switchbacks on 
mountain roads).  The envisionment algorithm assumes 
routes approach or depart monotonically.   Nonmonotonic 
routes must be broken up into segments, each 
corresponding to a distinct movement process. 
 The second complexity is consistency checking.  Given 
only a set of distance inequalities, how do we know if an 
additional distance inequality is consistent?  Unlike other 
linear quantities, distances don’t combine transitively 
because angular information has been projected away.  So 
for example, if the distance from location A to B is 1000 
meters, and the distance from B to C is 500 meters, then 
the distance from A to C could be anywhere from 500 to 
1500 meters. 
 The distance consistency algorithm checks a proposed 
distance inequality by computing maximum and minimum 
bounds on that distance given a qualitative state.  It first 
uses a breadth-first search to identify a traversal of the 
distance graph equivalent to the query distance (e.g., AB + 
BC in the previous example).  It then finds the biggest leg 
in this path and adds and subtracts the cumulative 

remainder of the traversal (truncating at zero) to determine 
max and min distances.  The algorithm uses interval 
arithmetic because each distance may itself be bounded by 
inequalities.  It also keeps track of open and closed ranges 
entailed by different predicates (e.g., > vs. ≥). 

Integration with Stochastic Simulator 

In addition to envisioning possible futures, SimPath also 
assesses the likelihood of those futures.  This is important 
to help commanders assess COAs during planning, to 
support tracking and situational awareness during 
execution, and to improve the efficiency of the simulation.  
Transitions with sufficiently low probabilities are pruned 
from the futures graph, removing entire trajectories from 
further consideration.  The probabilities are also used to 
help track execution during battle and maintain situational 
awareness, a topic beyond the scope of this paper. 
 SimPath computes probabilities of state transitions after 
each round of qualitative envisionment using a stochastic 
simulator.  For each qualitative state, the simulator creates 
a distribution of sample outcomes that can be classified 
into buckets corresponding to the different qualitative 
transitions.  A sample outcome is constructed by stepping 
through time and simulating each influenced quantity.  
Distances, for example, are updated as a function of 
preferred vehicle speeds, terrain and route.  Force strength, 
or more accurately, platform attrition, is simulated using a 
random variable as input to Lanchester equations 
(Lanchester, 1916) to probabilistically determine when a 
unit has lost one of its platforms.  The (Lanchester) 
lethality of a platform is determined by combat power of 
the platform and modified by situational factors including 
terrain features, visibility, and postures and therefore is 
constant over a situation.  The ability of a unit to attrit an 
enemy unit is determined by the product of platform 
lethality and the number of attacking platforms in the 
friendly unit.  The simulator stops and produces a sample 
outcome when one of the quantities reaches a threshold 
value that defines a qualitative state transition.  The 
simulator produces 1000 samples for each situation. 
 Although the stochastic simulator is slow compared to 
qualitative envisionment, the integration of the two is 
practical because they mutually constrain each other.  The 
factored envisionment constrains the number of situations 
that must be simulated, and conversely, the stochastic 
simulator rules out numerically impossible trajectories.  
Whereas the qualitative envisionment may indicate two 
possible outcomes to an engagement, the stochastic 
simulator may show one outcome to be vanishingly 
unlikely, and no subsequent futures will be envisioned for 
the losing unit. 

Putting it all together 

The more quantities and influences represented, the more 
possible thresholds and futures states are generated.  This 



quickly adds up.  The main strategy for controlling this is 
to divide the simulation into smaller, non-interacting pieces 
and envision them separately.  We call this factoring. 
 The battlefield is factored by identifying the collections 
of tasks in the opposing COAs that can interact.  In 
maneuver warfare, tasks can interact if the trajectories of 
their assigned units intersect in space and time.  The 
geospatial reasoner computes the spatial intersections 
based on the ranges of weapons systems, rather than 
merely the unit footprints.  It also considers ground control 
measures such as boundary lines and phase lines.  Next, the 
task grouper computes possible temporal intersections of 
these tasks using a Simple Temporal Network (STN) 
(Dechter et al., 1991).  The resulting set of interacting 
tasks is translated into a qualitative situation containing 
processes that influence a common set of quantities.  For 
example, the COA pair in Figure 1 shows two parallel 
engagements between blue (friendly) and red (enemy) 
units.  The engagement in the north can be envisioned 
independently of the engagement in the south, significantly 
reducing the number of possible states produced. 

Experience & Empirical Evaluation 

In qualitative modeling, it is critical to omit needless detail.  
Each process and quantity  has the potential to significantly 
increase the branching factor of the envisionment.  We 
quickly learned to avoid modeling quantities such as fuel 
or ammunition, because this led the envisioner to propose  
that every unit might run out of those resources at every 
step along the way.  Unit boundaries are another example.  
COAs can be very explicit about constraining maneuvers 
to stay within boundaries.  Such invariants should be left 
out of a qualitative model because the envisioner will turn 
them into limits and model units crossing them. 
 Compositionalithy can be both a blessing and a curse.  It 
has the benefit that a model that is valid for a 1x1 
interaction is also valid for a 1x2 or a 2x2 interaction.  
However, when multiple units interact, the complexity and 
size of the envisionment grows rapidly.  We found 
factoring to be essential in simulating large COAs.  In fact, 
for a typical COA, factoring yielded an average 17-fold 
improvement just in the number of terminal situations.  
This result led us to define additional rules for factoring 
based on different ground control measures, and quickly 
became the primary means for controlling state explosions.   
 The stochastic simulator took the majority of the 
execution time.  It typically succeeded in pruning between 
a third and a half of the situations in an envisionment.  The 
downstream effect of this can be enormous.  

External Evaluation 

In addition to our internal evaluations, an external team of 
researchers and subject matter experts (SMEs) conducted a 
formal evaluation in 2009.  This evaluation tested fidelity, 
the faithful execution of tactical tasks, and scalability, the 
time required to simulate 9 COA pairs. 

 To assess fidelity, two SMEs subjectively evaluated 
limited, task-focused “vignettes.”  These were designed to 
measure how well the behavioral models simulated the 
range of expected outcomes.  Each SME scored 28 
vignettes, covering 16 types of tasks and decisions, and 
assigned each a numeric score, which was grouped into 
one of three categories: acceptable (appropriate answers); 
partially acceptable (capability needs some work); or 
unacceptable (capability is not adequate or does not exist).  
As shown in Figure 2, SimPath simulated 12 vignettes with 
acceptable fidelity and 14 vignettes with partially 
acceptable fidelity for a wide range of tasks.   

For each vignette, the SMEs answered 17 questions that 
assessed the realism of combat results, duration, execution, 
movement, use of terrain, and other modeling details to 
better characterize SimPath’s strengths and weakness.   
 SimPath scored well with movement, use of terrain, use 
of engagement ranges, and multiple believable outcomes 
with realistic probabilities.  More work is needed to model 
task synchronization and Decision Points, which are 
explicit contingent branches in the COA.  Tasks that 
required decomposing units to subunits also did poorly.  
Some FollowAndAssume tasks were factored incorrectly,  
leaving the leader and follower in separate engagements. 
 Scalability tests assessed performance on more realistic 
COAs, which are bigger than vignettes, and have more 
“moving parts”.  They involve chaining together multiple 
engagements and exercise factoring of the battlespace.  
There were four COA scenarios (defined by terrain and 
force structures).  For each scenario, three Blue and three 
Red COAs were produced and simulated against each other 
in nine pair-wise combinations. 
 In the scalability tests, Simpath’s speed was better than 
expected.  The goal was to simulate nine COA pair 
combinations in a half hour.  By simulating each COA pair 
in parallel on a multi-core server and offloading GIS code 
to laptops, execution time was under two minutes.  We 
take this as vindication for our hybrid qualitative approach. 
 On the other hand, there were some fidelity issues in the 
COA tests.  Because each COA contained many subtasks, 
any incompletely modeled behavior tended to bring down 
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Figure 2: SimPath simulated 93% of vignette tests at a 

minimum fidelity or greater, covering a range of tactical 

tasks. 



the overall score.  For instance, because the Decision 
Points were not implemented, some units did not move.  
Also, units in different engagements were not synchronized 
as intended.  Since the simulator works at the level of 
individual engagements, coordination across engagements 
will require more sophisticated bookkeeping, such as that 
provided by an ATMS mechanism (de Kleer, 1986). 

Related Work 

Most military simulations operate at a fixed resolution and 
produce a single future trajectory.  This is a reasonable 
approach for training simulations such as OneSAF 
(Parsons and Surdu, 2005), where humans may play a role 
alongside simulated agents in a massive multiplayer 
simulation.  For the purpose of assessing plans and 
determining how they may succeed or fail in execution, it 
is important to record multiple outcomes and the audit trail 
showing how they came about.  Doing this efficiently 
drove the decision to use qualitative simulation.  In fact, 
extrapolating from the execution time of a single future 
trajectory in SimPath compared to the real-time simulation 
in OneSAF suggests a speedup factor of over a million. 
 An alternate approach is to use Monte Carlo simulation 
to produce an approximation of an envisionment (Atkin, 
Westbrook, & Cohen, 1999).  This can be used to gain 
insights on small scenarios, but the exponential nature of 
Monte Carlo simulation makes it difficult to scale. 

Future Work and Conclusions 

SimPath is under active development.  As part of Deep 
Green, its scope is expanding to cover intelligence, 
surveillance and reconnaissance (ISR), indirect fires, 
engineering tasks, aviation units,  and ultimately full-
spectrum warfare.  Because these transcend simple move-
and-shoot scenarios, they present new challenges.  Since 
these tasks are not as local, detecting interactions (or non-
interactions) is more difficult.  Finally, counter-insurgency 
(COIN) modeling breaks assumptions about well-defined 
tasks, allegiances, and short, uniform time-scales. 
 Although qualitative reasoning is a mature technology, 
its application to military simulation has driven a number 
of innovations in this project: 
• Factored envisioning – taking apart the situation, 

envisioning sub-graphs and merging them back 
together greatly reduces the size of the simulation. 

• The highly spatial nature of the envisionment.  
Correctly capturing consistency and entailment of 
situations when 2D space is projected down to 1D 
distance quantities required new algorithms.  

• Supporting intent and discrete actions (such as 
breaking fire, assuming another unit’s mission) is also 
unusual in a process envisioner, though the idea has 
been explored previously (Forbus, 1989). 

• Integration with a constrained numerical simulator 
permits transition pruning and probability estimation.  

In addition to their importance for military simulation, we 
believe that these innovations may open up the use of 
envisioning for planning other complex human 
organization operations, such as sensor resource planning, 
disaster response and financial market analysis. 
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