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Abstract 

Representing and comparing two-dimensional shapes is an 
important problem.  Our hypothesis about human 
representations is that that people utilize two representations 
of shape: an abstract, qualitative representation of the 
spatial relations between the shape‘s parts, and a detailed, 
quantitative representation. The advantage of relational, 
qualitative representations is that they facilitate shape 
comparison: two shapes can be compared via structural 
alignment processes which have been used to model 
similarity and analogy more broadly. This comparison 
process plays an important role in determining when two 
objects share the same shape, or in identifying 
transformations (rotations and reflections) between two 
shapes. We demonstrate the effectiveness of our model by 
summarizing a series of studies which have simulated 
human spatial reasoning. 

Introduction 

Humans possess an impressive capacity for identifying, 
representing, and reasoning over the spatial relationships 
between objects.  For example, consider a geometric 
analogy problem (Figure 1A), in which an individual must 
answer the question ―A is to B as C is to…?‖  Answering 
this problem requires recognizing three things: 1) in the 
mapping from A to B there is a reversal of vertical 
positions, 2) in the mapping from C to 3 there is a reversal 
of horizontal positions, and 3) both of these mappings are 
instances of some more abstract ―switching places‖ 
relation. However, people can answer problems like this 
one quickly and accurately (Lovett et al., 2009b).  
 In addition to reasoning intelligently about the relations 
between objects‘ locations, we are also quite skilled at 
reasoning about the relations between objects‘ shapes.  For 
example, Figure 1B shows a problem that can only be 
solved if one recognizes that the triangle shape is being 
flipped or rotated in the mapping between A and B. Our 
facility in solving this problem (which people actually 
answer about twice as fast as the previous problem) 
demonstrates our ability to integrate both spatial and shape 
relations in solving problems like geometric analogies.  
 Computing relations between shapes—determining that 
they are identical, or that one is a rotation or reflection of 
the other—is a difficult problem.  In the past, there have 

been heated arguments over the nature of people‘s shape 
representations, particularly whether people use 
orientation-invariant representations (Biederman 1987; 
Biederman and Gerhardstein 1993) that automatically align 
during comparison or orientation-specific representations 
(e.g., Tarr et al. 1997) that must be mentally rotated during 
comparison. However, we believe the most parsimonious 
approach to modeling shape cognition is to assume that 
there are no special representations or processes for dealing 
with shapes. Rather, we believe, people represent and 
reason about shapes in the same way that they represent 
and reason about space, only on a smaller scale. 
 In particular, we make the following key claims about 
shape representation and comparison: 

1) People rely on two types of shape representations: an 
abstract, qualitative, orientation-invariant representation 
and a detailed, quantitative, orientation-specific 
representation (e.g., Hummel 2001). 

2) Qualitative representations of shape, like qualitative 
representations of space, are structured representations 
(Biederman 1987) describing the relations between a set of 
elements. For shape representations, these elements are the 
parts of the shape (e.g., the edges of a line drawing). 

3) Qualitative shape representations can be compared via 
structure-mapping (Gentner 1983), a process of aligning 

A  

B  

Figure 1. Two geometric analogy problems from 

(Evans, 1968; Lovett et al. 2009b) 
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their common relational structure.  Structure-mapping is 
believed to play a role in a variety of domains, from 
abstract analogies to visual scene comparison (Lovett et al. 
2009a). 

4) Performing a more exact comparison or determining a 
specific transformation between two shapes requires 
comparing their quantitative representations. This is a two-
step process in which people first use structure-mapping on 
the qualitative representation to identify the corresponding 
parts in the shapes and then mentally transform the 
quantitative representations to align the corresponding 
parts. 

 In this paper, we describe a computational model of 
shape representation and comparison based on the claims 
given above. We begin by summarizing work in 
psychology that supports the claims.  We then describe our 
models of shape representation and comparison. Finally, 
we review several spatial reasoning tasks in which we have 
used our model to achieve human-level performance. 

Background 

Several areas of psychological research have informed our 
model. We consider each in turn. 

Perceptual Organization 

Perceptual organization is concerned with how people 
divide a visual scene into a coherent set of objects.  It is 
generally assumed (e.g., Ullman 1987; Palmer and Rock 
1994) that bottom-up processes create a set of entry-level 
units. These initial elements can then be grouped into 
larger objects or parsed into smaller objects. 
 A conclusion one may draw from these ideas is that the 
distinction between the objects in a scene and the parts in 
an individual object is a difference of degree only; one of 
these may be represented and reasoned over as easily as the 
other. Indeed, Palmer (1977) suggested that people possess 
hierarchical representations of visual space.  At any level 
of representation, there are a set of structural units (SUs), 
each of which possesses a set of relations to other SUs at 
its level. Zooming in on any single SU, one can identify 
the set of SUs and relations that make it up. 
 This suggests that, just as space can be represented as a 
set of objects and relations between objects, the shape of 
an individual object can be represented as a set of parts and 
relations between parts (e.g., Biederman 1987).  Similarly, 
just as visual scenes can be compared by aligning their 
common structure and identifying the corresponding 
objects within them (Lovett et al. 2009a), shapes can be 
compared by aligning their common structure and 
identifying the correspond parts within them.   

Spatial Relations 

If shape, like space, is represented as a set of relations, 
what should the nature of those relations be? We believe 

there is strong evidence that people typically encode 
qualitative, or categorical, relations between object parts. 
 For example, let us consider the lines that make up two-
dimensional shapes.  There is evidence that people encode 
qualitative relations for both the relative orientation of two 
lines and the type of connection between two lines.  For 
relative orientation, people show a strong sensitivity to 
both parallel lines (Abravanel 1973), and perpendicular 
lines (Chen and Levi 1996); however, the sensitivity to 
perpendicular lines may appear only when one line is 
vertical and one line is horizontal, perhaps due to 
alignment of a line with the x- and y-axes being a salient 
qualitative feature. 
 For connections between edges, there is a great deal of 
evidence that people are sensitive to concave corners 
between the edges of a shape (e.g., Ferguson et al. 1996; 
Elder and Zucker 1993).  We believe it is likely that people 
make a qualitative distinction between concave and convex 
corners within a shape. 

Object Recognition 

There has been a lengthy, ongoing debate about how 
objects‘ shapes are represented and compared for 
recognition. One major question is whether representations 
are orientation-invariant or orientation-specific. If 
representations are orientation-invariant, then the process 
of recognizing involves simply encoding an object‘s 
representation and directly comparing it to other 
representations until a match is found. On the other hand, if 
representations are orientation-specific, then the process of 
recognizing depends critically on the orientation at which 
an object is perceived. If that orientation is an unfamiliar 
one, the individual may need to mentally transform the 
object‘s representation to line it up with a more familiar 
orientation. Thus, recognizing objects at unfamiliar 
orientations should be at least slower, and possibly more 
error-prone. 
 Despite the clear, differing predictions these two 
viewpoints make, determining which is correct has proven 
difficult. In some studies (e.g., Biederman and 
Gerhardstein 1993), individuals have been able to quickly 
recognize newly learned objects regardless of orientation.  
In others (e.g., Tarr et al. 1997), unfamiliar orientations 
have hampered the recognition process.  Thus, it appears 
that orientation-invariant recognition works sometimes, 
depending on the specifics of the task. 
 We believe the best explanation of such conflicting 
results is that people possess two types of shape 
representations. The first is an abstract, orientation-
invariant representation describing the qualitative spatial 
relations between parts of the shape, as suggested above. 
The second is a concrete, orientation-specific 
representation describing the shape‘s complete details. The 
exact form of this second representation is less clear. 
Whereas the orientation-invariant representations can be 
quickly compared to compute a rough measure of 
similarity between two shapes, the orientation-specific 



representations must be transformed and compared to 
determine for certain whether two shapes are identical.   

Mental Rotation 

Mental rotation can be seen as a particularly difficult 
special case of object recognition. In mental rotation tasks 
(Shepard and Metzler 1971; Shepard and Cooper 1982), 
individuals are shown two shapes (either two- or three-
dimensional) and asked to determine whether a rotation of 
one would produce the other.  To make this more difficult, 
the false trials are typically created by reflecting and then 
rotating one shape to create the other.  Thus, even on the 
false trials the shapes are quite similar. 
 The typical finding in mental rotation tasks is that the 
time to determine that one shape is a rotation of the other is 
proportionate to the degrees of rotation between them.  
This suggests that individuals are applying some kind of 
analog rotation to their representation of one of the shapes 
to line it up with the other.   
 At first glance, the mental rotation studies simply seem 
like more evidence for an orientation-specific 
representation of shape. However, there is a deeper 
question of what guides the mental rotation process. In 
most cases, the reaction time on this task is proportionate 
to the degrees of rotation along the shortest possible 
rotation between the two shapes (Shepard and Cooper 
1982).  This leads to the question of how people know 
which way to rotate one shape to line it up with the other. 
 We believe the mental rotation results can be best 
explained via a two-step process.  This begins with a quick 
comparison of the qualitative, structural, rotation-invariant 
representations. By aligning the common structure in the 
representations being compared (Gentner 1983), one can 
quickly identify the corresponding parts in the two shapes. 
An understanding of these correspondences can then guide 
the comparison of the orientation-specific representations.   
 For example, consider the two arrow shapes in Figure 2. 
An individual might compare them in the following 
manner: 1) Compare the structured, qualitative 
representations to determine that the stems of the two 
arrows correspond to each other. 2) Compare the stems to 
quickly determine that there is a 45-degree rotation 
between them (Figure 2C). 3) Mentally apply the 45-
degree rotation to the detailed, quantitative representations, 
and see if it results in those representations lining up with 
each other. This third step would be the only one whose 
speed would depend on the degrees of rotation between the 
two shapes. 

A Model of Shape Representation 

Our model of shape representation is built into the 
CogSketch sketch understanding system (Forbus et al. 
2008).  CogSketch takes a set of objects, or glyphs, drawn 
by the user and automatically computes qualitative spatial 
relations between them.  Our model does the same thing 
for the edges making up a single glyph in CogSketch.  
Shape representations are computed via a three-step 
process:  

1) Identify the edges and junctions in the glyph. 

2) Group edges into cycles representing closed shapes. 

3) Generate a qualitative description of the spatial relations 
between the edges. 

 This qualitative description is our model‘s orientation-
invariant representation. We have no strong theoretical 
commitment on the form of the orientation-specific 
representation.  In our model, it is simply the set of edges 
and their orientations, along with the glyph‘s overall size. 
 As we describe the three steps of this process in detail, 
we use Figure 2A, the arrow shape, as a running example. 

Identifying Edges and Junctions 

Our model takes as input a set of polylines, lists of points 
describing lines drawn by a CogSketch user.  Rather than 
assuming the user drew one line for each edge of the 
shape—e.g., four lines for the arrow shape—the model 
first merges those polylines whose endpoints touch and 
then begins segmenting the polylines into edges. 
 Several researchers (e.g., Clowes 1971; Bierderman 
1987) have suggested that the human visual system makes 
use of junctions, locations where two or more edges meet, 
when building up a shape representation.  Our model relies 
on junctions to parse a shape into edges, identifying 
junctions in the shape and then treating edges as maximally 
long lists of adjacent points between junctions. 
 The model utilizes two approaches for identifying 
junctions between edges.  Firstly, any place three or more 
lines meet is a junction (Figure 3). Typically, i.e., in fork- 
and arrow-junctions, it is assumed that these lines are 
distinct edges. However, there are two exceptions: T-
junctions, where one edge bisects another edge, and X-
junctions, where two edges intersect each other.  In Figure 
2A, there is a T-junction where the stem of the arrow 
bisects one of the edges of the head. 
 The other approach is used to identify L-junctions, 
where two edges meet.  L-junctions are identified based on 
a local discontinuity in the curvature, accompanied by a 
larger-scale change in orientation (see Lovett et al., 2009b 
for details). In Figure 2A, there are three L-junctions 
between the edges of the arrow‘s head. 

A       B       C       D  
Figure 2. A,B: Two arrow shapes.   C: A rotation between the 

shapes.   D: An axis of reflection between the shapes. 

 

 

 

 
L-junct      Fork-junct     Arrow-junct    T-junct          X-junct 

Figure 3. Common junction types (most from Clowes, 1971) 



Grouping Edges into Cycles 

Closure, i.e., a cycle of edges that together form a closed 
shape, is one of the most important Gestalt grouping rules 
in perceptual organization (Rock & Palmer, 1990). In 
addition, it is needed to identify concavities (Elder & 
Zucker, 1993), an important and salient relationship 
between edges in a shape. 
 Our model identifies edge cycles via the simple 
expedient of searching exhaustively through the network of 
edges connected by junctions. While we doubt this is the 
approach people use, it is sufficient for our purposes.  Once 
identified, an edge cycle is represented by a list of the 
edges making up the cycle, in clockwise order.  This makes 
it easy to enumerate the corners between edges in the cycle 
and to classify each corner as convex or concave, 
depending on whether it points into or out of the cycle. In 
Figure 2A, the model would identify a single edge cycle 
with three edges and three convex corners. 

Generating Qualitative Descriptions 

Given a list of edges, junctions between edges, and edge 
cycles, the model generates a qualitative, orientation-
invariant representation of the relations between the edges.  
This representation is based upon the tenets of structure-
mapping (Gentner, 1983) a model of analogical and 
relational comparison which claims that we compare 
relational descriptions by aligning their common structure. 
Relational descriptions consist of entities, attributes of 
entities, and relations between entities.  There can also be 
higher-order relations between other, lower-order relations. 
According to structure-mapping, people generally try to 
find the most systematic matches between two cases, i.e., 
the matches with the deepest common structure. Thus, 
higher-order relations play a key role in the mapping 
process and are therefore a particularly important part of 
the shape representation. 
 In our representations, the entities refer to edges of the 
shape. The full set of attributes and relations is given in 
Figure 4.  We now describe these in turn. 
 Attributes describe features of individual edges. Every 
edge in a shape is a PerceptualEdge. Each edge is further 
assigned an attribute specifying whether it is straight, 
curved, or elliptical. An elliptical edge is an edge that 
closes on itself, such as a circle. Each edge is also assigned 
a length attribute based on its length relative to the shape‘s 

longest edge. Finally, straight edges can be classified as 
axisAligned, meaning they are aligned with the x- or y-
axes. This attribute is the only term in the representations 
that contains some orientation-specific information. 
However, as it is a low-level attribute describing a single 
edge, it plays a small role in the representation. 
 Simple edge relations are low-level relations describing 
relationships between pairs of edges. The first two, 
edgesPerpendicular and edgesParallel, describe the 
relative orientations of two edges. edgesCollinear 
describes a special case of parallel edges, in which the 
edges are also collinear. The other relations describe pairs 
of edges that meet at different types of junctions. 
elementsConnected describes two edges that meet at an L-
junction, elementsIntersect describes two edges that 
intersect at an X-junction, and elementIntersects describes 
one edge that bisects another at a T-junction. 
 The final set of relations describe relationships between 
edges in an edge cycle.  Firstly, all corners between edges 
are classified as convex or concave. cycleAdjacentAngles 
is a higher-order relation describing consecutive pairs of 
corners along the cycle. perpendicularCorner and 
equalLengthEdgesCorner are higher-order attributes 
describing features of a corner. Finally, 
parallelEdgeRelation and collinearEdgeRelation are 
higher-order attributes for pairs of edges in a cycle. These 
are included to give parallel and collinear edges the same 
level of structural depth as perpendicular edges in the 
shape representation.  
 Figure 5 shows the representation the model generates 
for the arrow shape.  

A Model of Shape Comparison 

We believe that people can perform two types of shape 
comparisons.  The first is a quick estimate of the similarity 
of two shapes‘ orientation-invariant representations. The 
second is a more careful comparison of the orientation-
specific representations which may require applying 
mental transformations. Because the second type of 
comparison requires first identifying the corresponding 
edges in the two shapes, both types of comparison require 
an efficient method for aligning the structured, orientation-
invariant representations. Therefore, we begin this section 
by describing the Structure Mapping Engine (Falkenhainer 
et al., 1989), our model of structural alignment.  
 

Attributes Simple Edge Relations Edge Cycle Relations 

PerceptualEdge 

StraightEdge/CurvedEdge/EllipseEdge 

length(Tiny/Short/Medium/ Long) 

axisAligned 

edgesPerpendicular 

edgesParallel 

edgesCollinear 

elementsConnected 

elementsIntersect 

elementIntersects 

convexAngleBetweenEdges / concaveAngleBetweenEdges 

cycleAdjacentAngles 

perpendicularCorner 

equalLengthEdgesCorner 

parallelEdgeRelation 

collinearEdgeRelation 

Figure 4. Qualitative vocabulary for shape representation. 



Qualitative Comparison via Structural Alignment 

Qualitative, structural representations are compared using 
the Structure Mapping Engine (SME) (Falkenhainer et al., 
1989), a computational model based on Gentner‘s (1983) 
structure-mapping theory of analogy. While SME was 
originally built to model abstract analogical comparison, it 
has since been used to model human relational 
comparisons in a number of domains, including concrete 
spatial representations (Lovett et al., 2009a).  Given two 
structured representations, a base and a target, SME 
computes one or more global mappings between them. 
Each mapping consists of: 1) a set of correspondences 
between elements in the base and target; 2) a structural 
evaluation score, an estimate of similarity based on the 
degree of overlapping structure; and 3) a set of candidate 
inferences, inferences about the target computed based on 
elements in the base that failed to map to the target.  
 SME is useful in modeling shape comparisons for two 
reasons.  Firstly, the structural evaluation score can be used 
as an estimate of the similarity of the shapes being 
compared.  Secondly, the correspondences indicate which 
edges in the two shapes correspond to each other.  These 
correspondences can be used to guide a comparison of 
quantitative representations, as described next. 

Quantitative Comparison 

Quantitative comparison is necessary to determine for 
certain whether two objects are the same shape.  It also 
allows one to identify transformations between the objects‘ 
shapes. Next we describe our model for identifying 
rotations and reflections between shapes. 

Rotation. Rotations are identified via a three-step process. 
Firstly, the shapes‘ qualitative, orientation-invariant 
representations are compared via SME to identify 
corresponding edges. The edge correspondences are then 
carried over to the quantitative, orientation-specific 
representations. Recall that we model quantitative shape 
representations as simply a list of edges and their 
quantitative orientations. We expect that human 
quantitative representations are considerably richer. 
 Secondly, the first pair of corresponding edges are 
compared. Based on their relative orientations, two 
candidate rotations between them are identified. For 
example, suppose the two arrow shapes in Figure 2 were 
compared, and the stems of the arrows were identified as 
corresponding edges. The candidate rotations would be a 
45-degree, clockwise rotation and a 135-degree, counter-
clockwise rotation. 
 Thirdly, these candidate rotations are evaluated by 
considering the relative orientations of the other 
corresponding edges. For the two arrows, only the 45-
degree, clockwise rotation can be consistently applied to 
all corresponding edges (Figure 2C).  
 Note that if SME identifies more than one equally valid 
mapping between the edges of the shapes, this approach 
can return more than one possible rotation.  The model 
simply sorts these from least to greatest degrees of rotation. 

In contrast, people generally identify the shortest possible 
rotation first (Shepard & Cooper, 1982). The model might 
be made more accurate by adding a small amount of 
orientation-specific information to the structural 
representations to bias SME towards returning a mapping 
representing the shortest possible rotation. 

Reflection. Our approach for identifying axial reflections 
between shapes is similar. There are only two differences: 
1) For the qualitative representations, the order of the 
edges in any edge cycles are reversed for one of the two 
representations. This is done because axial reflections 
result in a reversal of the order of elements in a cycle. 2)  
In the second and third steps of the process, the model 
looks for possible axes of reflection between two edges‘ 
orientations, rather than rotations. For the two arrows, 
there is one possible axis of reflection (Figure 2D). 

Studies 

We have used our model of shape representation and 
comparison in a number of studies, although the 
vocabulary of qualitative spatial relations has evolved over 
time. These studies include simulations of three spatial 
problem-solving tasks: geometric analogy (Lovett et al. 
2009b; Figure 1), the visual oddity task (Lovett, 
Lockwood, and Forbus 2008; Figure 6A), and a subset of 

Figure 5. Shape representation for the arrow shape. 
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the Raven‘s Progressive Matrices (Lovett, Forbus, and 
Usher 2007; Figure 6B). All of these tasks require 
comparing images in order to find patterns in their spatial 
relations. These tasks also require integrating shape 
information—shape identity and shape transformations—
with spatial information.  On all three tasks, our models 
have achieved adult human-level performance or better. 

Conclusion  

We have presented a psychologically-motivated 
computational model of shape representation and 
comparison. The key insights of this model are that shape, 
like space, can be represented as a set of qualitative spatial 
relations between parts, and that shape representations can 
be compared via structure mapping. While other 
researchers have explored the first idea before (Biederman, 
1987; Hummel, 2001), our model moves beyond their 
work by automatically building up shape representations 
that can be used in larger spatial reasoning tasks.  
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