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Abstract 

Learning to plausibly reason with minimal user intervention 
could significantly improve knowledge acquisition.  We 
describe how to integrate graph-based heuristic 
generalization, higher-order knowledge, and reinforcement 
learning to learn to produce plausible inferences with only 
small amounts of user training.  Experiments on 
ResearchCyc KB contents show significant improvement in 
Q/A performance with high accuracy. 

 Introduction and Motivation   

Question answering is an important application for AI 

systems.  Inference based Q/A systems have an advantage 

over information extraction systems because they can 

reason and can provide explanations for their answers. 

However, knowledge base construction is difficult and 

tedious.  One solution to this problem is to exploit 

whatever learning strategies are available to populate a 

knowledge base and use feedback to learn to reason.  For 

example, learning by reading systems [Matuzek et al 2005; 

Forbus et al 2007] are currently better at providing ground 

facts than correct, fully quantified logical axioms.  Being 

able to learn plausible patterns of inference over ground 

facts could significantly improve the scalability of 

knowledge base construction.  Such plausible inferences 

also help solve a second problem in reasoning with large 

KBs: Typically the set of logically quantified axioms has 

woefully low coverage.  At this point it is far from clear 

that human reasoning rests on massive sets of correct 

logically quantified axioms, and some interesting evidence 

against it (e.g., the Wason task).   While prior work has 

explored plausible inference schemes (e.g. [Collins 1978]) 

we are also concerned with learning to do such reasoning.  

                                                 
Copyright © 2010, Association for the Advancement of Artificial 

Intelligence (www.aaai.org). All rights reserved. 
 

Since human attention is a scarce resource, our goal is to 

minimize the amount of feedback users must provide. 

  This paper shows how to integrate graph search, higher-

order knowledge representation, and reinforcement 

learning to learn reliable patterns of plausible reasoning 

from ground facts.  Given a fully ground query, we show 

how to incrementally search the facts which mention the 

entities in it guided by a set of plausible inference patterns 

(PIPs). PIPs are similar to knowledge patterns [Clark et al 

2000], but are expressed in terms of higher-order concepts 

in the knowledge base, specifically predicate type 

information.  Since the number of predicate types is much 

smaller than the number of predicates, this greatly reduces 

the size of search space.  We show that the quality of 

inference chains of PIPs can be learned by reinforcement 

learning.    

We begin by discussing other related work.  We then 

discuss the idea of PIPs and how they are defined in terms 

of predicate types.  How reinforcement learning is used to 

learn the quality of answers is discussed next.  We describe 

results and conclude in the final section. 

  

        Related Work  
Researchers from the fields of Information Retrieval, 

Natural Language Processing, Databases and Logical 

Inference have contributed to the advancement of question 

answering technologies [Brill et al 2002] [Prager et al 

2004]. Overviews of question answering techniques can be 

found in [Belduccinni et al 2008, Molla and Vicedo 2007]. 

A comparison of challenge problems and different 

approaches has been discussed in a recent IBM report 

[Ferrucci et al 2009]. Learning Bayesian networks for 

WordNet relations for QA systems [Ravichandran and 

Hovy 2002] and surface patterns from natural language 

text [Molla 2006, Grois and Wilkins 2005] have been 

discussed. Our work is different in that we are trying to 

improve the performance of a plausible inference based 

Q/A system by learning to reason. Other learning to reason 
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frameworks [Khardon 1999] have been explored. 

However, their efficacy for improving Q/A performance is 

not known. Reinforcement learning has been used for 

learning control rules for guiding inference in ResearchCyc 

KB [Taylor et al 2007]. To the best of our knowledge, 

there has not been prior work which develops a method for 

providing plausible explanations for queries (without using 

logically quantified axioms) with a learning framework.  

Representation and Reasoning 

We use conventions from Cyc in this paper since that is the 
major source of knowledge base contents used in our 
experiments

1
.   We summarize the key conventions here 

[Matuszek et al 2006]. Cyc represents concepts as 
collections.  Each collection is a kind or type of thing 
whose instances share a certain property, attribute, or 
feature. For example, Cat is the collection of all and only 
cats. Collections are arranged hierarchically by the genls 
relation. (genls <sub> <super>) means that anything that 
is an instance of <sub> is also an instance of <super>. For 
example, (genls Dog Mammal) holds.  Moreover, (isa 
<thing> <collection>) means that <thing> is an 
instance of collection <collection>. Predicates are also 
arranged in hierarchies.  In Cyc terminology, (genlPreds 
<s> <g>) means that <g> is a generalization of <s>. For 
example, (genlPreds touches near) means that touching 
something implies being near to it.  The set of genlPreds 
statements, like the genls statements, forms a lattice.  In 
Cyc terminology, (argIsa <relation> <n> <col>) 

means that to be semantically well-formed, anything given 
as the <n>th argument to <relation> must be an instance 
of <col>. That is, (<relation>……<arg-n> …) is 
semantically well-formed only if (isa <arg-n> <col>) 
holds. For example, (argIsa mother 1 Animal) holds.  
We use Cyc’s predicate type hierarchy extensively. 
PredicateType is a collection of collections and each 
instance of PredicateType is a collection of predicates. 
The predicates in a given predicate category represented in 
the KB are typically those sharing some common feature(s) 
considered significant enough that the collection of all such 
predicates is useful to reify

2
. Instances of PredicateType 

include TemporalPartPredicate, SpatialPredicate, 

Goals-Attitude-Topic, PhysicalPartPredicate and 
PropositionalAttitudeSlot. ResearchCyc can be viewed 
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 We use knowledge extracted from the ResearchCyc 

knowledge base with our own reasoning system, instead of 

using Cycorp’s reasoning system. 
2
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either as incorporating higher-order logic or as a first-order 
knowledge base with extensive reification.  We take the 
latter perspective here.  

The task of answering questions without using 

logically quantified axioms is difficult because it involves 

finding arbitrary relations between predicates which could 

explain the query. Therefore, we have taken the simpler 

approach of building a small sub-graph of relations around 

the entities in the query and then assessing the quality of 

inference chains between them. This intuition is similar to 

connection graphs [Faloutsos et al 2004] and relational 

pathfinding, where the domain is viewed as a (possibly 

infinite) graph of constants linked by the relations which 

hold between the constants [Richards & Mooney 1992]. 

Since prior knowledge is important for biasing learning, 

we leverage existing axioms in the KB to create plausible 

inference patterns (PIPs) which are used to keep only more 

likely inference chains. These PIPs are created by 

replacing predicates in axioms by their predicate types. 

PIPs are accepted if they are generated by more than N 

axioms. (In this work, N=5). We turn to a concrete 

example for illustration. 

Let us assume that the system has been asked to 

provide a plausible inference for the query 

(acquaintedWith BillClinton HillaryClinton). A 

small section of the KB relevant for answering this query is 

shown in Figure 1. In the first step of the algorithm shown 

in Figure 3, e1 is set to BillClinton and e2 is set to 

HillaryClinton. For simplicity, let us assume that we 

have just one PIP:  
FamilyRelationSlot(?x,?y) AND 

FamilyRelationSlot(?y,?z)  → 

PersonalAssociationPredicate(?x,?z) [PIP1] 

This pattern represents the knowledge that two predicates 

of type FamilyRelationSlot can plausibly combine to 

infer assertions involving personal associations. This 

representation has been chosen because we believe that 

predicate types like SubEventPredicate, 

PhysicalPartPredicate and CausaltyPredicate provide 

a meaningful level of abstraction for identifying plausible 

inference patterns.  For instance, all predicates of type 

SubEventPredicate can be used for proving 

eventPartiallyOccursAt queries
3
.  Similarly, all 

predicates of type PhysicalPartPredicate are relevant for 

proving objectFoundInLocation queries
4
.  

                                                 
3
 Some examples of SubEventPredicate predicates are 

firstSubEvents, cotemporalSubEvents, 

finalSubEvents etc.  
4
 Some examples of PhysicalPartPredicate are 

physicalParts, internalParts, northernRegion etc.  

 
Figure 1: Plausible inference example 
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Therefore, learning knowledge in terms of predicate types 

is easier and more natural. The relative tractability of this 

formulation can also be seen by noting the difference 

between the sizes of search spaces. Learning to distinguish 

between correct and incorrect derivations of length k 

involves searching in a space of size N
k
, where N is the 

size of vocabulary. In our KB, the number of predicates is 

24 times larger than the number of predicate types. 

Therefore, learning PIPs in terms of predicate types is 

significantly easier. The algorithm FPEQ (see Figure 3) 

constructs a graph around the entities mentioned in the 

query and returns explanations which plausibly entail the 

query. Steps 1-3 perform initialization, with the path search 

being handled in Step 4.  It maintains a list of partial paths 

which are extended by retrieving facts involving the 

frontier entities
5
.  The algorithm terminates when all paths 

which match the antecedents of the available PIPs are 

found.  In the previous example, acquaintedWith is a 

PersonalAssociationPredicate predicate; therefore the 

pattern PIP1 is relevant for this query. The algorithm 

shown in Figure 3 finds paths by successively expanding 

nodes at the frontier and keeps the partial paths in the list 

Paths. In step 3 of the algorithm, a new path p is created. 

Here, p.starting-entity, p.target-entity and p.remaining are 

set to BillClinton, HillaryClinton and  

                                                 
5
 The algorithm shown in Figure 3 has been simplified for 

clarity. In particular, the algorithm keeps track of bindings 

of variables and paths can only be extended when bindings 

are consistent.   

[FamilyRelationSlot(?x,?y), 

 FamilyRelationSlot(?y,?z)]  

respectively. Essentially, this means that we are looking for 

a path between the nodes labeled BillClinton and 

HillaryClinton traversing two edges labeled with 

predicates of type FamilyRelationSlot. In Figure 1, a 

small section of the graph is shown
6
.  In step 4 of the 

algorithm, all facts involving the current entity 

(BillClinton in this example) are retrieved. The partial 

path p is extended by including the fact (father 

ChelseaClinton BillClinton) in the partial proof. At 

this stage, we are looking for a path from the node 

ChelseaClinton to HillaryClinton such that the edge 

label is a predicate of type FamilyRelationSlot. Another 

expansion of this path with the fact (mother 

ChelseaClinton HillaryClinton) satisfies this 

requirement, and the path is added to the solutions
7
.  The 

second path involving two edges labeled ‘familyName’ 

would not be selected because no PIPs use predicates of 

type ProperNamePredicate-Strict to entail 

PersonalAssociationPredicate predicates.  Similarly, 

the PIP shown below would help in proving 
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order of arguments is represented in the PIPs.   
7
 The algorithm shown in Figure 3 only finds simple 

proofs. A more complete proof procedure would involve 

finding a spanning tree between the entities. This can be 

done by ensuring that p.current-entity is a list of entities 

(and not a single entity).  

Algorithm: FindPlausibleExplanationsForQuery (FPEQ) 

Input:   query: A query for which plausible explanations have to be found 

Output:  A set of facts which would justify query. 

 

1. Let pred← predicate in query, e1← Entity in first argument position of query, e2← Entity in second argument position of 

query, Paths← Ø. Let Solutions← Ø.   

2. Let patterns ← Relevant plausible inference patterns for pred 

3. For each pattern in patterns 

a. Create a new path p.    Set p.completed ← Ø,  p.remaining ← Antecedents of pattern,  p.starting-entity ← e1,  

p.target-entity ← e2, p.current-entity ← e1, Add p to the list Paths 

4. For each p in Paths 

a. Let facts← All ground facts involving p.current-entity 

b. For each fact in facts 

1. Let ptypes ← Predicate types of the predicate in fact 

2. Let E ← Entities in fact 

3. For each constraint c in p.remaining 

a. If c ɛ ptypes  

i. Create a new path p1.   Initialize p1← p. Add p1 to Paths 

ii. p1.completed ← p.completed  +  c   

iii. p1.remaining ← p.remaining – c 

iv. p1.current-entity← E - p.current-entity 

v. If p1.remaining = Ø and p1.current-entity = p1.taget-entity then add 

p1 to Solutions and  Remove p1 from Paths 

c. Remove p from Paths.  

5. Return Solutions                                              Figure 3 



 

 

(objectFoundInLocation ArmyBase-Grounds-

FtShafter-Oahu HawaiianIslands) (see Figure 2)8. 

 
SpatialPredicate(?x, ?y) Group-Topic(?z,?y) → 

SpatialPredicate(?x, ?z)        … [PIP2] 

 

The FPEQ algorithm uses the predicate type hierarchy. 

Our inference scheme also simplifies inference by 

condensing inference chains. For example, wife is a 

PersonalAssociationPredicate; therefore the inference 

from wife to acquaintedWith is a one-step process. On the 

other hand, using the normal predicate type hierarchy 

involves multi-step inferences. For example, the inference 

chain from wife to acquaintedWith requires following 

axioms. 
(← (acquaintedWith ?x ?y)  

   (mutualAcquaintances ?x ?y)) 

(← (mutualAcquaintances ?x ?y) (mate ?x ?y)) 

(← (mate ?x ?y)(spouse ?x ?y)) 

(← (spouse ?x ?y) (wife ?x ?y)) 

As discussed above, the number of predicate types is less 

than the number of predicates. Therefore, the predicate 

type hierarchy maps the predicates to a smaller space. This 

phenomenon speeds up the search because the average path 

length between two nodes in this smaller space is less than 

what we encounter in a typical predicate hierarchy. This 

plays an important role in improving inference in resource 

constrained Q/A systems.  

   The FPEQ algorithm can be easily extended to handle 

queries with variables. This would entail checking that the 

node at the search frontier satisfies the argument constraint 

of the predicate. For example, let us consider the query 

(acquaintedWith BillClinton ?x). When the search 

process reaches the node labeled HillaryClinton, it would 

notice that all antecedents of the PIP have appropriate 

bindings and the entity HillaryClinton satisfies the 

argument constraint of the second argument position of 

acquaintedWith. Such inference chains will be included in 

the solutions.   

Learning to Reason 

Many learning systems find the correct level of 

generalization by trial-and-error. Our approach gets initial 

plausible inference patterns by replacing predicates in 

axioms by their predicate types. These generalizations 

certainly increase the deductive closure but can lead to 
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 We note that groupMembers and 

objectFoundInLocation are instances of Group-Topic 

and SpatialPredicate respectively.   

erroneous answers. For example, the pattern PIP2 shown 

above would lead to an incorrect answer if we use 

bordersOn as an instance of SpatialPredicate in the 

consequent. Therefore, our aim is to design a system which 

could learn to identify incorrect search steps from minimal 

user feedback without sacrificing the gains obtained from 

generalization. This task is complicated by the fact that a 

typical user may not be able to identify the incorrect search 

choice(s) made during a multistep reasoning process. The 

learner should be able to work with delayed feedback 

about the correctness of the final answer and learn to find 

plausible inferences for queries. We believe that 

reinforcement learning is a reasonable method for solving 

this problem. Formally, the model consists of (a) a discrete 

set of states, S; (b) a discrete set of agent actions, A;  (c) a 

reward function R: S x A → {-1, 1, 0}and (d) a state 

transition function T: S x A → ∏(S), where a member of 

∏(S) is a probability distribution over the set S [Kaelbling 

et al 1996].  

In this context, a state is the list of predicate types 

already used during the partially complete search process. 

At each step of the reasoning process, the inference engine 

has choice points at which it chooses or rejects different 

alternatives. It has to assess how useful a particular 

predicate type is for completing the proof given the 

predicate types already chosen in the current search path. 

The actions are the selection of a particular predicate type 

for completing the partial assignment of variables. The 

value function (or V(s)) is the inference engine’s current 

mapping from the set of possible states to its estimates of 

the long-term reward to be expected after visiting a state 

and continuing the search with the same policy. Q(s, a) 

represents the value of taking the action a in state s. We 

use the value iteration algorithm [Kaelbling et al 1996] for 

learning the plausibility of search paths.   

 

For example, V({Group-Topic}) for proving 

objectFoundInLocation would represent the value of 

starting with a predicate of type Group-Topic while finding 

a solution of an objectFoundInLocation-query. Similarly, 

Q({Group-Topic}, Betweenness-Spatial-Topic) 

represents the quality of choosing a   Betweenness-

Spatial-Topic predicate when the partial search path has 

already chosen a Group-Topic predicate. We use a delayed 

reward model with user-provided rewards of +1 and -1 for 

 
Figure 2: Another plausible inference example 
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Value Iteration Algorithm 

1. Initialize V(s) arbitrarily 

2. Repeat step 3 until policy good enough 

3. loop for s ε S 

a. Loop for a ε A 

1. Q(s, a)← R(s, a)+γ ∑S T(s,a, s’) V(s’) 

b. V(s) ← max a Q(s, a) 

 

          Figure 4: Value Iteration algorithm       

                   (From Kaelbling et al 1996)     



 

 

correct and incorrect answers respectively. Rewards are 

generalized via the predicate hierarchy. For instance, 

reward statements for spatiallySubsumes are also used 

for computing V(s) values for its generalizations like 

spatiallyIntersects. The computational complexity of 

each iteration of the algorithm is O(|A||S|
2
).  In our 

experiments, the policy converged in less than ten 

iterations.  

Experimental Method and Results 

To show that these ideas generate more answers compared 
to traditional deductive reasoning, we describe a set of 
experiments. Five sets of questions were selected based on 
the availability of ground facts in KB and their relevance in 
learning by reading [Forbus et al 2007]. These questions 
templates were: (1) Where did <Event> occur? (2) Who is 
affected by <Event>?  (3) Where is <SpatialThing>? (4) 
Who performed the <Event>? and (5) Where is 
<GeographicalRegion>? Each question template expands 
to a disjunction of formal queries. The parameters in the 
question template (e.g., <Event>) indicate the kind of 
thing for which the question makes sense. Queries were 
generated by randomly selecting facts for these questions 
from the KB. 

For a baseline comparison, we included all axioms for 
these predicates and their subgoals through depth 3. We 
used a simple backchainer working on a LTMS based 
inference engine [Forbus & de Kleer, 1993].  The depth of 
backchaining was limited to three and each query was 
timed out after three minutes.  All experiments were done 
on a 3.2 GHz Pentium Xeon processor with 3GB of RAM.  
25% of the queries were used as the training set for 
learning the V(s) values. Answers whose V(s) values were 
more than a threshold were accepted.   

Table 1 compares the performance of FPEQ algorithm 
and reinforcement learning against the baseline for the test 
set (i.e. remaining 75% queries). Column T is the total 
number of queries, with AW being the number that could 
be answered given the KB contents, as determined by hand 
inspection.  The columns P and R indicate precision, and 
recall, respectively.  The user assessed 334 unique answers 
(from the training set) and the feedback was used for 
learning the V(s) values. The accuracy of answers provided 
by FPEQ algorithm was 73%. We then removed answers 
whose V(s) values were below the threshold. The total 
number of new answers at this stage is 1010 and the 
accuracy has improved from 73% to 94%. The FPEQ 
algorithm mainly reduces false negatives whereas 
reinforcement learning reduces false positives. Together, 
they provide a factor of 2.2 improvements (i.e. 120% 
improvement) over the baseline with an average accuracy 
of 94%.  

It is clear from these results that the ResearchCyc KB 
contents are not uniformly distributed and different regions 
have different densities of ground facts. Moreover, some 
questions are easier to answer than others. For example, 
the accuracy for Expt. No. 5 is significantly better than the 

accuracy for Expt. No. 3. We believe that this is due to the 
fact that it was possible to generate answers for queries 
involved in Experiment 5 from simple reasoning on a tree-
like hierarchy. By contrast, queries involved in Experiment 
3 needed more general inference.      

As mentioned above, 6% of the derived answers were 

incorrect. Moreover, the last column in Table 1 shows that 

some answers are still not being generated by the algorithm 

proposed here. Therefore, we would like to know the types 

of failures associated with these missed and incorrect 

answers. Knowledge of the causes of such failures would 

help the researchers prioritize their research goals. The 

second column of Table 2 (TC) shows the total number of 

corrective actions needed to obtain all answers correctly. It 

is basically the sum of false positives and false negatives 

for the algorithm FPEQ. The other columns of Table 2 

show our by-hand analysis of what additional learning 

strategies would be required to improve performance 

further. We have found that randomly chosen training set is 

imbalanced and leads to redundancy. We believe that a 

training set which would represent all sections of the KB 

without redundancy would be smaller and lead to better 

results. The third column (labeled A) in Table 2 shows the 

number of problems which would be solved by a better 

training set. In some cases, we found that we need to 

augment the graph representation so that it could handle 

functions (e.g. (industryFacilities 

(IndustryOfRegionFn OilIndustry SaudiArabia) 

Iraq-SaudiArabiaPipeline)), and quantified assertions.  

The number of such cases is shown in the column labeled 

B. The column labeled C shows cases when additional 

knowledge would have helped. Cases where a PIP needs to 

be replaced by a more specific pattern in terms of existing 

predicate types are indicated by D, and cases where a new 

predicate type between existing predicate types would 

improve matters are indicated by E.  Note that the amount 

of training data is small compared to the relative 

improvement for each experiment.               

 

Exp. 

No. 

 

Query 

sets 

T AW P R 

1 

 

Baseline 833 412 1.00 0.51 

FPEQ 833 412 0.95 0.87 

2 

 

Baseline 200 61 1.00 0.42 

FPEQ 200 61 0.92 0.77 

3 Baseline 1834 433 1.00 0.32 

FPEQ 1834 433 0.92 0.88 

4 Baseline 953 226 1.00 0.34 

FPEQ 953 226 0.93 0.93 

5 Baseline 1309 724 1.00 0.43 

FPEQ 1309 724 0.97 0.94 

Table 1: Summary of Inference Results.  Experiment 
numbers are the same as query numbers 



 

 

 

 

Conclusion 

Learning to reason, while minimizing user intervention, 
is an important problem.  We have shown how plausible 
inference patterns, expressed in terms of higher-order 
knowledge and learned via reinforcement learning, can be 
used to reason with reasonable accuracy. The use of 
predicate types for representing PIPs leads to a succinct, 
easily learnable and tractable representation.  The FPEQ 
algorithm mainly reduces false negatives whereas 
reinforcement learning reduces false positives. By 
integrating them, we get a 120% improvement over the 
baseline with an average accuracy of 94%. 

 While these experiments used the contents of 
ResearchCyc, we believe they would be applicable to any 
large-scale KB whose predicate types were classified 
sensibly.  Our technique is especially suitable for 
knowledge capture because it exploits ground facts, which 
are much easier to gather than logically quantified facts.  
We believe that this technique can be used to help 
bootstrap intelligent systems and reduce the dependence on 
hand-crafted axioms. 

Our results suggest three lines of future work.  First, we 
found that a randomly chosen training set does not 
represent all regions of the KB adequately.  Finding these 
gaps in coverage could be used to suggest new learning 
goals for learning by reading and other forms of 
knowledge capture.  Second, being able to refine plausible 
inference patterns to use more specific predicate types 
would improve accuracy and coverage.  Finally, plausible 
inference patterns could be used as an intermediate stage 
for postulating new logically quantified statements, 
perhaps by using a technique like relational reinforcement 
learning approach [Dzeroski et al 2001] to carry out the 
refinements.     
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Exp. 

No. 

TC A B C D E 

1 73 47 0 5 19 2 

2 18 14 0 0 4 0 
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Table 2: Distribution of Learning Actions. 




