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Abstract 

How do reasoning systems that learn evolve over time? 
Characterizing the evolution of these systems is important 
for understanding their limitations and gaining insights into 
the interplay between learning and reasoning.  We describe 
an inverse ablation model for studying how learning and 
reasoning interact:  Create a small knowledge base by 
ablation, and incrementally re-add facts, collecting 
snapshots of reasoning performance of the system to 
measure properties of interest.  Experiments with this model 
suggest that different concepts show different rates of 
growth, and that the density of facts is an important 
parameter for modulating the rate of learning 

 Introduction and Motivation   

In recent years, there has been considerable interest in 

Learning by Reading [Barker et al 2007; Forbus et al 2007, 

Mulkar et al 2007] and Machine Reading [Etzioni et al 

2005; Carlson et al 2010] systems.  The study of these 

systems has mainly proceeded along the lines of measuring 

their efficacy in improving the amount of knowledge in the 

system.   Learning by Reading (LbR) systems have also 

explored reasoning with learned knowledge, whereas 

Machine Reading systems typically have not, so we will 

focus on LbR systems here.  These are evolving systems: 

Over time, they learn new ground facts and new predicates 

and collections are introduced, thereby altering the 

structure of their knowledge base (KB). Given the nascent 

state of the art, so far the learned knowledge is typically a 

small subset of the knowledge the system starts with.  

Hence the size of the KB is constant for all practical 

purposes, and the set of axioms it uses for reasoning will 

be stable and continue to perform as they did before.  But 

what will happen to reasoning performance as the state of 

the art improves, and the number of facts the system has 

learned by reading (or using machine reading techniques) 

dwarfs its initial endowment?  
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To explore such questions, we introduce an inverse 

ablation model.  The basic idea is to take the contents of a 

large knowledge base (here, ResearchCyc
1
) and make a 

simulation of the initial endowment of an LbR system by 

removing most of the facts.  Reasoning performance is 

tested on this initial endowment, including the generation 

of learning goals.  The operation of a learning component 

is simulated by gathering facts from the ablated portion of 

the KB that satisfy the learning goals, and adding those to 

the test KB.  Performance is then tested again, new 

learning goals are generated, and the process continues 

until the system converges (which it must, because it is 

bounded above by the size of the original KB).  This model 

allows us to explore a number of interesting questions, 

including  

1. How does the growth in the number of facts affect 

reasoning performance?  On one hand, more facts may 

improve the number of questions answered, since 

more proofs are possible.  On the other hand, given 

that deductive reasoning is always subject to resource 

bounds, more facts might actually decrease the number 

of answers, since there are also more dead ends to 

explore. 

2. How might the speed at which different kinds of 

concepts are learned vary, and what factors does that 

depend upon? 

3. How might the number of learning goals change as the 

size of the knowledge base grows?  Does it converge? 

The inverse ablation model provides a general way of 

exploring the evolution of knowledge bases in learning 

systems.  This paper describes a set of experiments that are 

motivated specifically by LbR systems.  Under the 

assumptions described below, we find that (1) the size of 

the KB rapidly converges, (2) the growth is limited to a 

small set of concepts and predicates, spreading to only 

about 33% of the entire growth possible, (3) different 

concepts show different rates of growth, with the density of 
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facts being an important factor in determining the rate of 

growth.   

The rest of this paper is organized as follows: We start by 

summarizing related work and the conventions we assume 

for representation and reasoning. A detailed description of 

the inverse ablation model and experimental results are 

described next. In the final section, we summarize our 

main conclusions.  

        Related Work  
 

A number of researchers have worked on Learning by 

Reading and Machine Reading systems.  Learning Reader 

 [Forbus et al 2007] used a Q/A system for evaluating what 

the system learned, and included rumination, where the 

system asked itself questions, using deductive and 

analogical reasoning to find new questions and derive new 

facts.  Mobius [Barker et al 2007] was evaluated by 

comparing the facts produced by their system to a 

manually-generated gold standard set of facts.  NELL 

[Carson et al 2010] also uses human inspection to evaluate 

the quality of the knowledge produced.  These systems all 

produce formal representations.  By contrast, TextRunner 

[Etzioni et al 2005] produces word-cluster triples.  These 

are not formal representations that can support deductive 

reasoning, so they are not relevant here.  A prototype 

system, which uses a parser and a KR&R system for 

deriving semantic representations of sentences for two 

domains, has been discussed in [Mulkar et al 2007]. 

Experiments related to populating the Cyc KB from the 

web have been described in [Matuszek et al 2005]. These 

systems have provided useful insights for improving our 

understanding of learning systems. However, 

measurements involving the temporal evolution of KBs 

and the systemic properties of rapidly changing learning 

systems have not been the focus of these endeavors. In 

addition to LbR research, our work is inspired by the 

literature on the evolution of the World Wide Web 

[Ntoulas et al 2004], graphs [Leskovec et al 2007] and 

social networks [Kossinets & Watts 2006].    

   Representation and Reasoning 

We use conventions from Cyc [Matuszek et al 2006] in 
this paper since that is the major source of knowledge base 
contents used in our experiments

2
.   We summarize the key 

conventions here. Cyc represents concepts as collections.  
Each collection is a kind or type of thing whose instances 
share a certain property, attribute, or feature. For example, 
Cat is the collection of all and only cats. Collections are 
arranged hierarchically by the genls relation. (genls 

<sub> <super>) means that anything that is an instance of 
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 We use knowledge extracted from the ResearchCyc knowledge 

base with our own reasoning system, instead of using Cycorp’s 

reasoning system. 

<sub> is also an instance of <super>. For example, 
(genls Dog Mammal) holds.  Moreover, (isa <thing> 

<collection>) means that <thing> is an instance of 
collection <collection>. Predicates are also arranged in 
hierarchies.  In Cyc terminology, (genlPreds <s> <g>) 
means that <g> is a generalization of <s>. For example, 
(genlPreds touches near) means that touching 
something implies being near to it.  The set of genlPreds 
statements, like the genls statements, forms a lattice.  In 
Cyc terminology, (argIsa <relation> <n> <col>) 
means that to be semantically well-formed, anything given 
as the <n>th argument to <relation> must be an instance 
of <col>. That is, (<relation>……<arg-n> …) is 
semantically well-formed only if (isa <arg-n> <col>) 
holds. For example, (argIsa mother 1 Animal) holds.   
    Learning by Reading systems typically use a Q/A 

system to examine what the system has learned.  For 

example, Learning Reader used a parameterized question 

template scheme [Cohen et al, 1998] to ask ten types of 

questions.  The templates were: (1) Who was the actor of 

<Event>?, (2) Where did <Event> occur?, (3) Where might 

<Person> be?, (4) What are the goals of <Person>?, (5) 

What are the consequences of <Event>?, (6) When did 

<Event> occur?, (7) Who was affected by the <Event>?, 

(8) Who is acquainted with (or knows) <Person>?, (9) 

Why did <Event> occur?, and (10) Where is 

<GeographicalRegion>? In each template, the parameter 

(e.g., <Person>) indicates the kind of thing for which the 

question makes sense (specifically, a collection in the Cyc 

ontology).   We use these questions in our experiments 

below, to provide realistic test of reasoning. 

When answering a parameterized question, each 

template expands into a set of formal queries, all of which 

are attempted in order to answer the original question. Our 

FIRE reasoning system uses backchaining over Horn 

clauses with an LTMS [Forbus & de Kleer 93].  We limit 

inference to Horn clauses for tractability.  We use network-

based optimization techniques for automatically selecting 

an efficient set of axioms. Inference is limited to depth 5 

for all queries, with a timeout of 90 seconds per query. 

 

    An Inverse Ablation Model 

Deductive reasoning is one of the principle reasons for 

accumulating large knowledge bases.  In large knowledge-

based systems, inference engines generate and examine 

thousands of potential proof paths for answering target 

queries.  Understanding how deductive inference 

performance changes as KBs grow is the fundamental 

motivation for the inverse ablation model.  Since large-

scale learning systems are in their infancy, instrumenting a 

learning system that is operating over months is still not 

possible.  Hence we start by ablating a large KB and 

measure reasoning performance as we add knowledge back 

in.  The parameters of an inverse ablation model include 

(1) what is the initial endowment?  (2) what reasoning 



 

 

methods are used?, (3) How are queries generated, and (4) 

what is the strategy used to grow the knowledge base?  We 

discuss each of these decisions in turn. 

Initial endowment:  Since we are using ResearchCyc 

contents, the initial endowment consists of the basic 

ontology definitions (the BaseKB and 

UniversalVocabularyMt microtheories) plus 5,180 facts 

chosen at random.  This leaves 491,091 facts that could be 

added on subsequent iterations to simulate learning.  We 

refer to this collection of facts as the fact repository, to 

distinguish it from the KB used in reasoning in a learning 

iteration.  One interesting measure is how much of the fact 

repository ends up being added back when the system 

converges:  Facts that remain in the repository at that point 

have no perceived relevance to the questions that are 

driving learning. 

Reasoning method:  CSP solvers [van Dogngen et al 

2009] are arguably the most efficient solvers available 

today, but are limited to propositional reasoning, making 

them inappropriate for open domains and large-scale 

worlds where propositionalization would lead to an 

exponential explosion in the number of axioms.  By 

contrast, Cyc systems such as ResearchCyc and OpenCyc 

include broadly capable reasoning engines that handle a 

wide variety of higher-order constructs and modals, 

making them very flexible, at the cost of efficiency.  The 

Horn-clause backchaining strategy outlined above 

represents a compromise between these extremes that we 

have found useful in a variety of systems
3
.   Since that is 

the method we use in our own LbR research, that is what 

we use in this model. 

Query Generation:  We automatically generate a set 

of queries at each iteration by asking every question for 

every entity that satisfies the collections associated with 

each type of parameterized question.  Thus the types of 

entities, given the set of parameterized questions, are 

Event, Person, and GeographicalRegion. Note that as the 

KB grows, so too can the number of queries generated, 
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since new entities of these types can be added.  This allows 

us to measure how costly different strategies for generating 

learning goals might be.  

 

 

 

 

 

 

 

 

 

 
 

    

 

 

Growth Strategy:  The method for growing the KB 

by adding back in facts should reflect assumptions made 

about the way the system generates learning goals.  At 

each iteration, we use reasoning failures to generate 

learning goals, which are then used to gather facts from the 

fact repository.  Specifically, the proof trees for failed 

queries are examined to find nodes representing queries 

involving specific entities.  Finding out more about these 

entities become the learning goals for that iteration.  For 

example, a query like (acquaintedWith BillClinton ?x) 

leads to an intermediate query like (mother 

ChelseaClinton ?x).  Hence learning about 

ChelseaClinton would become one of the learning goals 

for that iteration.   

We model the effect of learning by gathering all of the 

facts which mention the entities in learning goals from the 

fact repository.  This is tantamount to assuming a large 

amount of learning effort in every cycle, essentially mining 

out everything that is going to become known about an 

entity the first time that it becomes a target for learning.  

While optimistic, pursuing any other strategy would 

require making more assumptions, thereby making them 

harder to justify.  This gives us an extreme point, at least. 

 

Figure 1 shows a schematic diagram of how the inverse 

ablation model works, and Figure 2 describes the  

    KB(t) 

    Fact 

Repository 
LTMS-based Reasoner +  

Question Templates 

Entities 
in proof 

paths  

  Store 

new facts 

to get 

KB(t+1) Measure properties of 
interest 

      Query 

for facts 
for new 

entities       

entities  

Entities for 
queries 

Figure 1: Inverse Ablation model 

Measure Q/A Performance 

Algorithm 

1. Set t← 0.  

2. Initialize KB(t) by choosing facts randomly 

from the repository.  

3. Repeat step 4 until the process converges. 

4. loop  

a. Set Q ← Generate all questions for the 

question templates mentioned on page 2. 

b. Ask the set of questions Q and measure 

Q/A performance.  

c. E ← the set of entities in intermediate 

queries generated during the reasoning 

process. 

d. Let Facts ← New facts about the elements 

of E in the Fact Repository. 

e. KB(t+1) ← KB(t) + Facts 

f. Record the properties of interest for 

KB(t+1) 

g. If ∆KB → 0 then exit loop, else t ← 

t+1and go to step 4(a).  

 

            Figure 2: Inverse Ablation Model       

                    



 

 

 

experimental procedure used, in algorithmic form. Step 

4(a) extracts all entities needed for instantiating the 

question templates described in Section 3. Step 4(b) uses 

backchaining to attempt to answer these queries, and 

records the Q/A performance, including the partial proof 

paths and intermediate queries. The set E in step 4(c) refers 

to the entities in these queries. These entities are sent to the 

fact repository and all facts involving them are collected. 

Step 4(e) adds these facts to KB(t) to get KB(t+1).   

      Experimental Results 

This section discusses the results of running the procedure 
in Figure 2. Figure 3 shows the change in number of 
ground facts. The number of facts increases rapidly from 
5,180 at t=0 to 143,922 facts at t=2. The curve asymptotes 
to about 166,000 facts at t=5. It is also useful to compare 
the extent of this growth with respect to the contents of fact 
repository. The coverage increases from 1% of the 
repository at t=0 to 33% at t=5. The high rate of growth 
shows that the domain is densely connected and the 
average distance between two nodes is pretty small. On the 
other hand, given these questions, about 67% of the 
repository is beyond our reach.  Next, we turn to the rate of 
introduction of new predicates and concepts (see Figure 4). 
At t=0, 53% of the predicates had least one ground fact 
associated with them. After five learning iterations, 65% 
predicates had at least one ground fact. Similarly, the 
proportion of concepts with at least one instance increased 
from 53% to 62%. This shows that the new facts are being 
drawn from a small set of predicates and concepts. 
 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
In Figure 5, the dynamics of Q/A performance is shown. 
The last three columns of the table show improvement with 
respect to the KB at t=0. The proportion of questions 
answered improves significantly with the size of the KB. 
While the size of KB increased by 3,104% in five 
iterations, the proportion of questions answered increased 
by 637%. The time needed per query increased by 533% 
during this period. These results suggest that time-
constrained deductive reasoning systems would need new 
methods to select the best set of axioms due to increasing 
resource requirements and changing distribution of facts 
and collections.   
 
 
It is also interesting to compare the rate of growth of 

different regions of the KB and check if some of them 

display unusual patterns. Recall that the question types 

discussed involve three kinds of concepts: Person, Event 

and GeographicalRegion. We measured the rate of growth 

of instances of these concepts and found that they vary 

greatly. In Figure 6, we see that the KB had 1.4% of all 

instances of Person at t=0. This grew to 2% after five 

iterations. During the same period, the proportion of 

GeographicalRegion increased from 7.9% to 58%. The 

proportion of instances of Event grew from 26% to 33%. It 

shows that the rate of growth of GeographicalRegion is  

 
 

            Figure 3: Change in number of ground facts 
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Figure 4: Change in the number of new predicates/concepts 
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% 
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time/query 

0 5180 4023 7428 3 0.07 28 0.003         -       -         - 

1 66171 4794 9663 1426 29.70 75 0.007 1177 423 133 

2 143922 12943 33198 4853 37.49 566 0.017 2678 534 466 

3 159298 14114 36615 5984 42.39 702 0.019 2975 604 533 

4 165050 14584 37965 6480 44.43 735 0.019 3086 633 533 

5 165992 14645 38148 6548 44.71 759 0.019 3104 637 533 

                                                               

                                                                               Figure 5: Q/A Performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pretty high, whereas this model has not made significant 

progress in accumulating knowledge about instances of 

Person. One important reason for this difference is the 

density of facts for these concepts. In Figure 7, we show 

the cumulative distribution of number of facts per entity 

for these concepts. The x-axis shows the number of facts 

per entity for instances of each of these three concepts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The y-axis shows the cumulative probability. In Figure 8, 

we compare the mean and median facts/entity and growth 

in coverage of three concepts. When the mean facts per 

entity increases from 2.14 to 5.58, the growth rate changes 

from 0.5% to 6.2%. This shows that the density and the 

rate of growth show a nonlinear relationship and it can be 

used to modulate the rate of learning. In Figure 9 and 10, 

we study the change in distribution of number of instances 

for the specializations of GeographicalRegion and Event.  

For understanding the extent of this evolution, we have 

also included the distribution of instances for the fact 

repository.  The x-axis shows the number of instances in 

the collection. The y-axis shows the cumulative 

probability. In Figure 9,  we see that the distribution 

  

   Concept Mean 

facts  

per 

entity   

Median 

facts 

per  

entity 

Growth 

in 

coverage 

Person 2.14 1 0.5% 

Event 5.58 2 6.2% 

GeographicalRegion 11.29 5 50.1% 

  Figure 8: Comparison of mean and median facts/entity and growth 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of KB(5) is significantly different from the distribution of 

KB(0). Moreover, the distribution of KB(t) (where 0≤ t≤ 5) 

has steadily moved towards the distribution of the fact 

repository. On the other hand, Figure 10 shows that the 

distribution of instances in KB(t) (where 0≤ t≤ 5) has not 

changed much and is very different from the distribution in 

the fact repository.  

 
           Figure 6: Growth of different concepts 
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    Figure 7: Cumulative probability distribution of facts/entity 
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Figure 9: Cumulative Probability Distribution of instances 

of specs of GeographicalRegion 
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    Figure 10: Cumulative Probability Distribution of 

instances of specs of Event 
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Conclusion 

There has been growing interest in creating large-scale 

learning systems, such as Learning by Reading systems. 

However, there has been relatively little work in studying 

the properties of reasoning systems which grow 

significantly over time.  We have proposed an inverse 

ablation model for studying how reasoning performance 

changes with KB growth, as might be caused by learning. 

The method proposed here is very general and could be 

used with any large KB or KR&R system. We have studied 

performance aspects of the evolving KB that are of 

particular interest from the perspective of learning systems. 

The model proposed here increased the size of the KB 

from 1% to 33% of the repository in five iterations. As the 

number of facts, predicates and collections increase, the 

size of search space and dynamics of reasoning would 

change as well. This implies that learning algorithms and 

inference engines should use distribution sensitive 

algorithms which would adapt well to a changing KB. 

Growth is compartmentalized but spreads to a significant 

fraction of the fact repository.  Growth is focused, as 

indicated by the new facts being about a small number of 

predicates and concepts. Different concepts show different 

rates of growth, which can be explained by their densities. 

Our results show that the rate of growth in high density 

regions is very high. The total number of queries increased 

from 7,428 to 38,148; and the total time needed to answer 

the queries increased from 28 minutes to 759 minutes. 

Such an increase may affect the usability of the system. 

Therefore, similar systems may need to design appropriate 

parameters for controlling growth in high density regions. 

On the other hand, increasing the knowledge about low 

density regions is a challenge. In a sparsely connected 

domain, systems like ours may need to find ways to hop 

from one island to another using other learning methods.      
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