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One of the central problems of artificial intelligence is capturing the breadth and
flexibility of human common sense reasoning. One way to evaluate common sense
is to use versions of human tests that rely on everyday reasoning. The Bennett
Mechanical Comprehension Test consists of everyday reasoning problems posed
via pictures and is used to evaluate technicians. This test is challenging because it
requires conceptual knowledge spanning a broad range of domains, experience
with a wide variety of everyday situations, and spatial reasoning. This article
describes how we have extended our Companion Cognitive Architecture, which
treats analogical processing as central, to perform well over a subset of the
Bennett test. We introduce analogical model formulation as a robust method for
reasoning about everyday scenarios, by analogy with cases that represent prior
experiences. This enables a companion to perform qualitative reasoning (QR)
without a complete domain theory, as typically required for QR. We introduce
sketch annotations to communicate linkages between visual and conceptual
properties in sketches. We introduce analogical reference frames to enable
comparative analysis to operate over a broader range of problems than prior
techniques. We show that these techniques enable a companion to score
reasonably well on a difficult subset of the Bennett test.

Keywords: analogical reasoning; qualitative reasoning; sketch understanding;
test-based AI

1. Introduction

Understanding how to create systems capable of the breadth and flexibility of human
common sense reasoning is one of the central problems of artificial intelligence (AI). By
its very nature, breadth is hard to evaluate. The approach of psychometric AI (Bringsjord
and Schimanski 2003), where human intelligence tests are used to evaluate AI systems,
provides a useful methodology for addressing this problem. If a test is considered
reasonable for people, then a program’s performance on those problems can be used as a
way of evaluating progress. One relevant test for common sense reasoning about the
physical world is the Bennett Mechanical Comprehension Test (BMCT; Bennett 1969),
which is used to evaluate applicants for technical positions. BMCT problems consist of
diagrams depicting physical situations, with multiple-choice questions about their
qualitative properties. For concreteness, two examples of BMCT questions are illustrated
in Figure 1.1 The BMCT is broad in two ways. First, it involves a variety of domains,
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including statics, dynamics, acoustics, heat and electricity. We call this the domain breadth

problem. Second, it involves a variety of everyday objects and systems: bicycles, railroad

cars, cranes, hoists, boats and many others. We call this the everyday breadth problem.

This makes it a valuable test for assessing everyday physical reasoning, which is an

important part of human common sense.
Figure 1 illustrates the two general types of problems that appear on the BMCT.

The ball problem is an example of an outcome problem, where a prediction about a

property of a system is to be made. The crane problem is an example of a differential

qualitative analysis (DQA) problem, where the question concerns a comparison between

two (or three) situations, or two aspects of the same situation. To solve problems like these

requires moving from a broad set of concepts used in everyday life to a model built from a

concise vocabulary of formal abstractions and causal model fragments (Forbus 1984) that

can be used to compute the answer. This is an example of model formulation, a central

problem in qualitative reasoning (QR; Falkenhainer and Forbus 1991). In the case of the

ball, the examinee must determine that the two people are applying forces to the ball, that

the ball can be considered as a rigid object that is free to move, and so the forces will

combine independently, leading to a motion that is to the right and down. In the case of

the cranes, the examinee must realise that the stability of the crane depends inversely on

the distance between the base of the crane and the boat – the farther out the boat, the less

stable the crane is. With this causal model, the question boils down to comparing the

corresponding distances on the two cranes, leading to the conclusion that the situation on

the right is more stable. For both these examples, many other parameters were potentially

relevant: What materials are involved, what kinds of surfaces are they resting on, and so

on. But since there was no information in the problem about these differences, one must

focus on the differences that are visible, which requires understanding how conceptual

properties (like stability) depend on visual properties (like distances).
Existing QR techniques provide important functionality for solving BMCT problems,

by enabling conclusions to be drawn without detailed numeric information. In QR terms,

BMCT problems can be divided into two aspects: model formulation and computing the

answer from the model. As indicated below, computing the answer can typically be done

by existing QR techniques, with one or two extensions. The most serious difficulty is in

formulating the model. The compositional modelling methodology (Falkenhainer and

Figure 1. Example Bennett Mechanical Comprehension Test problems.
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Forbus 1991) assumes complete and correct domain theories, and says little about the
mapping from descriptions of everyday scenarios to the structural abstractions of the
domain theory. QR domain theories have been constructed for many technical domains,
which provides some evidence that, in theory, the domain breadth problem could be
handled within traditional QR. However, it is important to note that no domain theory of
the breadth required to solve the entire BMCT, even factoring out the everyday breadth
problem, has yet been constructed. On the other hand, traditional QR approaches are
unlikely to provide a solution for the everyday breadth problem. The reason is that the
number of entities that can potentially be involved is at least in the tens of thousands, with
new ones being invented all the time. The concept of a WiiMote, for example, would not
have been in any knowledge base 10 years ago.

The solution we propose is to use analogy to solve the everyday breadth problem and
assist with the domain breadth problem. We do not mean cross-domain analogies, such as
understanding electricity in terms of water. Instead, we focus here on within-domain
analogies, where a new situation is understood in terms of a prior example (e.g. seeing a
person pushing a wheelbarrow just like another person pushing a different wheelbarrow or a
shopping cart). There are reasons to believe that within-domain analogical reasoning is
common within human common sense reasoning (Forbus and Gentner 1997). When faced
with a new problem, one is reminded of similar experiences. The explanations for these prior
experiences can be used to formulate a model for the new situation. We call this process of
using an analogy with a prior example to construct a model analogical model formulation.

To see how analogical model formulation can help to solve the domain breadth and
everyday breadth problems, it is useful to consider two ways in which examples are
understood. First, the prior explanation might have been derived entirely from a domain
theory. In this case, the leverage provided by analogy is entirely in solving the everyday
breadth problem: once the new problem is understood in terms of relevant abstractions,
traditional model formulation can be used. Second, the explanation could be
entirely specific to that example. That is, no abstraction of domain entities is performed,
the causal models are simply stated in terms of the concrete objects. In this case, the
leverage provided by analogy is in solving the domain breadth problem: a causal
model that says this specific wheelbarrow is harder to move when the rock is bigger
can be applied in a broader range of situations than just the example for which the
explanation was given. Both types of explanations can be useful for solving new problems.
In fact, the same analogy can be used both to find relevant abstractions for use with
a partial domain theory, and for importing example-specific causal models into new
situations.

Analogical model formulation fits naturally within the companion architecture
(Forbus and Hinrichs 2004), since a primary scientific hypothesis of companions is that
analogical processing is central to human intelligence. Analogical model formulation,
unlike traditional model formulation methods, has a built-in learning account: learning by
accumulating examples. It is well known in the knowledge acquisition community that
getting domain experts to tell stories (i.e. concrete examples) is easy, while getting them to
articulate complete and correct first-principles rules is extremely difficult. Since extending
analogical model formulation requires only adding more concrete examples, this should be
a very simple and natural way to learn by experience. We do not claim that learning by
accumulating examples is sufficient for capturing the range of human intelligence.
However, it is useful to understand how far one can go with a simple technique; so in this
article companions only learn via accumulating examples.
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This article describes how a combination of three ideas enables companions to perform
well on a subset of the BMCT. The first idea of course is analogical model formulation.
The second idea is sketch annotations, which introduce visual quantities into a sketch in
a manner that can be used in causal theories and applied via analogy. The third idea is
analogical reference frames, for solving DQA problems like the one above. Using
analogical reference frames significantly extends the scope of comparative analysis over
the traditional perturbed-system model (Weld 1988). While the original BMCT problems
use well-drafted drawings, we use hand-drawn sketches as a way of factoring out the less
interesting parts of the problem (i.e. low-level image processing, object recognition), while
keeping what we view as the essential problems (i.e. spatial and conceptual reasoning).
Section 2 reviews the components of the system: sKEA, the sketch understanding system
used, the Companions Cognitive Architecture, our models of analogical matching and
retrieval, and qualitative mechanics. Section 3 describes the idea of sketch annotations,
and also describes how examples are created. Section 4 describes how analogical model
formulation works, including a detailed example. Section 5 describes analogical reference
frames for DQA. Section 6 puts everything together by showing how these operate within
the companion architecture. Section 7 describes an experiment where a companion solves
BMCT problems using examples created by others not familiar with the test set. We show
that a companion can indeed do reasonably well on a subset of BMCT problems and that
its performance improves as the number of examples grows. A detailed failure analysis
illustrates the strengths and weaknesses of this approach. Section 8 describes other related
work, and Section 9 provides some conclusions and ideas for future work.

2. System components

2.1. Sketch understanding with sKEA

Sketching is a powerful way to work out and communicate ideas. The nuSketch model
(Forbus, Lockwood, Klenk, Tomai, and Usher 2004) takes sketching to be a combination
of interactive drawing and conceptual labelling. While most sketch understanding systems
focus on the problem of recognition, nuSketch systems are based on the insight that
recognition is not necessary in human-to-human sketching. The sketching Knowledge
Entry Associate (sKEA; Forbus and Usher 2002) is the first open-domain sketch
understanding system. Anything that can be described in terms of sKEA’s knowledge base
can be used in a sketch. In this study, sKEA’s knowledge base consists of a 1.2 million fact
subset of Cycorp’s ResearchCyc KB,2 which includes over 38,000 concepts, over 8000
relations and over 5000 logical functions. We have added to that our own representations
of qualitative physics, visual properties and relationships, spatial knowledge and
representations to support analogical reasoning, but the vast majority of the content
that we deal with was independently developed. The breadth of this KB makes it an
excellent platform for exploring reasoning in a broad domains such as the BMCT, because
the entity types and relations necessary to define problems, such as ‘crane’ and
‘wheelbarrow’, are already defined for us as opposed to having to generate them
specifically for this project.

Glyphs are the basic constituent of sketches. A glyph consists of its ink, which
represents its visual properties, and its content, an entity which represents the thing
depicted by the glyph. Content entities can be instances of any of the concepts in the KB.
Each sketch is divided into layers, which decompose a sketch into pieces. For example, two
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systems being compared side by side would be drawn in the same sketch, but each system

on a different layer. Sometimes, systems must be viewed at different levels of abstraction.
In understanding how a wheelbarrow works, for example, it makes sense to draw the

individual parts, since each contributes differently to how it functions. But if we are
considering how hard it will be to lift a wheelbarrow, we need to consider the wheelbarrow

as a single rigid object. sKEA includes group glyphs, which introduce a new entity to
represent a selected set of entities, to handle such situations.

Using the ink, sKEA computes the following visual relationships between glyphs

(Forbus, Tomai, and Usher 2003):

. Qualitative topological relationships: sKEA uses the RCC8 algebra (Cohn 1996)

to describe the connectivity of glyphs in a sketch. Two glyphs might be disjoint
(DC), touching exactly on their boundaries (EC), partially overlapping (PO), one

completely inside the other (NTPP), or one inside the other but their boundaries
touching (TPP). With their inverses, these eight relationships completely

characterise the possible connectivity relationships between two 2D regions.
. Positional relationships: Relationships such as above/below and left/right are

computed for pairs of glyphs that are adjacent. Adjacency is determined via a

Voronoi diagram (Forbus, Tomai, and Usher 2003).
. Visual grouping relations: The RCC8 relationships naturally impose two visual

grouping relationships. Connected glyph groups consist of sets of glyphs that are

pairwise PO or EC with each other. Contained glyph groups consist of the set of

glyphs which are TPP or NTPP with some larger glyph (called the container for
the group).

. Orientations: An axis is computed for each glyph, which is characterised as

primarily vertical or horizontal, as appropriate.
. Sizes: Each glyph in the sketch is classified as one of five qualitative categories,

from tiny to very large, depending on the distribution of glyph sizes in the sketch.

This is done by computing the minimum bounding rectangle of each glyph
normalised against the minimum bounding rectangle of entire sketch.

Sometimes, the visual relationship between a pair of glyphs and the nature of their

contents implies a conceptual relationship between their contents. For example, if a glyph

representing a wheel is EC to a glyph representing the ground, then it is reasonable to
assume that the wheel is touching the ground. These visual–conceptual relationships

represent commonly used conventions for depicting situations in sketches (Forbus, Usher,
and Tomai 2005). sKEA automatically infers a large candidate set of relationships, and

provides an interface for users to select which of them, if any, is appropriate. Figure 2
contains a screen shot of a user selecting the enmeshedGears-Adjacent relationship for a

pair of gears. The selected conceptual relationship is added to the predicate calculus
representation for the sketch.

Figure 2. sKEA allows the user to specify the conceptual relationship between sketched entities.
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2.2. Companion Cognitive Architecture and analogical processing

The Companion Cognitive Architecture is based on the hypothesis that analogical
processes are central to human reasoning and learning (Forbus and Gentner 1997). Forbus
and Hinrichs (2004) provides an overview of theoretical commitments of the companion
architecture. To provide the background for this article, we first briefly outline the
architecture and the computational models of analogical matching and retrieval used.

2.2. 1. Companion architecture

Companions are designed to be software organisms. They are implemented via a
distributed agent architecture. Each agent has its own knowledge base, whose contents are
periodically updated and synchronised. Communication between agents occurs through
KQML messages (Labrou and Finin 1997). In this study, the following configuration of
agents was used:

. Facilitator: Manages sessions, starts up other agents and helps set up commu-
nication channels between agents.

. Session Manager: Provides generic facilities for user interaction, including
startup, shutdown and making queries.

. Sketching Agent: Provides an interface between sKEA and other companion’s
agents.

. Session Reasoner: Responsible for the domain reasoning, in this case solving
BMCT problems.

. Similarity-based Retriever: Provides analogical remindings to the session reasoner
based upon the current contents of working memory.

The agent architecture allows specialised reasoning to be distributed to different agents
across the entire companion. For example, when the session is started, subscriptions
brokered by the Facilitator are set up between the Session Reasoner and the Retriever, so
that the Retriever receives updates in the Session Reasoner’s working memory. Similarly,
when the user makes a change to the sketch altering the Sketching Agent’s working
memory, subscriptions update the working memory contents in the Session Reasoner.
These brokered subscriptions basically become remote procedure calls once set up: If the
Session Reasoner needs to know the distance between two points, the query is
automatically forwarded to the Sketching Agent, which measures the distance on the
sketch and sends the result back to the Session Reasoner.

2.2.2. Computational models of analogical processes

We use Gentner’s (1983) structure-mapping theory, which postulates that analogy and
similarity are based on structural alignment between representations. Given two structured
representations (the base and target), the job of comparison is to find the maximal
structurally consistent match. A structurally consistent match is one that satisfies the
constraints of tiered-identicality, parallel connectivity and one-to-one mapping. Tiered-
identicality means that there is a strong preference for matching identical predicates, but
non-identical matches will be considered under some circumstances. Non-identical
functions, for example, can be matched by default in cross-domain analogies, since they
tend to represent dimensions of entities involved in the match. Similarly, minimal ascension
(Falkenhainer 1988) allows non-identical relations to match if they are part of a larger
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mapped structure and share a close common ancestor in the ontology. In this study, only
identical predicates are allowed to match, since we are concerned with within-domain
analogies. Parallel connectivity states that if two statements are matched then their
arguments must also match. The one-to-one mapping constraint requires that each
element in the base corresponds to at most one element in the target and vice versa.
To explain why some analogies are better than others, structure mapping uses the principle
of systematicity. Systematicity prefers mappings that are highly interconnected, with
chains of higher order relations, over mappings with an equal number of relations that are
disconnected from each other. The systematicity principle captures a tacit preference
for coherence and causal predictive power in analogical processing.

The Structure-Mapping Engine (Falkenhainer, Forbus, and Gentner 1986) models
analogical matching. SME takes two structured representations as input (the base and
target) and produces one or more mappings. Each mapping is represented by a set of
correspondences between entities and expressions in the base and target. Mappings also
include candidate inferences which are conjectures about the target using expressions from
the base which, while unmapped in their entirety, have subcomponents that participate
in the mapping’s correspondences. SME operates in polynomial time, using a greedy
algorithm (Forbus, Ferguson, and Gentner 1994).

MAC/FAC (Forbus, Gentner, and Law 1994) models similarity-based retrieval given a
case of facts, or probe, and a case library of named cases. The first stage uses feature
vectors that are automatically computed from the structural representations of the probe
and the case library, with each predicate or relation being a dimension of the (unit) vector,
with its strength proportional to the number of statements using it in the description. The
dot product of these vectors enables the first stage to very rapidly select a few (typically
three) candidates from the case library. The second stage uses SME to compare the
structured representation of these candidates to the probe, resulting in one (or more, if
they are very close) reminding. Both SME and MAC/FAC have been used successfully
in many domains, and as cognitive models, both have been used to model a number of
psychological results (Forbus 2001).

2.3. Qualitative mechanics

Mechanics is traditionally concerned with forces, motion and how bodies interact.
Qualitative mechanics provides a set of abstractions (e.g. rigid body, surface normal,
qualitative descriptions of angle, etc.) that support QR about traditional mechanics
phenomena. We assume the technical vocabulary and model fragments of qualitative
mechanics as part of the starting endowment of the system, rather than as something to
be learned. Our qualitative mechanics domain theory is drawn from Nielsen (1988) and
Kim (1993). Specifically, we use their qualitative representations of objects, surfaces,
force transfers and centres of rotation. We summarise the key aspects of the domain
theory here.

The domain theory consists of five model fragments, XForceTransfer,
YForceTransfer, TorqueTransfer, TorqueEquilibrium and ForceDistribution.
Figure 3 contains the descriptions for XForceTransfer and TorqueEquilibrium, and
the rest are defined in Appendix 1.3 The XForceTransfer model fragment has five
participants, the forcer, the object, each of their surfaces and the direction of the force.
This model fragment is active when the forcer is applying a force on the object’s surface
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and results in the force being added to the net force on the object. The
TorqueEquilibrium model fragment has seven participants and is active when there are
two applied torques in opposite directions. While this definition is a simplification4, it is
sufficient for our purposes. When a TorqueEquilibrium model fragment is active, its
consequences are believed. These consequences are qualitative proportionalities describing
causal functional dependencies between quantities. Since the Cyc KB uses a relational
form for quantities, we use a function, QpQuantityFn, to convert them to an equivalent
fluent. Here two functions are used to represent the four quantities affected by the model
fragment. The function (QpQuantityFn ForceAppliedToSurfaceBy) takes two argu-
ments and denotes the amount of force applied to a surface (its first argument) by an
object (its second argument). The function (QpQuantityFn DistanceToOrigin) denotes
the distance from a surface to the point it rotates around. When instantiated, these model
fragments provide causal relationships (i.e. qualitative proportionalities) needed to
solve BMCT problems.

Notice that the qualitative mechanics domain theory is defined in terms of a technical
vocabulary of abstract concepts, including RigidObject, Surface and Fulcrum as well as
the relationships xforceApplied and torqueApplied. Our domain theory includes
inference rules which, given conceptual relationships between sketched objects
(e.g. canPivotAround, touchesDirectly and on-Physical), can conclude the
xforceApplied and torqueApplied relationships. However, since problems on the
BMCT are given in terms of everyday situations, the appropriate abstractions must be
inferred in order to determine which model fragments are applicable. Section 4 describes
how this is done via analogical model formulation.

3. Sketch annotations

In everyday sketching, people annotate sketches of physical entities with conceptual
information that would not appear in the actual situation. In architectural drawings,

(defModelFragment XForceTransfer
  :participants ((TheObject :type RigidObject)
    (TheForcer :type RigidObject) 
    (TheSurface1 :type Surface :constraints ((hasSurface TheObject TheSurface1))) 
          (TheSurface2 :type Surface 
         :constraints ((hasSurface TheForcer2 TheSurface2) 
          (surfaceContact TheSurface1 TheSurface2))) 
    (TheXDir1 :type Sense)) 
  :conditions ((xForceApplied TheSurface1 TheXDir1 TheForcer)) 
  :consequences ((c+ ((QpQuantityFn XNetForce) TheObject) 
       ((QpQuantityFn XForceAt) TheSurface1)))) 

(defModelFragment TorqueEquilibrium 
  :participants ((TheObject :type RigidObject) 
    (TheForcer1 :type RigidObject) 
    (TheForcer2 :type RigidObject) 
    (TheSurface1 :type Surface :constraints ((hasSurface TheObject TheSurface1))) 
    (TheSurface2 :type Surface :constraints ((hasSurface TheObject TheSurface2))) 
    (TheRotDir1 :type RotDirection) 
    (TheRotDir2 :type RotDirection 
        :constraints ((inverseRotDirection TheRotDir1 TheRotDir2)))) 
  :conditions ((torqueApplied TheSurface1 TheRotDir1 TheForcer1) 
        (torqueApplied TheSurface2 TheRotDir2 TheForcer2)) 
  :consequences ((qprop ((QpQuantityFn ForceAppliedToSurfaceBy)  TheSurface1 TheForcer1)
                        ((QpQuantityFn ForceAppliedToSurfaceBy)  TheSurface2 TheForcer2)) 
                 (qprop ((QpQuantityFn ForceAppliedToSurfaceBy)  TheSurface1 TheForcer1)
                        ((QpQuantityFn DistanceToOrigin)  TheSurface2)) 
                 (qprop- ((QpQuantityFn ForceAppliedToSurfaceBy)  TheSurface1 TheForcer1)
                         ((QpQuantityFn DistanceToOrigin)  TheSurface1)))) 

Figure 3. Example model fragments from our qualitative mechanics domain theory.
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annotations indicate distances between walls and the widths of windows. In
sketches explaining principles, annotations indicate important properties, such as physical
quantities (e.g. the radius of a gear) and where forces are applied. Annotation glyphs
provide this capability in sKEA. Like other glyphs, an annotation glyph consists of its ink
and its content, i.e. the entity it is representing. However, annotation glyphs also refer to
one or more other glyphs in the sketch, indicating the entity (or entities) about which they
are providing information. We call these glyphs the references for the annotation glyph.

In this study, we use three types of annotation glyphs. Force annotations indicate the
location and direction of an applied force on a reference. sKEA computes the direction
and application surface of a force annotation from its ink and referenced glyphs. If there
are two references, sKEA uses the direction of the arrow and the relative positions of the
references to determine which object is applying the force. If there is only one reference
(e.g. the handle from the wheelbarrow example), sKEA assumes a new object which is
applying a force at the point of the arrow onto the reference. Rotational annotations
indicate a reference’s direction of rotation. sKEA assumes the qualitative rotational
motion of the reference as either clockwise or counter-clockwise. Linear annotations
indicate linear distances, either along a single reference or between two references. Two
special subclasses of linear annotations are X-coordinate and Y-coordinate annotations,
which refer to the projection of the measurement onto the appropriate axis. sKEA
computes distance measurements using the closest anchor points on the reference(s) to the
endpoints of the linear annotation. Anchor points are used to specify which parts of the
reference(s) that the annotation is tied to. Each glyph has nine anchor points: the centroid,
the rightmost top, leftmost top, top rightmost, and so on clockwise around the glyph.
Anchor points provide symbolic descriptions that can be projected as candidate inferences
from an example to a new situation (e.g. the distance from the left bottommost point to the
right bottommost point of a reference). Figure 4 contains sketches that illustrate each type
of annotation.

3.1. Creating examples using annotation glyphs

Examples in the companion’s case library represent its experience. Users create examples
of physical scenarios using sKEA and a concept map system. The process begins with the

Figure 4. The gear has a rotational annotation indicating counter-clockwise motion and a linear
annotation indicating its radius. The wheelbarrow has a force annotation indicating an applied force
upward on the handle and a length annotation indicating the diameter of its wheel.
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user drawing the scenario, labelling their glyphs with the everyday concepts they would use

to describe the entities depicted. Next, the user sketches force and rotation annotations

where applicable in the sketch. They use sKEA’s conceptual labelling interface to identify

all of the appropriate qualitative mechanics abstractions (e.g. RigidObject) and sKEA’s

visual/conceptual relationships interface to identify the appropriate conceptual relation-

ships between entities (e.g. touchesDirectly). At any time, the user can invoke a

traditional model formulation algorithm (Forbus and de Kleer 1993) to see if the

appropriate qualitative mechanics model fragments are instantiated. Once they are

satisfied with the model fragments, the final step is to create causal models that describe

conceptual quantities in terms of visual quantities. For each relevant conceptual quantity

(e.g. the revolution rate of a gear), the user draws a linear annotation for the causally

related visual quantity (e.g. the distance from the centre of the gear to its top right most

point). Next, using the concept map system, the user adds a qualitative proportionality

linking the conceptual quantity to the visual quantity (e.g. that the revolution rate is

qualitatively proportional to the radius of the gear). This completes the process of

constructing the scenario model for the example. Note that the model fragments, if any,

are instantiated from an incomplete domain theory, while conceptual/visual quantity

causal relationships are defined in an example-specific manner. All of the visual and

conceptual representations for the example are stored as a case in a library, to be used for

subsequent analogical model formulation.
To illustrate this process more concretely, we use the wheelbarrow in Figure 4 as an

example. First, a user draws the wheelbarrow in sKEA. To do this, the user draws seven

glyphs representing the wheel, axle, bin, frame, support, handle and rock. Next, a group

glyph is created representing the wheelbarrow including all the glyphs except the rock. The

wheelbarrow’s handle is annotated with a force arrow indicating that there is an assumed

force in the upward direction. Then, the user adds qualitative mechanics abstractions by

labelling the wheelbarrow group glyph and the rock as instances of the type RigidObject

and the axle as a Fulcrum. sKEA’s visual/conceptual relations interface is then used to add

some of the conceptual relationships needed by the qualitative mechanics domain theory.

Here, the user stated that the rock is on-Physical the bin. The domain theory includes

rules to determine that the on-Physical relationship results in a downward force from the

rock onto the bin. A standard model formulation algorithm instantiates whatever model

fragments are appropriate, based on these abstractions and relationships. This results in

the instantiation of a ForceDistribution and two TorqueEquilibrium model fragments.

The ForceDistribution consists of the rock pushing down on the wheel and the assumed

object in contact with the handle. The two TorqueEquilibrium model fragments are

symmetric. In one, TheForcer2 is the assumed object in contact with the handle, and

TheForcer1 is the rock. In the other TorqueEquilibrium model fragment, the

participants are reversed. The consequences of the first model fragment appear in

Figure 5. The first qualitative proportionality states that the force applied by the rock on

the surface between the rock and the bin is proportional to the force applied on the handle

by the assumed force. Surfaces are defined using the function ContactSurfaceFn which

takes two arguments. The term denotes the surface of the first argument that is in contact

with the second argument. For example, (ContactSurfaceFn Bin-110 Rock-111)

denotes the surface of Bin-110 which is in contact with Rock-111. We use

(ContactObjectFn Handle-109) to denote the assumed object in contact with the

handle. The next two statements say that the force applied on the handle is proportional to
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the distance from the surface of the rock to the origin of rotation and inversely
proportional to its distance from the origin of rotation.

Before the example is complete, any causal dependencies of conceptual quantities on
visual quantities must be entered. All of the entities and quantities in the scenario model
are automatically added to the concept map interface. Similarly, every time an annotation
glyph is used to create a visual quantity, that quantity is automatically added to the
concept map interface. In this example, the user might want to convey that the
wheelbarrow’s smoothness of the ride is determined in part by the diameter of its wheel.
To do this, he first adds a linear annotation to the wheel. Next, using the concept map
interface, he enters the qualitative proportionality between the quantity representing the
wheel’s diameter and the wheelbarrow’s smoothness of ride. Figure 6 shows a portion of
the symbolic representation for the annotation glyph and the internal representation of the
qualitative proportionality entered via the concept map. The first fact links the visual
quantity, named ‘Wheel Diameter’ by the user, to the annotation glyph. The next two facts
indicate the start and end points of the annotation glyph, in terms of anchor points on the
reference glyph. In this case, the start and end points are the bottom right point and
the top left point of Wheel-103, respectively. The final fact shows the qualitative

Automatically added by sKEA
(visualRepresentationOfQuantity
  ((ConceptKnownAsFn "WheelDiameter") 
     (GlyphFn Wheelbarrow-114 User-Drawn-Sketch-Layer-114)) 
  (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114))
(startPointOf

    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114) 
    (RightmostBottomPointFn 
    (GlyphFn Wheel-103 User-Drawn-Sketch-Layer-114))) 

(endPointOf
    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114) 
    (LeftmostTopPointFn 
    (GlyphFn Wheel-103 User-Drawn-Sketch-Layer-114))) 

Entered manually through the Concept Map 
(qprop ((QPQuantityFn RideSmoothness) Wheelbarrow-114) 

    ((ConceptKnownAsFn "WheelDiameter") 
(GlyphFn Wheelbarrow-114 User-Drawn-Sketch-Layer-114)))

Figure 6. A subset of the facts (simplified) to represent the wheel diameter annotation and the causal
relationship between the wheel diameter and the wheelbarrow’s smoothness of ride.

 (qprop
  ((QpQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Handle-109

(ContactObjectFn Handle-109)) 
             (ContactObjectFn Handle-109)) 
  ((QpQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Bin-110 Rock-111) Rock-111)) 
(qprop
  ((QpQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Handle-109

(ContactObjectFn Handle-109)) 
            (ContactObjectFn Handle-109)) 
  ((QpQuantityFn DistanceToOrigin) (ContactSurfaceFn Bin-110 Rock-111))) 
(qprop-
  ((QpQuantityFn ForceAppliedToSurfaceBy) (ContactSurfaceFn Handle-109

      (ContactObjectFn Handle-109)) 
                (ContactObjectFn Object-109)) 
  ((QpQuantityFn DistanceToOrigin) (ContactSurfaceFn Handle-109

(ContactObjectFn Handle-109)))) 

Figure 5. Resulting qualitative proportionalities from the torque equilibrium model fragment.

Journal of Experimental & Theoretical Artificial Intelligence 309



proportionality between the quantity representing the wheel’s diameter and the
wheelbarrow’s smoothness of ride.

To summarise, examples include three types of information:

(1) The everyday entities represented in the sketch.
(2) Instances of model fragments, constructed automatically from the sketched entities

and relationships, using the conceptual labelling and the visual/conceptual
relationship interfaces to provide the necessary abstractions for model
formulation.

(3) Example-specific causal relationships between visual quantities (measurable in the
sketch) and conceptual quantities.

Section 4 shows how these examples can be used via analogy to construct scenario
models in new situations.

4. Analogical model formulation

Analogical model formulation creates a scenario model for a new situation by analogy
with a previously understood example. The process begins with MAC/FAC being used to
retrieve a relevant example. SME then creates a mapping between the example and new
situation. This mapping includes a set of candidate inferences which suggest modelling
decisions for the new situation. For BMCT problems, candidate inferences provide
qualitative mechanics abstractions and relationships, definitions for visual quantities and
causal relationships. Together, this information provides the basis for a scenario model
which can be used to solve BMCT problems.

Here, we show how analogical model formulation constructs a scenario model for the
wheelbarrow shown in Figure 7 using the example wheelbarrow from Section 3.1. SME
creates a mapping, a portion of which is shown in Table 1, between the predicate calculus
representations of the problem and the example. Because SME is guided by common
structure, the resulting mapping does not necessarily include all of the entities in the
problem and example. Expressions from the example that do not participate fully in the

Figure 7. A wheelbarrow from a problem situation.
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mapping become candidate inferences, in which the mapped portions are replaced by the
corresponding expressions in the problem. Analogical model formulation depends upon
these candidate inferences to make modelling decisions in the problem scenario.

Analogical model formulation uses the example to infer three types of information
about the problem scenario: causal models, qualitative mechanics abstractions and
relationships and information regarding the measurement of visual quantities. Causal
models are inferred from the example as follows. The qualitative proportionalities in
Figures 5 and 6 become candidate inferences with the entities for Wheelbarrow-114,
Handle-109, Wheel-103, Bin-110 and Rock-111 replaced with Wheelbarrow-22, Handle-
13, Wheel-10, Bin-14 and Boulder-15, respectively. Our system searches the candidate
inferences for qualitative proportionalities and assumes their expressions into the problem
representation. Qualitative mechanics abstractions and relations are inferred in the same
way. Candidate inferences concerning abstractions and relations are assumed into the
problem (e.g. (isa Axle-11 Fulcrum) and (on-Physical Bin-14 Boulder-15)). Visual
quantity measurement information is imported in two ways. First, measuring
DistanceToOrigin quantities requires qualitative mechanics knowledge about the
centre of rotation. For example, calculation of the distance to the origin from the surface
between the boulder and the bin requires the knowledge that the axle is the fulcrum. The
second type of visual quantity concerns user defined annotations, such as WheelDiameter-
203. In this case, the expressions in the example concerning the annotation become
candidate inferences. Since the entity for the annotation WheelDiameter-203 does not
participate in the mapping, these candidate inferences contain AnalogySkolemFn

expressions. These expressions represent entities which appear in the base but do not
have a corresponding entity in the target. We use these candidate inferences to
automatically create a corresponding annotation in the problem. Figure 8 contains the
candidate inferences which define the wheel diameter quantity and provide instructions
as to how to draw the annotation based upon anchor points. Using this automatically
constructed annotation, the scenario model includes information concerning the
measurement of a visual quantity that was defined only in terms of the example.

In Section 5, we describe how we use analogy to frame comparative analyses allowing
for its application between scenario models necessary for solving BMCT problems.

Table 1. Mapping between the problem entities and the example.

Example entities (base)
Problem situation
entities (target)

Wheelbarrow-114 Wheelbarrow-22
Rock-111 Boulder-15
Handle-109 Handle-13
Frame-107 Chassis-12
Bin-110 Bin-14
Axle-104 Axle-11
Wheel-103 Wheel-10
Lift-113 AssumedForceArrow-19
Support-108 [unmapped entity]
Wheeldiameter-203 [unmapped entity]
[unmapped entity] Ground-9
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5. Analogical reference frames for comparative analysis

Comparative analysis, and in particular DQA, seeks to understand how and why the

behaviour of a system will change given some changes to its parameters (Weld 1988). For
example, comparative analysis can explain why the period of an oscillating block system

would increase if the mass of the block was increased. A DQ value is a qualitative
description of how one particular parameter in a system will change given other parameter
changes. There are four possible DQ values: unchanged, increased, decreased and

ambiguous. The DQA problems on the BMCT do not fit directly into the traditional
perturbed system framework. First, they involved comparisons between scenarios, rather

than describing a perturbation in a single scenario. Second, some of the problems require
comparisons between different parts of the same system. For example, the BMCT problem
in Figure 9 asks ‘which wheel of a railcar presses harder on the rail?’

We found that analogy provides a general mechanism for framing comparative

analyses. Using SME, we create an analogical reference frame to determine correspon-
dences between either two systems, or different aspects of the same system. These
correspondences frame a comparative analysis problem by defining what each parameter is

compared against. In problems with multiple systems, we use SME with one of them as the
base and the other as the target. In the case of single system problems, the system is

Figure 9. A DQA problem concerning aspects of the same system, ‘which wheel of a railcar presses
harder on the rail’?

(visualRepresentationOfQuantity
  ((ConceptKnownAsFn "WheelDiameter") 
    (GlyphFn Wheelbarrow-22 User-Drawn-Sketch-Layer-114)) 
  (AnalogySkolemFn 
    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114))) 
(startPointOf
  (AnalogySkolemFn
    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114)) 
  (RightmostBottomPointFn 
    (GlyphFn Wheel-103 User-Drawn-Sketch-Layer-114))) 
(endPointOf
  (AnalogySkolemFn
    (AnnotationGlyphFn WheelDiameter-203 User-Drawn-Sketch-Layer-114)) 
  (LeftmostTopPointFn 
    (GlyphFn Wheel-103 User-Drawn-Sketch-Layer-114))) 

Figure 8. Candidate inferences concerning the wheel diameter visual quantity.
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compared with itself while constraining the entities being compared to match each other.

For instance, in the rail car problem shown in Figure 9, SME matches the scenario to itself

but requires that Wheel-1181 corresponds with Wheel-1182.
The analogical reference frame lines up quantities whose differences can be reasoned

about via standard DQA. Returning to Figure 9, we want to find the DQ value of the force

applied to the rail at Wheel-1181 through a comparison with its corresponding quantity,

the force applied to the rail at Wheel-1182. Using our causal models to find the dependent

parameters, we find that the force on a wheel is inversely qualitatively proportional to the

distance between the surface of the boulder and that wheel. Since the two distances are

aligned by the analogical reference frame, we determine that the DQ value for the distance

concerning Wheel-1181 is decreased. Since the relationship to force is inversely

qualitatively proportional this distance, the DQ value for the force applied at Wheel-

1181 is increased, i.e. Wheel-1182 is pressing harder on the rail. Analogical reference

frames are important because they allow a wider class of systems to be analysed, since the

correspondences between aspects of a problem are computed dynamically.

6. Solving BMCT problems via analogy

Here we describe how a companion uses sketch annotations, analogical model formulation

and analogical reference frames to solve BMCT problems from examples. Problems are

presented as sketches of the situation and a query. The session reasoner solves these

problems using the AND/OR suggestion architecture from (Forbus and de Kleer 1993).

The problem-solving knowledge consists of 19 methods and 136 backchaining rules.

Solving BMCT problems using analogical model formulation involves three steps. First,

the companion retrieves a relevant example. Second, the companion creates a scenario

model based upon the example using analogical model formulation. Third, the companion

uses the model to compute the answer.
Figure 10 shows how this process is implemented on the Companion Cognitive

Architecture. The Session Reasoner performs the majority of the reasoning. It relies on the

Retriever to find relevant analogues and the Sketching Agent to perform visual quantity

measurements. The Sketching Agent also maintains the concept map, in addition to

running sKEA.
As previously discussed, there are two types of questions on the BMCT: outcome

questions and DQA questions. Figure 11 contains an example of each type and the

associated query. The predicate of the query indicates the type of problem. Because the

ball problem is a single situation, it is sketched on a single layer. The predicate

solveQMOneSketchProblem designates that this is an outcome question. The first

argument is the query for the outcome question, ‘what is the net force on the ball?’ In

DQA problems with comparisons between scenarios, the sketch consists of two layers, one

for each scenario (e.g. one layer for each wheelbarrow). The predicate of the query in the

wheelbarrow problem, solveDQProblem, indicates that this is a DQA problem. The first

argument is the context containing the facts representing the sketch. The next two

arguments are the objects being compared, in the case the wheelbarrows. The next

argument is the quantity being compared between these situations, the force applied to the

handle of the top wheelbarrow. The last argument is the answer, which is the DQ value

indicating the change in the quantity from one situation to the other. The correct answer to
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this problem is increasing (i.e. IncreasedDQ) indicating that the force applied to the handle
increases from the top wheelbarrow to the bottom wheelbarrow.

6.1. Retrieve analogous example

The first step of problem-solving is retrieving an analogous example. The companion does
this for each layer in the problem sketch. To retrieve a relevant example, the Retriever uses

Figure 10. Solving BMCT problems on a companion.

(solveQMOneSketchProblem
 (and
  (valueOf
   ((QpQuantityFn XNetForce) 
       Ball-1301) 
   ?x-dir) 
  (valueOf
   ((QpQuantityFn YNetForce) 
       Ball-1301) 
   ?y-dir)))

(solveDQProblem
  BMCT-S-1-MEK 
  Wheelbarrow-21 
  Wheelbarrow-22 
  ((QpQuantityFn ForceAppliedToSurfaceBy) 
    (ContactSurfaceFn Handle-7 
        (ContactObjectFn Handle-7)) 
    (ContactObjectFn Handle-7)) 
  ?value)

Figure 11. Sample BMCT problems – ‘Which direction will the ball travel?’ (outcome problem) and
‘Which wheelbarrow is easier to carry?’ (DQA problem).
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MAC/FAC to generate a reminding for the situation depicted by the layer. MAC/FAC
determines the most similar example from its case library using the situation with the low
level visual properties removed (i.e. visual groupings, glyph orientations and relative sizes)
as the probe. For outcome problems, the first retrieval is used. For DQA questions, the
retrieval must also contain candidate inferences that causally constrain the goal quantity.
This is a useful heuristic, because without these candidate inferences, the companion will
not be able to construct a useful scenario model for solving the problem. Should the first
retrieval prove unsatisfactory, a second retrieval is performed. If that, too, fails, the low
level visual properties are added back into the probe and up to two more retrieval attempts
are made.

6.2. Perform analogical model formulation

As described in Section 4, analogical model formulation creates a scenario model for the
problem, consisting of causal models, qualitative mechanics abstractions and relationships
and information regarding the measurement of visual quantities. Consider for example the
ball problem. Analogical model formulation infers that the ball and the two people are
instances of the collection RigidObject, and the ball touches-directly each of the
people. These facts allow the companion to formulate a qualitative mechanics model of the
problem using its domain theory and a standard model formulation algorithm. This
scenario model consists of two model fragments: XForceTransfer and YForceTransfer.
Turning to the wheelbarrow problem, the results of the analogical model formulation for
each situation are described in detail in Section 4. For this particular problem, the
qualitative proportionality between the force applied at the handle and the distance
between the rock and the centre of rotation is a crucial aspect of each resulting scenario
model.

6.3. Solving outcome problems

Solving an outcome problem involves standard QR. For example, in the ball problem,
the companion calculates the net force, down and to the right, from the consequences
of the force transfer model fragments.

6.4. Solving differential qualitative analysis problems

Solving a DQA problem requires the additional step of constructing an analogical
reference frame. The companion uses the causal model and analogical reference frame
to ascertain the relevant visual properties to measure. These visual properties are measured
and their numerical values compared to produce DQ values for the causally
independent parameters. These DQ values are then propagated through the causal
model to derive a DQ value for the query parameter. These problems can be quite difficult:
one problem on the BMCT involves comparisons between aspects of three situations.
In the case, the companion sets up three reference frames, one for each pair of situations,
and carries out the same analysis for each reference frame in order to derive the
correct answer.
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6.4.1. Creating the analogical reference frame

As described in Section 5, the companion creates an analogical reference frame for the
problem. It uses SME to create a mapping between the two scenarios, or the scenario with
itself. In the latter case, the mapping is constrained by requiring a correspondence between
the aspects of the scenarios being compared by the query. The resulting correspondences
indicate how quantities should be compared. Specifically, the DQ value for a parameter
refers to a comparison between its value and that of the parameter corresponding to it in
the mapping. In the wheelbarrow problem, the companion sets up the analogical reference
frame by mapping the top wheelbarrow onto the bottom wheelbarrow.

6.4.2. Backward chaining through the causal model

Once the reference frame is set up, DQA proceeds by chaining backward from the sought
quantity through the causal model. Non-visual quantities that are either not causally
constrained by other parameters or are not known to be different are assumed to be the
same across the scenarios, i.e. a DQ value of unchanged. For example, in the wheelbarrow
problem in Figure 11, the companion assumes that the rocks apply the same amount of
force on the wheelbarrow’s bins because force applied is not a visual quantity. DQ values
for visual quantities are computed by comparing measurements between the correspond-
ing quantities in the sketch. In the wheelbarrow problem, the companion determines that
the force applied on the handle is proportional to the distance from the rock to the
wheelbarrow’s origin of rotation. Therefore, since the DQ value for distance from the
surface of the bin touching the rock to the wheelbarrow’s origin of rotation increases,
the force applied on the handle also increases from the top wheelbarrow to the bottom
wheelbarrow.

6.4.3. Measuring visual quantities

The companion uses the sketching agent to measure visual quantities. In this study, there
are three types of visual quantities: DistanceBetweenSurfaces, DistanceToOrigin

and example-specific visual quantities defined by a linear annotation. The
DistanceBetweenSurfaces quantity represents the distance between two surfaces.
sKEA reduces each surface to a point by averaging the X and Y coordinates of the
surface’s endpoints and computes the distance between these points. The
DistanceToOrigin quantity represents the distance from a surface to the centre of
rotation of the object the surface is on. The centre of rotation is determined by two
methods, each of which depends upon the results of analogical model formulation. First,
the object may participate in the conceptual relationship, canPivotAround, with another
object. In this case, the surface between these objects would be the centre of rotation.
Second, the object may be part of a conceptual glyph group. In this case, if there is another
glyph also in the group who is an instance of the collection Fulcrum, the centroid of this
glyph is the centre of rotation. Example-specific visual quantities created by annotations
are measured from the anchor points transferred via candidate inferences. Linear
annotations measure the distance between anchor points, while X-coordinate and Y-
coordinate annotations measure distance between the anchor points along the appropriate
axis.

In the wheelbarrow problem, the companion determines that the distance to the origin
of rotation from the surface on the wheelbarrow’s bin, defined by the contact with the
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rock, is a relevant visual quantity using the causal model. sKEA uses the ink of the bin and
rock glyphs to determine the line segment of the bin which represents the surface. sKEA
averages the endpoints of this line segment to calculate one end of the distance
measurement. The centre of rotation of this wheelbarrow depends upon the qualitative
mechanics abstraction Fulcrum. Because the wheelbarrow is a group glyph and the axle is
an instance of the Fulcrum collection, the companion selects the centroid of the axle as the
centre of rotation for the wheelbarrow. Next, sKEA computes the distance between these
points and provides the companion with the results. The same process occurs for the other
wheelbarrow. Recall that not only was the relevance of this quantity established via
analogy, its measurement also depended upon the qualitative mechanics abstraction
inferred during analogical model formulation.

Next, we evaluate a companion’s performance using this algorithm across a range of
problems from the BMCT.

7. Experiment

We conducted an experiment to see how well a companion performs on problems from the
BMCT using analogical model formulation. We chose a subset of the test because we
wanted to minimise domain encoding efforts, to focus better on seeing what could be
achieved via analogical model formulation. We selected 13 of the 68 problems on the
BMCT, focusing on problems involving net force, revolution rate, stability and
smoothness of ride. Since some of these phenomena can be handled by pre-existing
qualitative mechanics theories, we test the domain breadth problem posed by the BMCT
by including problems in our evaluation set without providing the companion with a
corresponding domain theory.

A total of 11 problems involved differential qualitative analyses, six of which involved
phenomena not covered by the companion’s domain theory. The other two problems were
outcome problems. The experiment and analyses below provide evidence concerning three
questions:

(1) Can a companion using analogical model formulation solve BMCT questions?
(2) How does a companion perform when the number of explanations increases? This

is important for assessing how well learning by adding examples scales.
(3) How well do the retrieval and mapping mechanisms perform? That is, when there

are errors, how often are these the cause, as opposed to some other part of the
system?

7.1. Method

To model the experiences that analogical model formulation draws upon, we created a list
of 18 example situations. A total of 15 examples were intended to be good analogues for
specific test questions, with each problem from the BMCT subset having at least one
relevant example. The other three examples provided additional distracters. To create the
examples, we recruited three graduate students, with varying degrees of familiarity with
sKEA, to serve as knowledge enterers (KEs). Each example was described to the KEs by
a short English phrase, e.g. ‘a tricycle’. They were instructed to draw each example in
two dimensions, avoiding perspective projections. They were also instructed to break
objects into separate glyphs whenever they were going to be referring to a named part in
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describing how that example worked. For example, because a wheelbarrow is lifted at
its handle and rotates around its axle, the handle and axle would be separate glyphs.
While drawing, they used sKEA’s conceptual labelling interface to apply appropriate
domain abstractions from a list provided to them. They also used sKEA’s visual/
conceptual relationship interface to select relevant relationships. KEs were also given
a list of physical quantities that were relevant in this subset of the BMCT (i.e. smoothness
of ride, revolution rate and stability). When one of these quantities was relevant, they
were instructed to include it in their example, and explain what other properties of
the system that it depends on, using annotation glyphs as necessary to define physical
quantities in terms of visual measurements. To evaluate their progress, they ran a standard
qualitative mechanics model formulation system to derive model fragment instances.
If there were missing or inappropriate instances of model fragments, they were
encouraged to modify their sketch until they were satisfied with the model fragments
generated. For example, in a sketch depicting two meshed gears where one of the
gears is rotating (as indicated by an annotation), the KE would know that some-
thing was wrong if there was no mention of torque transfer in the active model
fragment list. Once finished, each example sketch was stored in a case library for that
particular KE.

The 13 problems were drawn by a fourth graduate student, an experienced sKEA user.
The problem sketches did not include any qualitative mechanics structural abstractions or
conceptual relationships. Thus, all the problems required analogical model formulation to
arrive at the correct answer. No guessing by the companion was allowed. The 13 problems
were presented to the companion in a series of seven trials. In the first three trials, the
companion had access to each KE’s case library individually. In the next three trials,
the companion was given each pair wise combination of case libraries, and in the final
trial, the companion had all the examples from the three cases libraries.

While the 13 problems represent a subset of the test, they still cover a broad range of
situations. The predicate calculus generated for the sketches of these 13 problems contains
164 entities of 84 different types. These entities are related to each other by 37 unique
relations. The problem representations contain on average 182 facts, with the largest and
smallest problems having 397 and 40 facts, respectively. Because annotations and
conceptual relationships were added to the examples, the example representations are
slightly larger, ranging from 52 to 467 facts with an average of 201. They include 100
conceptual types and 212 unique relations.

7.2. Results

A summary of the results appears in Table 2. The correct retrieval column lists the number
of times the system retrieved one of the appropriate analogues for the problem sketch. All
the retrieval results are statistically significant ( p5 0.001). The correct answer column lists
the number of times the system provided the correct answer. In four of the seven trials, the
companion produced the correct answer on a statistically significant number of problems
( p5 0.05). Every problem was solved in at least one of the trials. KE2 had the most
experience with sKEA, leading to similar representations to the problems, and KE3 had
the least experience, providing some serious variability. Table 2 demonstrates that
companions can indeed solve BMCT problems via analogical model formulation: 77%
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correct, under the best conditions. Furthermore, as the number of available examples

grows, the companion’s performance improves. Notice that every combination of KEs

except for KE2þKE3 provides an improvement in correct retrievals. This is important

because it means greater breadth can be achieved to some degree by increasing the system’s

experience. A close inspection of the results reveals that in each of the combination trials,

example sketches from at least two of the case libraries were used to formulate correct

answers. This indicates that the methods have some degree of robustness across examples

entered by multiple people.
Table 3 looks at the same data, but broken down by question type, to get a better

understanding of the companion’s performance. Overall, the companion answered

correctly 58% of the time across all problem/memory conditions. However, since we

have ruled out errors in the fixed components of the system via by-hand analysis, the

difference between the number of answers produced (78%) and correct retrievals (71%)

suggests that there are occasional problems in mapping or in using candidate inferences.

This was not the case for the outcome questions – if the retrieval was correct, the

companion derived the correct result. Recall that outcome questions use whatever

analogue is first retrieved. Finding a criterion for testing the analogically derived model

would make a difference here. This problem was worse in the DQA problems, despite the

use of a relevance heuristic to filter retrievals. In 20 of the DQA questions (26%), the

companion was unable to find an example that causally constrained the sought quantity,

and thus was unable to produce an answer. Also, when the companion retrieved a

Table 2. Problem solving results versus case libraries of examples.

Library
Number of correct
retrievals (out of 13)

Number of correct
answers (out of 13)

KE1 7 6 (p5 0.24)
KE2 10 10 (p5 0.001)
KE3 5 2 (p5 0.96)
KE1þ 2 11 9 (p5 0.008)
KE1þ 3 9 6 (p5 0.24)
KE2þ 3 10 10 (p5 0.001)
KE1þ 2þ 3 12 10 (p5 0.001)

Table 3. Companion’s performance by question type.

Question type (number)
Number of answers

produced (%)
Number of correct

retrievals (%)
Number of answers

correct (%)

BMCT questions (91) 71 (78) 65 (71) 53 (58)
Outcome questions (14) 14 (100) 10 (71) 10 (71)
DQA questions (77) 57 (74) 55 (71) 43 (56)
Net force questions (35) 24 (68) 23 (65) 15 (42)
Other questions (42) 33 (78) 32 (76) 28 (66)
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relevant example, it still missed 12 out of 55 problems (22%). We examine the
failures more closely below.

We evaluate analogical model formulation’s performance without a complete domain
theory by distinguishing between different types of DQA questions. In net force questions,
the companion transferred causal models from examples that were generated from our
qualitative mechanics domain theory. The companion performed slightly worse on these
problems averaged across all memory conditions. It retrieved a relevant example 65% of
the time and answered the problem correctly on 42% of the problems across all memory
conditions. The other questions concern the phenomena not covered in the companions
domain theory: stability, revolution rate and ride smoothness. The causal models required
to solve these problems were defined in an example-specific manner via linear annotations.
The companion answered 66% of these problems correctly across all memory conditions,
supporting the hypothesis that analogical model formulation is a promising approach to
addressing the domain breadth problem posed by the BMCT.

To better evaluate the retrieval heuristic used in DQA problems, Table 4 organises the
DQA results based upon which retrieval strategy produced the answer. While the majority
of the answers were based upon the first retrieval, 24 answers across all memory conditions
required additional retrievals. Of these, the companion retrieved an appropriate analogue
22 times and answered the question correctly 15 times. These results support our
hypothesis that our retrieval method is useful in for solving BMCT problems from
examples.

7.3. Analysis of failures

It is useful to understand why systems fail. We first analyse failures in outcome problems,
and then analyse failures in DQA problems.

The four failures on outcome problems occurred because the companion failed to
retrieve the correct example from memory. The companion confused a gear rotating inside
another gear with two gears rotating side by side, due to annotation glyph placement. This
results in incorrect qualitative mechanics abstractions and relationships being assumed
in the problem, which in turn leads to the companion constructing an incorrect scenario
model. Currently, we do not have a method for evaluating the retrieval on

Table 4. DQA results by retrieval number and strategy.

DQA strategy type
Number of

uses
Number of

correct retrieval
Number of

correct answer

1st retrieval: no spatial relations,
full case library

33 32 28

2nd retrieval: no spatial relations,
case library – 1st retrieval

5 5 3

3rd retrieval: including spatial
relations, full case library

11 11 8

4th retrieval: including spatial
relations, case library – 3rd retrieval

8 6 4

Total 57 54 43
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outcome problems. People seem to handle this problem by recognising contradictions in
their reasoning. Recognising contradictions is difficult in analogical model formulation
because the mapping with the example is assumed to provide the correct structural
abstraction and conceptual relationships. We plan to address this in future work by
exploring ways of combining reasoning from multiple examples.

The failures on DQA problems occurred during both the retrieval and mapping stages
of the algorithm. As noted above, the retrieval must yield a mapping which causally
constrains the quantity in question. For 20 of the 77 problem/memory condition pairs,
such an example could not be found. Frequently, this was because the KEs sketched the
situation at a different level of abstraction than the problem. Even when an example is
found that constrains the goal quantity, there are two failure modes for mapping. First, the
causal model may include surfaces or objects which do not exist in the problem sketch.
Figure 12 illustrates this problem. The problem sketch contains glyphs for the ground and
the axle, but the example does not. Furthermore, the chassis in the problem sketch is
conceptually labelled as a leg in the example. While SME handles incomplete matches,
significant differences in depiction, such as divergence in number of glyphs, can cause
mapping failures. In this case, the bin in the example maps to the chassis in the problem.
The candidate inferences postulate surfaces and/or glyphs that do not exist (e.g. the surface
between the boulder and the chassis), which sKEA is unable to reason about. The
companion fails whenever a candidate inference for a necessary causal relationship
includes references to either surfaces or glyphs that do not exist.

The second kind of mapping failures in DQA problems are errors in measurements of
user defined visual quantities. When measuring the wheel diameter in the problem scenario
of Figure 12, if the wheel in the example was mapped to the axle in the problem, then the
visual measurement for the wheel diameter would be the width of the axle in the problem.
These mapping failures lead the companion to produce incorrect answers.

People seem to have several methods for dealing with such problems. First, they try
other examples, going back to memory to find an example that is more productive. A
simple version of this is already implemented in our retrieval method. Also, people use
rerepresentation (Yan, Forbus, and Gentner 2003) to bring the base and target into closer
alignment. Knowledge about depiction seems crucial: If two sketches are misaligned,
simplifying the more complex one, or postulating new glyphs in the simplified one, seems
to be a promising strategy.

As illustrated in Table 4, the companion performed slightly worse on net force DQA
problems which relied on causal models generated by its qualitative mechanics domain
theory than on problems which relied upon example-specific causal models. An analysis
of these causal models indicates differences in size which increased the likelihood

Figure 12. (a) Example wheelbarrow, (b) problem wheelbarrow.

Journal of Experimental & Theoretical Artificial Intelligence 321



of mapping failures. The net force causal models contained more entities than the example-
specific causal models. This is evident in the example wheelbarrow in Figure 12a. The
causal model concerning the force applied at the handle references the following entities:
Handle-4, (ContactObjectFn Object-4), Rock-7, Bin-3 and Wheel-5. All five of these
objects must map appropriately to the problem to create the necessary scenario model. On
the other hand, the example-specific explanation for the wheelbarrow’s ride smoothness
references only two entities: Wheel-5 and Wheelbarrow-12. While the causal models
concerning net force DQA problems are more complex, the companion does have access to
a qualitative mechanics domain theory. One avenue for future work is to develop a theory
which uses the first-principles explanation to verify and repair these analogically inferred
causal models.

8. Related work

Another example of psychometric AI is Project HALO (Barker et al. 2004), which
explored how well the state of the art in knowledge-based systems could be used to create
systems that solve AP Chemistry problems. Like our work, HALO focused on a subset of
the test, basing their problems on several pages of textbook knowledge. The approach used
by all three teams was to encode general-purpose knowledge by hand, using teams of
domain experts and AI experts. The everyday breadth problem was handled by hand-
encoded rules, which is less general than our analogical model formulation approach. The
HALO systems had to handle quantitative knowledge, including equation solving, whereas
the BMCT requires us to do spatial reasoning.

The compositional modelling methodology (Falkenhainer and Forbus 1991) developed
in the QR community has led to efficient algorithms for model formulation using first-
principles reasoning from domain theories (Nayak 1994; Rickel and Porter 1994). These
algorithms assume that the input descriptions are already in an abstract structural
vocabulary, and do not handle the problem of mapping from everyday entities to abstract
vocabularies, as we do. The use of experience in model formulation was first proposed by
Falkenhainer (1992) for improving compositional modelling by choosing appropriate
perspectives and levels of detail. Falkenhainer’s work, like other compositional modelling
efforts, still started with a narrow vocabulary for describing structural descriptions. Our
study, by contrast, exploits the breadth of the ResearchCyc knowledge base to provide a
vastly broader range of input possibilities, and analogical model formulation to determine
which abstractions should apply to them.

Some researchers use high-resolution inputs or CAD systems to produce structural
descriptions containing metric information which can also be exploited by the system
(Joscowicz and Sacks 1993). Aside from annotations and using quantitative information to
compute low-level qualitative visual properties, we do not exploit metric information at
all. Stahovich, Davis, and Shrobe (2000) used sketched input, but allowed only a handful
of abstract types to be drawn. Archytis (Yaner and Goel 2008) uses a method called
compositional analogy to construct structural models from unlabelled two dimensional
line drawings. Their system recognises shapes based upon similarities between the lines and
intersections in the problem and the labelled example. These shapes then guide the transfer
of component types and connections from the example to the problem. Our system differs
in a number of important ways. First, they use vector-graphics inputs, which are easier to
process than the hand-drawn sketches we use with sKEA. On the other hand, we require
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users to segment their glyphs. While both systems rely to some degree on hand-labelled
conceptual information, we use automatic model formulation during example creation to
automatically add information, thereby reducing tailorability. Archytis does not address
retrieval, and their analogies focus only on similarities in depiction, unlike our use of
MAC/FAC for retrieval and the use of both visual and conceptual information in
mapping.

In analogical problem solvers and case-based reasoning (CBR) systems, inferences are
made about problems based upon previous cases. Most of today’s CBR systems are based
on feature-vectors, and hence lack the representational capacity to handle everyday
physics problems. In CBR systems which use relational representations (as we do),
typically a heavy emphasis is placed on adaptation (Kolodner 1993). This frequently
requires domain specific heuristics. In analogical model formulation, the adaptation is
completely handled via structure mapping. Analogical problem solvers (Veloso and
Carbonell 1993; VanLehn 1998; Melis and Whittle 1999; Ouyang and Forbus 2006)
typically solve new problems by transferring plans from previous problem-solving
episodes. Thus analogy is used as a means of guiding the problem solver, but it could,
with more effort, solve the problems without analogues. In contrast, companions use
analogical model formulation to infer crucial pieces of domain knowledge, i.e. qualitative
mechanics abstractions and relationships, definitions for visual quantities and causal
relationships. Without these inferences, the companion would not be able to solve any
of these problems.

9. General discussion

We have argued that QR combined with analogical processing is a promising avenue for
addressing the problems of domain breadth and everyday breadth that must be solved for
human-like reasoning. The companion’s performance on a subset of the BMCT provides
important evidence for this claim. Analogical model formulation enables a companion to
build scenario models over a broad range of input descriptions, even with an incomplete
domain theory. Sketch annotations provide a means for defining visual quantities in
examples, which can be used in example-specific causal explanations and applied via
analogy to new situations. This extends the companion’s reach by enabling it to reason
about phenomena for which it does not have a corresponding domain theory. Analogical
reference frames extend the scope of comparative analysis to include the types of problems
found on the BMCT.

An important benchmark for psychometric AI is having the same system perform well
on a spectrum of intelligence tests (Bringsjord and Schimanski 2003). In this spirit, we have
also successfully tested the companions architecture with mechanics problems similar to
those on the AP Physics exam (Klenk and Forbus 2007), using the same strategy of
learning by accumulation of examples and analogical model formulation. The success of
companions on these two very different kinds of problems provides support for the
generality of these ideas.

There is much future work ahead: after all, the BMCT includes statics, dynamics, heat,
electricity and even orbital mechanics. There is no QR system that comes close to handling
the breadth of phenomena covered in the exam, let alone the breadth of everyday concepts
involved. A system that can learn to perform well on this exam would be an important
milestone for AI. Our long-term goal is to enable a companion to solve the entire test, but
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with as little hand coding as possible. Our use of examples to describe new phenomena to
the system is a first step in that direction. One line of investigation is to move beyond
learning via accumulating examples, using the SEQL model (Kuehne, Forbus, Gentner,
and Quinn 2000) to learn generalisations from examples. Another is to explore the
debugging of reasoning. During problem solving, we need to incorporate strategies for
verifying and repairing analogical inferences made from explanations generated by first-
principles reasoning. After problem solving, we have to be able to give the companion
feedback and advice. For example, when a companion gets a problem wrong, it could
figure out how to change its knowledge so that it does better in the future. We suspect that
model-based diagnosis techniques (e.g. de Koning, Bredeweg, Breuker, and Wielinga 2000)
would be useful for this. Recall that for more than half of the incorrect answers, the
companion knew in some sense that it could not provide a good answer. This is an
excellent opportunity to explore interactive learning during problem solving. For example,
given an incorrect mapping or retrieval, providing corrective feedback could give
a companion evidence about how to reorganise its encoding strategies and/or
re-representation methods. We are developing an interactive interface for this, using
simplified English for input, which we hope will also help expand the range of materials we
can use in testing them and helping them learn.
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Notes

1. For the security of the test, we cannot provide a full list of the problems used in this evaluation.
2. The majority of the content in our KB is drawn from ResearchCyc (www.research.cyc.com),

plus our own material on QR and analogy. The conventions for Cyc-style knowledge bases
(Lenat and Guha 1989) are documented on that website.

3. The compound form shown in Figure 3 is translated into a set of backward chaining rules for
use with our reasoning engine.

4. Torque equilibrium also requires that the opposing torques be equal. Our system currently
assumes this by default.
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Appendix 1. Additional qualitative mechanics model fragments

(defModelFragment YForceTransfer
:participants ((TheObject :type RigidOb)
(TheForcer :type RigidOb)
(TheSurface1 :type Surface

:constraints ((hasSurface TheObject TheSurface1)))
(TheSurface2 :type Surface

:constraints ((hasSurface TheForcer2 TheSurface2)
(surfaceContact TheSurface1 TheSurface2)))

(TheYDir1 :type Sense))
:conditions ((yForceApplied TheSurface1 TheXDir1 TheForcer))
:consequences ((cþ ((QpQuantityFn YNetForce) TheObject)

((QpQuantityFn YForceAt) TheSurface1)
YForceTransfer)))

(defModelFragment TorqueTransfer
:participants ((TheObject :type RigidOb)
(TheForcer :type RigidOb)
(TheSurface1 :type Surface
:constraints ((hasSurface TheObject TheSurface1)))

(TheSurface2 :type Surface
:constraints ((hasSurface TheForcer2 TheSurface2)
(surfaceContact TheSurface1 TheSurface2)))

(TheRotDir1 :type RotDirection))
:conditions ((torqueApplied TheSurface1 TheRotDir1 TheForcer))
:consequences ((cþ ((QpQuantityFn NetTorque) TheObject)
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((QpQuantityFn TorqueAt) TheSurface1)
TorqueTransfer)))

(defModelFragment ForceDistribution
:participants ((TheObject :type RigidOb)
(TheForcer :type RigidOb)
(TheSurface1 :type Surface

:constraints ((hasSurface TheObject TheSurface1)))
(TheSurface2 :type Surface

:constraints ((hasSurface TheObject TheSurface2)
(notDirectlyForceApplied TheSurface2 TheDir1 TheForcer)))

(TheForcerSurface :type Surface
:constraints ((hasSurface TheForcer TheForcerSurface)
(surfaceContact TheSurface1 TheSurfaceOfForcer)))

(TheDir1 :type 2DQVector))
:conditions ((forceApplied TheSurface1 TheDir1 TheForcer))
:consequences ((qprop- ((QpQuantityFn ForceAppliedToSurfaceBy)

TheSurface2 TheForcer)
((QpQuantityFn DistanceBetweenSurfaces) TheSur-

face2 TheSurface1))))
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