
Abstract 

AI systems and human novices share a difficult problem: 

repairing incorrect models to improve expertise.  For 

people, the use of analogies during instruction can aug-

ment the repair of science knowledge. Enabling AI sys-

tems to do the same involves several challenges: repre-

senting knowledge in commonsense science domains; 

constructing analogies to transfer knowledge; and flexi-

bly revising domain knowledge.  We address these issues 

by using qualitative models for representing knowledge, 

the Structure-Mapping Engine for analogical mapping, 

and a computational model of conceptual change for re-

vising knowledge.  In our simulation trials, we initialize 

the system with one of several student misconceptions of 

the day/night cycle from the cognitive science literature.  

The system automatically repairs these misconceptions 

using an analogy, expressed using natural language, by: 

(1) validating analogical correspondences with the user; 

(2) transferring knowledge from the base domain, and 

(3) constructing new explanations to repair misconcep-

tions. 

1 Introduction 

Repairing incorrect beliefs about the world is a common 
task during formal education.  Research suggests that people 

more effectively repair incorrect beliefs in commonsense 
science domains when they are presented with an analogy 
(Vosniadou et al., 2007; Brown and Clement, 1989).  Unfor-
tunately, our AI systems lack the flexibility of human stu-
dents when it comes to revising commonsense science be-
liefs with analogy, since it involves several challenges: 

1. Representing imprecise and incomplete knowledge 
in commonsense science domains. 

2. Creating a mapping between a base domain and a 
target domain, when the latter has misconceptions. 

3. Transferring knowledge to the target domain. 
4. Revising beliefs in the target domain to accommo-

date transferred knowledge. 
This paper presents a model that addresses these problems 
by using qualitative process theory (Forbus, 1984) for 
knowledge representation and reasoning; the Structure-
Mapping Engine (Falkenhainer et al., 1989) for computing 
analogical mappings and transferring knowledge; and a 
computational model of conceptual change (Friedman, 
2012) for revising knowledge.  We implemented our model 
using the Companions cognitive architecture (Forbus et al., 
2009).  We simulate four student misconceptions about the 
day/night cycle from the cognitive science literature.  For 
each misconception, we use the analogy from Vosniadou et 
al. (2007): that the day/night cycle is like the cooking of 
gyros.  The system has formally represented models of the 
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Figure 1: Mental models of day and night, including simplified correct model (E).  Superscripts indicate studies in 

which mental models were used by students: (1) Sadler, 1987; (2) Baxter, 1989; (3) Vosniadou & Brewer, 1994. 

 



base and target domains, with hints about correspondences 
provided via natural language.  It automatically computes 
the mapping, interactively checks its analogical correspond-
ences with a human teacher, transfers beliefs, and revises its 
knowledge accordingly. 

We begin with an overview of novice mental models of 
the day/night cycle and how analogies have facilitated learn-
ing in this domain.  Then we summarize relevant back-
ground and describe how our model works. The simulation 
experiment and its results are described next, ending with 
related and future work.  

 

1.1 Day/Night Cycle: Mental Models and Analogs 

Children are not blank slates when they first encounter ex-
planations of the day/night cycle in formal education.  Many 
students use mental models that are flawed, or internally 
consistent but scientifically incorrect (Sadler, 1987; Baxter, 
1989; Vosniadou & Brewer, 1994).  Some of these flawed 
mental models, as well as the correct model, are illustrated 
in Figure 1.  These mental models used by students describe 
processes in the world, such as the process of the moon 
moving to block out the sun, the sun moving and entering 
the earth, the sun dimming or brightening, or the earth rotat-
ing.  They make different assumptions about the world, they 
describe different types of processes, and they even make 
different predictions of how changes in the system (e.g., the 
absence of a moon) would affect day and night.  

How, then, can students repair these flawed mental mod-
els, and what cognitive processes are responsible?  Vosni-
adou et al. (2007) hypothesized that a scientific explanation 
that includes an analogy would help students repair their 
mental models more than an analogy-free explanation.  
Their experiment on 111 Greek 3rd and 5th graders provides 
evidence for this hypothesis. They used an analogy between 
gyros (a meat roasting vertical rotisserie, commonly found 
in Greek restaurants) and the Earth, shown in Figure 2.   

Students given the analogy were more likely to change their 
explanations to a scientific (or partially-scientific) model 
than students who were not given the analogy. 

2 Background 

Our model uses qualitative process theory for knowledge 
representation and reasoning, model formulation to assem-
ble this knowledge into explanations, and analogical reason-
ing to transfer this knowledge across domains for reuse.  We 
discuss each in turn. 

2.1 Compositional Modeling and QP Theory 

Simulating human reasoning about dynamic systems makes 
several demands on knowledge representation.  First, it must 
be capable of representing incomplete and incorrect domain 
knowledge.  Second, it must represent processes (e.g. rota-
tion on an axis, translation along a path) and qualitative pro-
portionalities (e.g. the closer a light source, the brighter the 
light).  Our system meets these demands by using qualita-
tive process theory (Forbus, 1984) for representing domain 
knowledge and reasoning about physical processes. 

We use model fragments (Falkenhainer & Forbus, 1991) 
to represent conceptual entities, processes, and views (For-
bus, 1984) that describe multiple entities.  A model frag-
ment called RemoteLighting is shown in Figure 3.  It has 
two participant slots: (1) a source of type LightSource 
which fills the providerOf role and (2) a lit-object of 
type SpatialThing which fills the recipientOf role.  
These participants are constrained to be spatiallyDis-
joint in order for a RemoteLighting instance to exist 
over any given source and lit-object.  Thus, the con-
straints describe the instantiation criteria for a model frag-
ment.  According to the condition, if the light of source is 
greater than zero, then the RemoteLighting consequences 
are inferred.  Thus, the conditions describe the behavioral 
criteria of the model fragment. 

The consequence statements of RemoteLighting in-
clude two influences: (1) the light of lit-object is quali-
tatively proportional to that of the source, and (2) the light 
of lit-object is positively affected if lit-object is 

ModelFragment RemoteLighting 

 Participants: 

  ?source LightSource providerOf 

  ?lit-object SpatialThing recipientOf 

 Constraints: 

  (spatiallyDisjoint ?source ?lit-object) 

 Conditions: 

  (greaterThan (Light ?source) 0) 

 Consequences: 

  (qprop  

    (Light ?lit-object) 

    (Light ?source)) 

  (positivelyDependsOn 

    (Light ?lit-object) 

    (visibleFrom ?lit-object ?source)) 

Figure 3: A model fragment that describes a rela-

tionship between a light source and a lit object. 

The Earth is round. Day changes to night because the 

Earth turns around its axis. The earth is moving just 

like gyros turns around on the vertical spit while 

roasting. The sunlight reaches only one side of the 

Earth and on this side it’s day. In the same way, the 

fire cooks only one side of gyros, the one that is 

turned towards it. On the other side of the Earth, 

which is not reached by the sunlight, it is night. As the 

Earth turns around its axis, the side where there was 

night turns slowly towards the Sun and it becomes day. 

In the same way, as the gyros turns around the spit, 

the side that was not cooked before gradually turns 

towards the fire and starts roasting. On the contrary, 

the side, where there was day, slowly turns away from 

the Sun and it becomes night. The Moon is not respon-

sible for the day and night cycle. Thus, it changes from 

day to night because the Earth turns around its axis, 

and the sunlight shines on a different side of Earth 

Figure 2: Analogy given to students 



visibleFrom the source.  The qualitative proportionality 
is also known as an indirect influence in qualitative process 
theory (Forbus, 1984).  Indirect influences describe mono-
tonically increasing or decreasing relationships between 
quantities.  The second influence is between a proposition 
and a quantity, and it asserts that the quantity will be greater 
in a state where the proposition holds than in a state where 
the proposition does not, all else equal.  Once these conse-
quences are asserted, they describe how the light of an ob-
ject might change, e.g., its light source brightens or dims, or 
something occludes it. 

2.2 Model formulation 

Model fragments and QP theory provide formalisms for 
representing and organizing a domain theory as reusable 
pieces.  Model formulation is the process of assembling the-
se reusable pieces into a qualitative model that has predic-
tive and explanatory power.  In this work, we use the abduc-
tive model formulation algorithm of (Friedman, 2012).  The 
algorithm is given (1) a set of model fragments called a do-
main theory, (2) a set of propositional statements (e.g., 
about astronomy) called a scenario, and (3) a proposition to 
justify, such as: 
 
 (greaterThan  

   (MeasurementAtFn (Light Chicago) Day) 

   (MeasurementAtFn (Light Chicago) Night)) 

 
The algorithm chains backwards by finding rules and 

model fragments that can infer the statement, binding partic-
ipant slots and antecedent variables accordingly, and repeat-
ing on the antecedent statements recursively (similar to 
(Rickel & Porter, 1997)).  If conditions of model fragments 
are not already known, they are assumed. 

The output is a network of justifications and assertions, as 
shown in Figure 4.  The justified belief is shown at the right, 
and the supporting justification structure extends to the left.  
In this case, the system inferred that the light of Chicago 
positively depends on whether the sun is visible from Chi-

cago, and then inferred that this must be the case during the 
day and not the night.  The change in visibility is explained 
by the sun entering and leaving a container, as in Figure 
1(D).  The situations of entering and leaving a container are 
other models that are instantiated and activated just like 
RemoteLighting above.  The assertions (circular belief 
nodes) in Figure  describe model fragment instances that 
might be active in various scenario states.  Some of the as-
sertions are assumptions that have no justification, but must 
hold for other assertions to be true. 

2.3 The Structure-Mapping Engine 

The Structure-Mapping Engine (SME) (Falkenhainer et al., 
1989) is a computational model of Gentner’s (1983) psycho-
logical theory of analogy and similarity.  SME takes two 
cases as inputs: a base, such as a description of gyros cook-
ing on a rotisserie, and a target, such as a (potentially) 
flawed description of the day/night cycle.  SME automati-
cally produces one or more mappings between the base and 
target, each of which consists of: (1) correspondences be-
tween base and target items; (2) a numerical similarity score 
that describes the quality of the mapping; and (3) candidate 
inferences, which are statements that might hold in the tar-
get case based on its correspondences to the base case.  
Candidate inferences may not be deductively sound; they 
are hypotheses that are supported by the comparison.  Can-
didate inferences are how knowledge is transferred across 
domains by analogy. 

3 Learning by Analogy and Explanation 

Just as people learn from analogies across domains (Vosni-
adou et al., 2007), our system repairs its knowledge base by 
(1) transferring knowledge via analogy and then (2) using 
transferred knowledge to construct new qualitative models.  
Here we describe our approach, beginning with how 
knowledge is organized. 

 

Figure 4: Subset of justification structure resulting from model formulation.  Circles are propositional beliefs and 

triangles are justifications that associate antecedent beliefs at left with consequences at right.  Dashed lines indicate 

additional structure not shown here. 



3.1 Organizing knowledge using explanations 

Our system records the beliefs and justifications of the best 
explanations for its beliefs.  The explanation for a belief b, 
e.g., b = “Chicago is brighter in day than at night,” is com-
puted in three steps: 

1. Justifying b via model formulation (e.g., Figure 4). 
2. Reifying all minimal explanations of b (sequences of 

justifications that fully justify b without redundancy).  
There may be many, depending on the justification 
branching factor. 

3. Computing the numerical cost of each explanation 
and retaining the minimal-cost explanation as the 
preferred explanation for b. 

The preferred explanation x for a belief b acts as an index 
into memory.  All of the beliefs and model fragment in-
stances in x are now believed by the system, whereas beliefs 
and model fragments in non-preferred explanations for b are 
not necessarily believed by the system.  This is important, 
because if the system switches its preferred explanation for 
b to a different explanation x’ this could cause a belief revi-
sion.  All beliefs in x’ would then be believed and beliefs 
exclusive to x would no longer be believed. 

Since beliefs are indexed using preferred explanations, 
the system revises its beliefs when either: (1) new infor-
mation yields a new, lower-cost explanation or (2) new in-
formation changes the cost ordering of existing explana-
tions.   

3.1.1 Computing explanation cost 

Certain artifacts within an explanation incur a cost.  These 
artifacts and their associated costs include: 
 Logical contradictions (cost = 100). 
 Assumptions (cost = -log(P(b))) are not supported 

by instruction, observation, or antecedent beliefs. 
 Model fragment instances (cost = 2) are penalized 

to minimize the number of causal factors. 
 Model fragments (cost = 4) are penalized to mini-

mize the types of causal factors. 
 Assumed quantity/state changes (cost = 40) are 

changes within a system that cannot be explained. 
Importantly, an artifact’s cost is only incurred once.  For 

example, if the model fragment RemoteLighting is pre-
sent in a previous preferred explanation, then a new expla-
nation that uses it will incur zero cost for that artifact.  This 
means that the system is biased to reuse existing models, 
model types, and assumptions.  This promotes simplicity 
within and across explanations. 

3.2 Finding and handling contradictions 

Some artifacts, such as contradictions, involve more than 
one belief.  For a contradiction cost to be incurred, each of 
the beliefs comprising that contradiction must be in a pre-
ferred explanation or within the adopted domain knowledge 
context.  Adopted domain knowledge consists of beliefs 
learned from instruction and observation.  They might not 
be used in preferred explanations, but they constrain the 
space of preferred explanations because they influence cost 
computation. 

To illustrate, suppose that the system explains that the sun 
enters the earth to cause the night, and exits the earth to 
cause the day.  This is illustrated in Figure 1(D) and its jus-
tifications structure is partially plotted in Figure .  Suppose 
that this explanation x is the system’s currently-preferred 
explanation for this phenomenon, and that it contains the 
following statement:  
 

(soleCauseOf-Type 

  (not (visibleFrom Chicago TheSun))  

  EnteringContainer) 

 
This statement asserts that EnteringContainer is the 
only type of event that disables the Sun being visible from 
Chicago, with a similar statement connecting ExitingCon-
tainer with enabling Chicago’s sun-visibility. 

Next, suppose that we instruct the system that Chicago’s 
sun-visibility is actually enabled and disabled by rotation 
processes (which we will accomplish using analogy, as de-
scribed below).  The following belief is added to adopted 
domain knowledge: 
 

(soleCauseOf-Type 

  (not (visibleFrom Chicago TheSun))  

  Occluding-Rotation) 

 
This contradicts the current preferred explanation.  Contra-
dictions are detected using domain-general rules, so the fol-
lowing contradiction will be incurred with a cost of 100: 
 

C = {(soleCauseOf-Type 
       (not (visibleFrom Chicago TheSun)) 

       EnteringContainer), 
     (soleCauseOf-Type 

       (not (visibleFrom Chicago TheSun)) 

       Occluding-Rotation)} 

 
The system may be able to reduce cost by revising its expla-
nation preference or construct a new explanation altogether 
to replace this one.   

3.3 Transferring domain knowledge with analogy 

Suppose that the agent holds the beliefs that the sun is con-
tained in the earth at night, and then it exits to cause the day.  
If the system does not have information to the contrary, this 
will be the lowest-cost, preferred explanation for the 
day/night cycle. An analogy is one way to provide new in-
formation to cause the system to change its model.  
 The analogy given to students in the Vosniadou et al 
(2007) study is reproduced in Figure 2. While our natural 
language system is capable of processing some complete 
analogies (Barbella & Forbus, 2011), the language system 
and the compositional models currently use different vocab-
ularies.  Since we needed to construct predicate calculus 
representations representing the different misconceptions in 
any case, we also created a predicate calculus model of the 
gyros situation, but leaving out statements such as “The 
moon is not responsible…”, which are implications of the 



analogy.  We did use natural language to express the key 
correspondences of the analogy, which were used to con-
strain the comparison via SME, using natural language, spe-
cifically, 
 

“Gyros are to fire as the earth is to the sun.” 
 
Statements such as these are interpreted as analogical di-

alogue acts (Barbella & Forbus, 2011) that establish corre-
spondences between the entities of the domain.  Specifical-
ly, the system inferred two required correspondence con-
straints that were used by SME: 

 
(requiredCorrespondence Gyros PlanetEarth) 

(requiredCorrespondence Fire TheSun) 

 
The cases to be compared were constructed via dynamic 

case constructors (Mostek et al., 2000) which search pre-
ferred explanations and adopted domain knowledge for 
statements that mention Gyros or Fire (for the base case) 
and statements that mention PlanetEarth or TheSun (for 
the target case). 

Given that the student’s understanding of the target do-
main can be quite far from correct, it is entirely possible that 
a student might not understand the analogy. An analogy can 
involve many correspondences and candidate inferences, 
some of which might be quite hard for students to articulate, 
and in any case would be far more than is reasonable to ask 
about in conversation.  Consequently, the Companion was 
programmed to only ask about entity correspondences.  For 
each entity correspondence in the best mapping produced by 
SME, it produces a multiple choice question for its human 
teacher.  Here are two examples: 

 

Companion: I believe Cooking-State corresponds to Day. 

a) That is correct. 

b) Those don't match. 

c) No, Cooking-State does not belong in the mapping. 

d) No, Day-State does not belong in the mapping. 
e) No, neither belongs in the mapping. 

User: a 
 
Companion: I believe Gyros rotating to occlude GyroSide-

Cooking from Fire corresponds to TheSun entering Plane-

tEarth so it is occluded from Chicago. 

a) That is correct. 

b) Those don't match. 

c) No, Gyros rotating to occlude GyroSide-Cooking 

from Fire does not belong in the mapping. 

d) No, TheSun entering PlanetEarth so it is occluded 

from Chicago does not belong in the mapping. 
e) No, neither belongs in the mapping. 

User: d 
 

The underlying representation is Davidsonian (i.e. events 
are reified), which is why occlusion events can be asked 
about.  After all of the entity correspondences have been 
queried (for this analogy, there are ten), the Companion 

computes an updated list of SME constraints from the user’s 
answers.  Based on the second answer (d) shown above, the 
Companion will not allow anything to correspond to the 
model fragment instance of the sun entering the earth.  If 
any new constraints were identified, a new SME mapping is 
computed. 

The adopted domain knowledge is extended using the 
candidate inferences of the best mapping.  For the mapping 
in this example, thirty inferences are recorded, including: 

 
(isa Skolem-rotation Rotation-Periodic) 

(objectRotating Skolem-rotation PlanetEarth) 

(soleCauseOf-Type 

  (not (visibleFrom Chicago TheSun)) 

  Occluding-Rotation) 

(holdsIn Night  

  (between Chicago TheSun PlanetEarth)) 

(ingredients PlanetEarth Skolem-Beef) 

(ingredients PlanetEarth Skolem-Lamb) 

 

Some of these beliefs include terms with prefix Skolem-.  
These represent new entities and processes that did not pre-
viously exist in the target domain.  The inferences in adopt-
ed domain knowledge affect learning in two ways: (1) some 
beliefs, such as those describing the earth rotating, permit 
the construction of new explanations; and (2) some beliefs 
contradict beliefs in preferred explanations, which raises 
their cost and biases the system to change its explanation 
preference and revise its beliefs.  We discuss this next. 

3.4 Cost-based belief revision 

The system previously believed that the mechanism prevent-
ing visibility was the sun entering the earth, but has just 
made the analogical inference that a rotation process is re-
sponsible.  These beliefs are contradictory.  When a contra-
diction is detected, the system attempts to reduce cost by 
changing its explanation preferences.  We a greedy revision 
algorithm (Friedman, 2012) that takes a contradiction as 
input and then (1) finds all explanations that contain a belief 
from the contradiction and (2) for each explanation, it 
greedily revises the preference to a new explanation if it will 
reduce cost.  This is not guaranteed to find the globally min-
imum cost, but it is efficient and guaranteed to terminate. 

4 Simulation Setup and Results 

We conducted six simulation trials.  On each trial, the sys-
tem is initialized with (1) domain knowledge of how gyros 
rotate on a spit and cook one side at a time and (2) one of 
six possible starting models of the day/night cycle: a mis-
conception in Figure 1(A-D); the correct model in Figure 
1(E); or no model, where the system is a blank slate. 

For each starting model, we record the number of incor-
rect analogical correspondences corrected by the user, 
whether the correct model is reached without user assistance 
and whether the correct model is reachable with user assis-
tance.  For the unassisted trials, we remove all constraints, 
even those from the original analogical dialogue act, to de-



termine whether the misconception interferes with uncon-
strained analogy. 

The results are shown in 5.  When there were no miscon-
ceptions (e.g., in the “correct model” or “no model” condi-
tions), there were no incorrect correspondences.  Converse-
ly, when misconceptions exist in the target domain, incor-
rect correspondences are computed.  Without instructor in-
tervention, they confuse the transfer of knowledge and hin-
der belief revision.  For example, in the “Moon blocks sun” 
example, one of the incorrect correspondences includes Gy-
ros corresponding to MoonOfEarth.  This causes the infer-
ence that Chicago is on the moon, and ultimately leads the 
system to revise its beliefs, concluding that the moon rotates 
to cause Chicago’s day/night cycle. 

5 Related Work 

CARL (Burstein, 1986) was a computer model of analogical 
learning that learned from multiple analogies presented by a 
teacher.  It modeled students who were tutored on the pro-
graming language BASIC.  CARL coordinated multiple 
analogies such as (1) variable assignment is like “putting 
things in boxes” and (2) variable assignment is like algebra-
ic equality.  It constructed analogical hypotheses and then 
revised them when they did not hold in the target domain.  
Unlike CARL, our system uses qualitative models, it evalu-
ates new hypotheses and explanations using a cost function, 
and it interacts with the user to debug analogical corre-
spondences (whereas CARL interacted to debug the hypoth-
eses themselves).  Since our simulation makes an average of 
40 analogical inferences (i.e., hypotheses) in a single analo-
gy, debugging all of them with the user is impractical. 

ECHO (Thagard, 2000) is a connectionist model that uses 
constraint-satisfaction to judge hypotheses by their explana-
tory coherence.  ECHO creates excitatory and inhibitory 
links between consistent and inconsistent propositions, re-
spectively.  Its “winner take all” network means that it can-
not distinguish between there being no evidence for compet-
ing propositions versus balanced conflicting evidence for 
them. ECHO requires a full explanatory structure as its in-
put.  By contrast, our system generates its justification struc-
ture automatically and evaluates it using a cost function. 

6 Discussion 

We have described a system that (1) uses qualitative models 
to represent humanlike misconceptions in a commonsense 

science domain and then (2) interactively works through an 
analogy to repair its misconceptions.  We tested our system 
using four misconceptions about the day/night cycle from 
the cognitive science literature, and showed that learning is 
improved by user interaction during analogical reasoning. 

Our simulation results diverge from Vosniadou et al.’s 
(2007) study in at least one respect.  Like their study, read-
ing an analogy improved the chances of mental model re-
pair, but our simulation is more ready to change its beliefs 
than the students were.  This is especially interesting be-
cause the analogy given to the students has direct instruc-
tional information that was not given to our simulation (e.g. 
“The Moon is not responsible for the day and night cycle.”) 
There could be several reasons for this.  First, the students 
did not have the opportunity to actively query a teacher, the 
way the simulation did.  Second, there are very likely indi-
vidual differences between students in how hard they push 
an analogy, and in their strategies for coping with inconsist-
encies that they find.  A student who sees that her current 
mapping implies that Chicago is on the moon, for example, 
might simply drop that inference instead of looking for a 
better mapping.  

Analogies are pervasive in science texts and in conversa-
tion, so we plan to integrate this analogical learning mecha-
nism into our Companions-based learning by reading work. 
The processes of analogical mapping, contradiction detec-
tion, and explanation construction are useful processes for 
offline processing and rumination (Forbus et al., 2007) to 
accommodate new information. 
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