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Abstract. Spatial reasoning plays a critical role in STEM problem solving.  
Physics assessments, for example, are rich in diagrams and pictures, which help 
people understand concrete physical scenarios and abstract aspects of physical 
reasoning.  In this paper we describe a system that analyzes sketched diagrams 
to solve qualitative physics problems from a popular physics textbook.  Causal 
models describing each problem are formulated via visual and conceptual 
analyses of the sketched diagrams.  We use a combination of qualitative and 
quantitative reasoning to solve vector addition, tension, and gravitation ranking 
problems in the introductory chapters of the book.     
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1 Introduction 

In spatial domains like science, technology, engineering and mathematics (i.e. STEM 
fields), problem solving frequently requires a combination of spatial and conceptual 
reasoning.  For this reason, spatial representations (e.g. diagrams and sketches) are 
pervasive in science instruction.  Spatial representations act as tools of communica-
tion and, unlike photographs, may convey a mix of concrete and abstract, non-literal 
information [1].  Externalizing this information has the added benefit of lightening 
working memory load, making spatial inference easier, and promoting new ideas  
[2, 3].  Actively generating spatial representations through sketching has been shown 
to increase engagement and facilitate learning [4].  Taking advantage of these spatial 
representations requires considerable spatial skills.  Indeed, data from over 50 years 
of psychological research indicate that spatial skills are a strong predictor of success 
in STEM fields [5].   

The importance of spatial representations in physics problem solving is illustrated 
by the use of diagrams in assessment tools and the emphasis on drawing free-body 
diagrams in introductory physics courses.  For example, in an analysis of advanced 
placement (AP) physics tests in the US, 48% of problems had diagrams and 58% of 
those (about 28% of the total) could not be solved without information provided by 
the diagram [6].  Diagrams are especially common in qualitative physics problems: 



 Spatial Reasoning in Comparative Analyses of Physics Diagrams 269 

 

two-thirds of the problems in the force concept inventory [7] involve diagrams.  The 
presence of diagrams in the force concept inventory is important because qualitative 
physics problems have been shown to be a better probe for conceptual knowledge 
than quantitative problem solving.    

The use of drawings and diagrams in science instruction presents a challenge to 
researchers interested in developing intelligent tutoring systems.  From a 
computational perspective, using spatial representations to solve problems requires 
domain-general spatial reasoning capabilities, domain-specific knowledge, and 
models for how to combine both types of information.  This is especially important in 
the domain of conceptual physics, where problems need to be solved via spatial 
reasoning and often in the absence of numerical values.  It is therefore important for 
the next generation of STEM tutoring systems to support spatial reasoning for solving 
both quantitative and qualitative problems.  

This paper describes a system that solves conceptual physics ranking problems 
from a popular physics text book [8].  Each problem is represented with a sketch.  The 
visual and conceptual information depicted in each sketch is used to formulate causal 
models about them.  Our system uses qualitative reasoning over causal models and 
spatial reasoning over the sketches to make judgments about quantities even when the 
exact values of the quantities are unknown.   

2 Background 

This section describes the pre-existing systems and techniques that we use for 
understanding sketches and reasoning about physical systems.  We use CogSketch to 
collect and analyze physics sketches.  We use qualitative mechanics and qualitative 
process theory to formulate and reason about causal models of physical scenarios and 
we use differential qualitative analysis to determine ordinal relationships between 
quantities.   

2.1 CogSketch 

To capture the spatial and conceptual information of the diagrammatic problems, we use 
CogSketch [9]1, our domain-independent sketch understanding system.  CogSketch 
provides an interface for sketching that automatically computes qualitative spatial and 
conceptual representations of sketches.  CogSketch analyzes ink drawn by the user to 
generate topological relations (RCC8 [10]) and positional relations between objects  
(e.g. rightOf, above).  Quantities from spatial computations (e.g. geometric distance) 
may be computed on demand.  Ink may also be segmented into individual edges, which 
can be used to generate shape and edge level representations [11].   
 

                                                           
1 CogSketch is freely available from: 
www.qrg.northwestern.edu/software/cogsketch 
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Users manually label their sketches so that CogSketch can tie conceptual 
information to the spatial information from drawn ink.  The labeling interface pro-
vided by CogSketch is intended to mimic the qualitative and communicative nature of 
open-domain sketching.  When people sketch with each other, they frequently use 
natural language or gestures to communicate conceptual information about their 
drawing, rather than requiring others to interpret the ink in isolation.  Similarly, 
CogSketch interprets users’ ink with respect to the conceptual information they pro-
vide.  In contrast, sketch recognition systems rely on users drawing elements from a 
small vocabulary of visual symbols (e.g. letters, electronic components).  But symbol 
recognition is not enough to capture content in STEM domains because the mapping 
between shapes and conceptual entities is many to many.  For example, in physics a 
circle might represent a ball, an orbit, or a disk.  Thus, CogSketch’s interface enables 
users to explicitly tell it what they mean. 

In CogSketch, the basic building block of a sketch is a glyph.  A glyph is a  
collection of ink strokes intended to represent something visually.  Users define 
glyphs by telling CogSketch when they are done drawing something, and they can 
split and merge ink to edit glyphs as desired. Once the user draws a glyph, they 
provide it with a conceptual label from an OpenCyc-derived knowledge base (KB)2, 
which can indicate that the glyph represents an entity, relation, or annotation.  An 
entity is an instance of a concept, like a rigid object or a spring.  A relation can be 
used to represent a relationship between two things, for instance, an arrow indicating 
that one object orbits another.  An annotation provides additional information about 
another object.  Annotations are of particular interest to this work because they can be 
used to represent quantities in diagrams.  Quantitative values can be associated with 
annotations, but they are optional.  This means that quantities can be represented at 
different levels of detail.  For instance, in a free body diagram with two forces acting 
on an object, force vector annotation arrows can be drawn to represent the two forces 
(Figure 1).  In the absence of quantitative information (i.e. force magnitude), the 
forces simply have some qualitative direction.  This is still useful, since even without 
quantitative information, the qualitative direction of the net force may be estimated if 
the two forces are not in opposing directions.  However, if force magnitudes are 
known, they can be entered using the same labeling interface. 

Each sketch can contain multiple subsketches.  The representations for each subs-
ketch reside in their own logical environment, which inherits information from the 
sketch as a whole.  Thus, subsketches can be thought of as independent states or sce-
narios within one sketch.  

Because CogSketch generates relational representations for sketches, a sketch can 
be compared to other sketches using the structure mapping engine (SME) [12], which 
is a computational model of analogical comparison.  SME takes two structured de-
scriptions, a base and a target, and computes one or more mappings between them.  
For the purposes of this experiment, the most important aspect of the analogical map-
ping is the set of correspondences, which indicate how things in one description 
match up to things in another. Since subsketches may be used to represent indepen-

                                                           
2  http://www.cyc.com/platform/opencyc 
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dent scenarios, SME is used to frame comparative analyses between sketched scena-
rios.  For instance, in two situations with multiple objects, there may be many poten-
tial matches between objects and quantities.  An SME mapping indicates how items in 
each subsketch should match to each other, which is used to guide comparative ana-
lyses.  SME is built into CogSketch, and has been used in an educational software 
application to give feedback to students [13].  

 

 
Fig. 1. An illustration of force arrow annotations.  Quantitative values (e.g. force magnitude) 
may be included with annotations, but they are optional.  A subset of the representations gener-
ated by CogSketch is shown on the right.   

2.2 Qualitative and Quantitative Physical Reasoning 

One of challenges of solving conceptual physics problems is combining qualitative 
and quantitative reasoning.  Some problems may require arithmetic operations on 
numerical values, while others require reasoning about quantities for which no 
numerical values are known.  Consider for example determining the net force on an 
object where the magnitudes of all forces are known.  If all the forces are along the 
same axis, computing the magnitude of the net force can be reduced to addition and 
subtraction.  Alternatively, consider a question that asks about the relative magnitude 
of the gravitational forces on the Moon versus Jupiter.  It can be determined that the 
gravitational force on Jupiter is greater than on the moon because the mass of Jupiter 
is greater than than the mass of the moon.  This inference is independent of the 
magnitudes of those forces and the exact masses of the Moon and Jupiter.  Both types 
of reasoning are captured by our system.   

For performing qualitative reasoning on force vectors and detecting forces between 
objects, we use a model of qualitative mechanics that is built into CogSketch [14].  
The model is based on the work of Nielsen and Kim [15, 16] but has been adapted to 
capture rigid body mechanics of 2D objects in hand-drawn sketches.  Vectors are 
represented using qualitative directions (e.g. right, left, up, down) and qualitative 
values (e.g. -, 0, +) to enable qualitative calculations about net force and the 
propagation of forces between object surfaces.  While qualitative rigid body 
mechanics is useful for purely qualitative scenarios, there are often cases where 
quantities need to taken into account. 

For reasoning about quantities explicitly, we use Qualitative Process Theory [17], 
which allows us to represent causal systems depicted in sketches.  In QP theory, 

(isa block Block) 
(isa force1 ForceArrow) 
(isa force2 ForceArrow) 
 
(forceAssumed block Right force1) 
(forceAssumed block Up force2) 
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physical phenomena are represented with continuous processes and quantities. 
Quantities represent parameters of objects (e.g. mass, velocity), while processes 
change quantities over time (e.g. acceleration changes velocity).  Under the sole 
mechanism assumption [17], continuous quantities may only be changed by physical 
processes.  Importantly, quantities can be reasoned about even if their exact numerical 
values are unknown.  Quantities may be causally influenced directly or indirectly.  
Direct influences express contributions of rates of processes to the derivatives of 
quantities that they directly affect.  More precisely, a direct influence means that the 
derivative of the quantity being influenced is equal to the sum of all direct influences 
(positive and negative) on it.  Direct influences express the direct causal effects of 
continuous processes.  Indirect influences (also called qualitative proportionalities) 
indicate instantaneous causal relationships between parameters.  For example,  
Newton’s second law, may be represented as: 

 (qprop acceleration Force) 

(qprop- acceleration mass)   
 
These two statements indicate that changes in force and mass cause changes in 
acceleration.  All else being equal, the qprop indicates that an increase in force causes 
an increase in acceleration, whereas the qprop- indicates that an increase in mass will 
lead to decreased acceleration.           

As a representational system, QP theory can be used to capture the causal models 
of a wide range of phenomena [17].  Qualitative causal models can be applied to a 
particular scenario via model formulation [18, 19].  Given a domain theory containing 
model fragments for a particular domain, a scenario can be analyzed to determine 
which model fragments are applicable.  Each model fragment can include direct and 
indirect influences in its consequences, which can be used to determine how 
quantities are changing.  This propagation of causal influences among quantities is 
called influence resolution.  For example, if a force is applied to an object, that 
provides acceleration, which causes velocity to increase, which causes position to 
increase.  Taken together, the model fragments that are applicable to a particular 
scenario represent the causal model of that scenario.     

In addition to characterizing quantity changes within a single scenario, it is 
possible to determine quantity changes between highly similar scenarios via 
differential qualitative analysis (DQA) [17, 20].  The goal of DQA is to predict how a 
situation would change if some of its parameters not already constrained by its causal 
model were changed.  DQA has been explored in sketch-based physics problem 
solving [21, 22] but we extend previous work by using first-principles modeling 
strategies and by expanding the range of visual quantities that can be assessed using 
DQA.   
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3 Approach 

The goal of this work is to create the domain knowledge and reasoning capabilities 
needed to solve conceptual diagrammatic physics problems.  To evaluate our efforts, 
we examined ranking problems from the first five chapters of Conceptual Physics [8].  
Each ranking problem consists of two or more scenarios depicted in diagrams that 
need to be ranked along a particular quantity (Figure 2, 3).  For instance, a ranking 
problem may involve understanding how opposite forces combine to make a net 
force.  In some cases the problems involve basic arithmetic.  In others, numerical 
values might be left out completely.  For instance, some ranking problems require 
ranking scenarios by a particular quantity even if no precise values are known. To 
solve these problems, we developed domain theories for some of the basic concepts in 
the first five chapters of the book, which cover Newton’s Laws.  We also developed 
strategies for conducting differential qualitative analysis that use spatial and 
conceptual information depicted in sketches.        

3.1 Ranking Problems 

The first five chapters of Conceptual Physics have 27 ranking problems.  Out of those 
27, 12 have to do with combining vectors as well as conceptual knowledge of tension 
and gravity.  We chose these problems as a starting point, excluding exercises about 
Newton’s third law and problems that deal with explicit calculations about time, 
because we think those problems will require other aspects of QP theory and vectors 
beyond what we discuss here.   

Each ranking problem was sketched into CogSketch so that spatial and conceptual 
representations could be automatically generated.  The scenarios within each problem 
were drawn as subsketches within the sketch representing the whole problem.  Every 
object was given one or more labels using the CogSketch labeling interface.  These 
labels were important for objects with special properties (e.g. ropes) and for vector 
and quantity annotations.  Vector annotations could have specific numerical values 
associated with them, but these were only included if they were explicitly mentioned 
in the problem and in the diagram.  Similarly, objects were given mass annotations if 
mass was explicitly mentioned.  There were two concepts that we had to represent by 
adding extra information to the sketch: hanging and co-movement.  To indicate that 
something was hanging by something else, we drew relationship arrows to explicitly 
include this information in the sketch.  To indicate that something moved with 
something else (as is necessary for some net velocity calculations), we drew 
relationship arrows as well.  In all other cases, the sketch only contained information 
given explicitly in the diagram.  In all cases, the sketch only contained information 
given explicitly in the problem text.    
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power.  In this case, the model implies that there is a positive qualitative proportional-
ity between the magnitude of the net vector of the object and the length of the resultant 
vector arrow.  This relationship allows the system to make judgments about vector 
quantities (whose exact values are unknown) via visual quantities (whose values can be 
computed by CogSketch).  Note that this model fragment is by no means exhaustive, but 
this type of partial information can be very useful for solving conceptual physics prob-
lems. In our domain theories, we developed model fragments for vector addition, hang-
ing systems with tensile objects, and conceptual knowledge of gravity. 

 

Participants 
?object (Physob) 
?vectors (Set) 
?resultant-vector (VectorInterval) 
 
Participant Constraints 
(commonVectorsForObject ?object ?vectors ?vector-type) 
(visualVectorSum ?vectors ?resultant-vector) 
(netQuantityFnFor ?vector-type ?net-quantity-fn))) 
 
Conditions 
(hasQuantity ?object (?net-quantity-fn ?object ?axis))) 
 
Consequences 
(qEqualTo  
  (?net-quantity-fn ?object ?axis)  
  ((QPQuantityFn VectorMagnitude) ?resultant-vector)) 
(qprop  
   (?net-quantity-fn ?object ?axis)  
   ((QPQuantityFn Length) ?resultant-vector)) 

Fig. 4. A model fragment describing vector addition, using simplified syntax for clarity 

3.3 Differential Qualitative Analysis via Causal and Spatial Reasoning 

Our implementation of differential qualitative analysis (DQA) involves two main 
steps: (1) perform QP analysis of the scenarios, (2) compare the goal quantity across 
the different scenarios.   

Step 1 is done using traditional model formulation and influence resolution 
techniques on the sketched diagrams.  The domain theories are searched for 
applicable model fragments for each scenario in the problem.  For each model 
fragment, the system attempts to find participants that satisfy the constraints.  This 
usually involves conceptual reasoning about the category membership of potential 
participants, properties of physical scenarios, and spatial reasoning.  For example, in 
the model fragment shown in Figure 4, the constraints involve visually computing the 
sum of two or more vector arrows.  If the participant constraints and conditions are 
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satisfied for a particular model fragment, it is instantiated and its consequences 
(which can be causal influences or ordinal relationships between quantities) are 
inferred.  Inferences about quantities are particularly important because they can be 
used to determine the ordinal relationships of quantities across different scenarios.  
Once models have been formulated, influence resolution determines if any of the 
quantities are changing and propagates those changes through the causal chain of 
influences.  The model fragments that are active for a particular scenario represent 
that scenario’s causal model.      

In step 2, the goal of DQA is to determine how a quantity changes across two 
scenarios.  Symbolically, this is represented by the following predicate: 

(dqValue ?quantity ?sme-mapping ?value)     

where ?quantity is the goal quantity of the ranking problem (e.g. mass or net force 
magnitude), ?sme-mapping is an analogical mapping between two scenarios (i.e. a 
base scenario and a target scenario), and ?value is one of four possible values: -1, 0, 
1, Ambig.  The dqValue represents the qualitative difference between the two 
quantities from the base scenario to the target scenario.  Therefore, a dqValue of -1 
means that the quantity is lesser in the base scenario than in the target scenario.  A 
dqValue of 1 means that the quantity is greater in the base scenario than in the target 
scenario.  A dqValue of 0 means that the quantity is unchanged, and a dqValue of 
Ambig means that the difference is known to be ambiguous. 

There are four strategies that are used to derive the dqValue of a quantity with 
respect to the analogical mapping.  The dqValue may be calculated via numbers, via 
visual quantities, via ordinal relationships, and/or via causal influences.  Calculating 
the dqValue via numbers is the most basic strategy and is used when numerical values 
for each quantity are known in advance or are derived through some other 
computation.  Calculating the dqValue via visual quantities means that the exact 
quantity is retrieved from a sketched annotation (e.g. a force arrow with a numerical 
value) or through a spatial analysis of the sketch (e.g. a distance calculation).  The 
exact quantities that are visually derived can then be compared directly.  Calculating 
the dqValue via ordinal relationships means that there is an an explicit ordinal 
relationship between the two quantities in the logical environment.  For example, the 
mass of Jupiter may not be known, but the mass of Jupiter relative to the mass of the 
Moon may be known in one of the domain theories.  Lastly, calculating the dqValue 
via causal influences is used when there are one or more known causal antecedents to 
the quantity being examined.  That is, when causal influences are inferred as a result 
of QP analysis, then a dqValue is recursively sought for the causal antecedent of the 
quantity.  Once a dqValue is found, it is propagated back up the causal chain to 
determine the dqValue of the original quantity.   

Using causal influences turns out to be critical for many of the problems that we 
analyzed and most (10 out of 12) bottom out at some kind of spatial computation.  In 
some cases, distance was a causal antecedent of the goal quantity and calculating 
geometric distance between objects was required to solve the problem.  In other cases, 
calculating the length of a resultant vector arrow was required to causally infer the 
dqValue of the goal quantity.  Even in simple net force problems, where no spatially 
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The problem shown in the upper portion of Figure 3, which shows a scaffold hang-
ing by two ropes, also uses visual analysis, both in understanding the scenario before 
and after formulating a causal model.  A model fragment describing a hanging system 
at mechanical equilibrium is used to solve that problem.  One of the requirements of 
that model fragment is determining which objects are supported by the system. The 
fact that the scaffold hangs from the ropes is given explicitly to CogSketch via a rela-
tion arrow.  Using that given information, spatial information from CogSketch, and 
force propagation rules in qualitative mechanics, our algorithm determines which 
objects are supported by the system (i.e. the two people and the scaffold itself).  This 
characterization of the scenario enables a model fragment to be used for further infe-
rence.  One of the inferences is that the tensions in the ropes are negatively influenced 
(via negative qualitative proportionality) by their distance to the center of mass of the 
whole hanging system.  Using the same causal reasoning as in the previous problem, 
the algorithm finds that the center of mass is closest to the left rope in scenario C, and 
that is therefore the scenario with the greatest tension in the left rope.   

4 Analysis of Problems 

Using the approach described above, our system was able to solve all 12 ranking 
problems.  Out of the 12 that were solved, 10 required spatial reasoning of some kind 
to solve the problem, such as a distance calculation between two objects or major axis 
detection. 

Table 1. Summary of ranking problems and the spatial reasoning required to find a difference 
between the goal quantities in the scenarios 

Problem Category N Solved Spatial Computation Required 
Vector Addition 6 6 Major axis detection 

Parallelogram rule for vector addition 
Arrow interpretation 
Arrow length 

Gravity 2 2 N/A 
Tension 4 4 Distance 

Approximate center of mass 

In addition to the spatial computations listed in Table 1, qualitative spatial relations 
played an important role in the initial understanding of the sketch, before a causal 
model is even formulated.  Surface contact detection, for example, is used by 
qualitative mechanics to determine how forces transfer between objects.  Spatial 
information is also used to guide the comparison process via analogy because it 
shapes how items are aligned to each other.   

The problems that were not analyzed in this experiment required domain models 
that have not yet been implemented.  This includes models of friction and models that 
make explicit inferences over scenarios that span multiple qualitative states.  For 
instance, problems that require estimating the velocity of an object after a certain 
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period of time cannot be solved by our system currently.  However, we plan on using 
other representations (e.g. encapsulated histories [19]) to capture these types of 
problems. 

5 Related Work 

Our work is very closely related to work on everyday phyiscal reasoning problems 
[22].  However, while Klenk and colleagues used case-based reasoning to infer causal 
models of physical scenarios, our work uses a first-principles approach to model 
formulation.  It is likely that both approaches to model formulation  would be needed 
to develop a system with robust qualtiative physics problem solving capabilities. 

Many other systems have been developed to solve physics problems, but only 
some of them use spatial reasoning in the problem solving process.  BEATRIX [23] 
and Figure Understanterder [24] used information from text and diagrams, but the 
diagrams were created with graphical diagram tools and are therefore not subject to 
the same qualitative spatial reasoning requirements of hand-drawn sketches.  Work by 
Lockwood et al. [25] answered questions about information learned from a 
combination of text and sketches, but comparative analyses were not explored. 

In the field of intelligent tutoring systems, Atlas-Andes and AutoTutor [26-28] 
incorporate diagrams to help students but they are not spatially analyzed by the 
software to solve problems.  Given the integration of qualitative and quantitative 
information demonstrated in this paper, it is possible to accommodate both types of 
representations in general problem solving and models of student problem solving.        

6 Conclusion and Future Work 

In this paper we have shown that CogSketch’s visual and spatial representations and 
reasoning, combined with QP theory and Differential Qualitative Analysis, can be 
used to solve diagrammatic ranking problems from a popular physics textbook.  Out 
of the 12 problems examined and solved, 10 could not be solved without spatial 
reasoning of some kind. 

One of the challenges with creating these representations is delineating spatial and 
conceptual knowledge.  All problems assume some level of common sense 
knowledge.  Since we are using knowledge base contents derived from OpenCyc, 
there is a wealth of potentially relevant material avaiable, but determining what 
concepts are relevant for a particular scenario is difficult.  For example, there are 
concepts that help formalize the notion that a scaffold hangs from two ropes or that a 
plane moves with the wind, which we sketched as relationship arrows.  However, we 
are currently working on models of cords and strings (and other flexible objects) that 
will be able to automatically infer that something hangs from something else based 
purely on visual and conceptual reasoning.  This would reduce the amount of extra 
knowledge that is manually given in our sketches.   

Another important consideration is the level of detail in model fragment types.  
Model fragment types should be as general as possible to reduce the number of new 
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models needed for new problems.  For example, all four tension problems were 
solved with the same model of hanging systems at equilibrium.  This indicates that the 
model is general enough to handle different situations, yet it is likely that it will need 
to be extended to handle more complex hanging systems (e.g. pulleys, three or more 
tensile objects).   

The problems that have not yet been solved by the system indicate other areas for 
future work.  A fuller domain theory of conceptual physics is needed to model many 
other topics and other aspects of qualitative reasoning (i.e. encapsulated histories, 
limit analysis) will be needed to address problems that span multiple qualitative states 
[19, 29, 30].    

These results add to the evidence that spatial reasoning is an important factor in 
physics problem solving and physics instruction.  Notably, the spatial reasoning 
requirements appear to be greater in these qualitative, conceptual problems, which has 
implications for tutoring systems that aim to improve conceptual physics 
understanding.  It is therefore important to continue to develop systems that can 
integrate spatial information into problem solving strategies in STEM domains.    
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