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Abstract 
The naturalness of qualitative reasoning suggests that qualitative 
representations might be an important component of the 
semantics of natural language.  Prior work showed that frame-
based representations of qualitative process theory constructs 
could indeed be extracted from natural language texts. That 
technique relied on the parser recognizing specific syntactic 
constructions, which had limited coverage. This paper describes a 
new approach, using narrative function to represent the higher-
order relationships between the constituents of a sentence and 
between sentences in a discourse.  We outline how narrative 
function combined with query-driven abduction enables the same 
kinds of information to be extracted from natural language 
texts.  Moreover, we also show how the same technique can be 
used to extract type-level qualitative representations from text, 
and used to improve performance in playing a strategy game. 

 Introduction   
Qualitative representations were developed in part to serve 
as a formal language for expressing the contents of human 
mental models about continuous systems.  Since such 
knowledge is often expressed in natural language, it makes 
sense to explore how qualitative representations might be 
used in natural language semantics.  Kuehne (2004) 
showed that the constructs of qualitative process (QP) 
theory (Forbus, 1984) could be recast in a frame-based 
representation, compatible with the frame semantic 
representations used in Fillmore et al.’s (2001) FrameNet.  
In frame semantics, frames represent conceptual structures 
that are connected to lexical items through their slots.  For 
example, the notion of qualitative proportionality is 
captured by an Indirect Influence frame, which includes 
slots for constrainer (the causally antecedent quantity), 
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constrained (the consequent quantity), and sign (the 
direction of change).  Kuehne (2004) identified a set of 
phrasal patterns that could be identified by syntactic 
parsers and used to extract QP information from natural 
language texts, e.g. “As the temperature of the steam rises, 
the pressure of the boiler rises.” would lead to the addition 
of a qualitative proportionality with the constrainer 
quantity being the steam’s temperature, the constrained 
quantity being the boiler pressure, and the sign being 
positive.  For each representational element in QP theory 
(i.e. quantities, ordinals, influences, and processes), 
Kuehne identified a set of syntactic patterns that could be 
used to extract them from text.  The syntactic patterns were 
encoded into the grammar of the parser, which is capable 
of using semantic constituents (e.g. sub-elements identified 
as quantities) in its rules.  The extracted knowledge was 
further transformed by antecedent rules to construct QP 
frame representations.  When trying to scale this approach 
up for learning by reading, we discovered two limitations.  
First, the use of syntactic patterns significantly limited 
coverage.  Second, using separate mechanisms for 
recognizing QP information seemed inelegant: Integrating 
these representations into a broader, more robust 
framework seemed necessary. 
 This paper describes a different approach, based on 
narrative function, for extracting QP information from text.  
We start by explaining the idea of narrative function and 
the key properties of the natural language understanding 
system used.  Then we show how QP frames can be 
constructed by deriving these narrative functions, and that 
this approach already captures the full range of examples 
handled previously, and provides respectable performance 
on simplified English text from a science book.  Moreover, 
we show how narrative function can be used to extract 
type-level influences (Hinrichs & Forbus, 2012) from 
natural language, and that such information can 
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significantly improve the performance of a system playing 
a strategy game.  We close with related and future work. 

Narrative Function and Abduction 

When people read, they look to see how what they are 
reading fits together.  At the beginning of a story, 
characters are introduced, and expectations raised about 
possible events that might occur.  If a fable involves a fox 
and a goose meeting on a riverbank, for example, one 
possible outcome of that meeting is that mayhem ensues.  
Narrative function (Labov & Waletzky, 1966; Barthes 
1977; Trabasso et al. 1984) provides a level of 
representation that ties the contents of specific sentences to 
the ongoing discourse.  Introducing a character is a 
narrative function, as is introducing an event and raising 
expectations about possible outcomes of that event.   
 Tomai & Forbus (2009) showed that narrative functions 
could be used in understanding natural language texts such 
as fables and the materials found in psychological studies 
of social cognition and moral decision-making. Since 
qualitative information is part of what is conveyed in 
language, e.g. explanations of continuous systems, such as 
found in textbooks, it stands to reason that such 
information needs to be linked into the general-purpose 
representations for understanding the intended purpose of a 
sentence within a discourse.  Thus it makes sense to 
expand the range of narrative functions to include detecting 
the introduction of QP information.  This section 
summarizes how narrative function detection works in our 
natural language system, setting the stage for the new 
narrative functions introduced in the next section. 

The Explanation Agent Natural Language 
Understanding System (EA NLU; Tomai & Forbus, 2009) 
uses a syntactic parser (Allen, 1994) and lexical 
information from COMLEX (Grishem et al. 1993) for 
syntactic processing.  It also uses lexical and semantic 
representations from ResearchCyc1, extended with an 
implementation of Discourse Representation Theory 
(Kamp & Reyle, 1993) that uses Cyc microtheories to 
handle contexts.   
 Like other NLU systems, EA NLU introduces choice 
sets to represent ambiguities.  Choice sets are introduced 
when there are multiple meanings of a word, or multiple 
parses.  Consider for example this discourse fragment: 

“The temperature of the boiler is increasing.” 
One ambiguity in the sentence is the meaning of the word 
temperature. In this context, it clearly refers to a unit of 
measure, but another potential meaning could be a fever, as 
in “The child has a temperature.” These ambiguities are 
preserved for disambiguation as a set of disjunctive 
choices. Abduction has long been used in semantic 
interpretation (Hobbs 2004), but it tends to be intractable 
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as the number of statements grows.  Tomai & Forbus 
(2009) showed that by using top-down expectations, e.g. 
narrative functions, many potential choices were irrelevant, 
thus greatly reducing the complexity of abduction. The 
process is driven incrementally, by first finding appropriate 
queries to ask, given the current logical environment, i.e. 

(queryForInterpretation ?o ?q) 

returns bindings for ?q that are queries to be made. ?o is an 
integer that specifies the ordering of queries, i.e. a query at 
level n can assume that all queries at level n-1 have already 
been performed. Thus, for example, the rules searching for 
influences can be assured that information about quantities 
will already have been found. 

The abduction mechanism is tuned for specific tasks and 
contexts in two ways.  First, all analyses are done with 
respect to a logical environment, defined by a current 
microtheory and all of the microtheories it inherits from.  
This includes microtheories that specify what questions 
make sense for that task via queryForInterpretation 
statements.  Second, the algorithm retrieves declarative 
advice from the logical environment as to what sorts of 
interpretation are preferred.  For example, interpretations 
which include QP information are preferred, which biases 
the system toward interpretations that produce this sort of 
information. 

The queries concerning narrative functions take the 
following form: 

(narrativeFunction ?PE ?C ?T) 

where ?PE is a presentation event, i.e. the narrative-level 
event being described, ?C is the content of that event, and 
?T is the type of narrative event.  A sentence can give rise 
to multiple narrative functions, so presentation events are 
represented via non-atomic terms as follows: 
(PresentationEventFn <sentence ID> ?eventID) 
where <sentence ID> is an identifier for the sentence 
being processed, a meta-variable automatically substituted 
into each query, and ?eventID is a unique identifier 
constructed by whatever rule introduces the presentation 
event.  In the case of QP language interpretation, the 
content of events are particular types of QP frames from 
the ontology outlined below. 

Finding QP frames via Abduction 

Next we describe the narrative functions for QP frames 
that we have developed, and summarize some important 
properties of the rules that derive them from the natural 
language analysis of texts. 
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For each QP Frame type, we introduce a category of 
narrative function (see Table 1). Each frame type has a set 
of frame elements (aka slots).  For example, a quantity 
frame has the following frame elements: 

• entity: The entity that the quantity is part of. 
• quantityType: The type of continuous property 
• value: A numerical value (optional) 
• unit: Units associated with a numerical value 

(optional) 
• signOfDerivative: -1, 0, or 1 (optional) 

For example, Figure 1 shows the direct influence frame 
built for a sentence from a science book (part of the corpus 
used below). The set of frame elements used is the same as 
Kuehne (2004), with one extension. We created a frame 
type for describing topological constraints on a system 
such as connections, interruptions, and paths. For example, 
in the sentence “Water flows through a pipe.” the path of 
the flow, the pipe, would be represented in a topological 
constraint frame. This separation was necessary as 
topological constraints on physical systems can frequently 
appear in text separated from the physical event that they 
constrain, e.g. “Cylinder A1 is connected to Cylinder A2 by 
a pipe. Water flows from Cylinder A1 to A2.” 
 Solutions to narrative function queries are found via 
Horn clause rules2. These rules analyze the predicate 
calculus statements produced by the parser, including 
lexical, syntactic, and semantic information.  For example, 
a common indicator of a quantity is a phrase like 
“temperature in the reactor”.  The prepositional phrase 
involving “in” leads to the parser producing an in-

UnderspecifiedContainer statement. This is a high-
level Cyc predicate that covers a large space of more 
specific possibilities.  When the phrase that is being 
modified is a type of continuous quantity (here, 
temperature), a rule looking for this combination 
hypothesizes a quantity frame whose entity is the 
discourse variable for the noun in the prepositional phrase 
and whose quantityType is the kind of continuous 
parameter being modified. 

                                                
2 Unlike Prolog, all solutions are found, there is no notion of cut, and 
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 Other rules require more type-level reasoning. For 
example, phrases that mention a substance inside a 
container often are references to the amount of that 
substance inside the container, e.g., “the steam in the 
boiler”.  However, we cannot allow all containment 
statements to be quantities, e.g. “I am in a state of shock” 
is not a quantity statement. We distinguish between these 
cases by requiring the entity to be an instance of 
ChemicalSubstanceType. There are yet more complex 
cases, even for quantities.  Some quantities are implied, 
e.g., “the hot brick.” Adjectives like hot  often modify a 
specific quantity type, so such cases are handled by 

looking for quantity slots (e.g. temperatureOf) and 
connections between values (e.g. “hot”) and quantity types 
(e.g. Temperature). 
Table 2 illustrates some of the rules for introducing 
quantities.  The first rule constructs the presentation event 
and frame (via bindings returned and the rules which 
implement buildsQPFrame, respectively).  The seven 
rules for quantityTypeOfEntityFound (we only show 
one due to space limitations) use EA NLU’s syntactic and 

Frame Narrative Function 
Quantities IntroductionOfQuantityEvent 
Topological 
Constraints 

IntroductionOfTopologyConstraint 

Derivative Sign IntroductionOfDsInformation 
Ordinals IntroductionOfOrdinalEvent 
Indirect Influence IntroductionOfQPropEvent 
Direct Influence IntroductionOfDirectInfluenceEvent 
Quantity Transfer IntroductionOfQuantityTransferFrame 
Process Frame IntroductionOfProcess 
Process Roles IntroducesProcessRole 

Table 1: QP Narrative Functions 

 
Figure 1: Example: “Heat flows from the brick” 

 

Qtype Entity

Sign

EntityQtype

DirectInfluence

QuantityFrameQuantityFrame
Negative

Thermal 
Energy Brick Rate Flow

(<== (introducesQPQuantityFrame 

      (PresentationEventFn ?sid ?nevent) 

      ?qframeid) 

  (quantityTypeOfEntityFound ?sid 

     ?qtype ?quantity ?entity ?etype) 

  (buildsQPFrame ?sid ?qtype ?quantity 

   ?entity ?etype ?qframeid ?nevent)) 

 

(<== (quantityTypeOfEntityFound 

      ?sid ?qtype ?qres ?eres ?etype) 

  (contextIndependentDrsFor ?sdrs ?sid) 

  (getAllPotentialBinPreds ?sid ?entity  

     MeasurableQuantitySlot ?pred 

     WorldLikeOursCollectorMt) 

  (ist-Information (DrsCaseFn ?sdrs) 

    (?pred ?entity ?quantity)) 

  (isaIn2ndOrderCollectionOf 

      ?qtype QuantityType) 

  (ist-Information (DrsCaseFn ?sdrs) 

     (isa ?entity ?etype)) 

  (resolvedVar ?sid ?entity ?eres) 

  (resolvedVar ?sid ?quantity ?qres)) 

 
Table 2: Example of rules involved in computing 

narrative function. 
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semantic analysis to identify such frames.  The first 
antecedent binds context variables for the current sentence 
and its default discourse representation structure.  The 
second antecedent finds all bindings for entities which 
participate in statements whose predicate is an instance of 
the concept MeasureableQuantitySlot, for which 
there are over 300 relationships in the knowledge base, 
such as temperatureOfObject, relative to the logical 
environment representing common background knowledge 
(WorldLikeOursCollectionMt). Abductive inference 
happens with the ist-Information antecedents, which 
cause the reasoning system to explore collections of 
assumptions that would generate potential bindings.  The 
relationship isaIn2ndOrderCollection ensures that 
there is a concept which is an instance of the (higher-order) 
concept QuantityType, such as Temperature, of which 
the value of the slot (?quantity) is an instance.  Finally, the 
resolvedVar antecedents invoke coreference resolution, 
returning either the prior referent or the current discourse 
variable as the binding for their second argument.  

A hallmark of natural language is that it often provides 
only partial information about a situation, which is why 
frame representations are so useful in semantics.  Even 
though higher-order frames are sought after lower-order 
frames, incremental processing means that we must be able 
to merge information across sentences.  Consider the 
following two sentences which, together, entail a quantity 
transfer: “Heat flows from the hot brick. Heat flows to the 
cool ground.”  Understanding this discourse fragment 
requires recognizing that the flow event in both sentences 
is the same, which also suggests that the heat is the same, 
after which the implied direct influences can be 
recognized. Kuehne (2004) used antecedent rules to merge 
quantity frames both within and across sentences. Instead, 
we extended the abductive coreference algorithm of Tomai 
& Forbus (2009) to include verb coreference, by searching 
for multiple verbs that have the same event type and root.   
 An analysis of a broader range of texts revealed an 
interesting assumption implicit in Kuehne’s analysis of 
direct influences.  The sentences above would have 
resulted in a single rate parameter, i.e. the rate of transfer 
of heat from the brick to the ground is the same.  However, 
consider the following sentences: “Heat flows from the hot 
coffee. The heat flows to the cold ice cubes and the cool 
mug.” Here the flow events may be coreferents, but 
assuming energy conservation, the rate of heat transfer 
from the coffee cannot be the same as the rate of transfer to 
the ice cubes and to the rate of transfer to the mug.  Thus 
we do not merge coreferent rates: Another direct influence 
could always come along in the next sentence.  Instead, we 
postpone such closed-world assumptions to subsequent 
processing. 

Evaluation 

The system performs accurately on all 8 examples from 
Kuehne (2004). We further evaluated system performance 
on the first nine simplified paragraphs from chapter two of 
a science book intended for general readers (Buckley, 
1979). The sentences were taken from the same corpus 
previously used by Barbella & Forbus (2011) and follow 
their simplification paradigm. That is, syntax is simplified 
by breaking complex sentences into multiple sentences 
(roughly the level of the grammar found in middle-school 
reading comprehension books), but leaving the vocabulary 
intact whenever possible.  The corpus was hand annotated 
for QP frames, and the system compared to this gold 
standard. Only frame types used by Kuehne (2004) were 
evaluated. Thus, we did not include topology frames, 
generic type-level frames, or limit points. After each 
paragraph, the reference context was cleared. 
 Of the 144 tagged frames in the corpus, our system 
correctly constructed 65. There were 23 extraneous, partial, 
or incorrect frames generated as well. This gives us a 
precision of .74 and a recall of .45. The F1 harmonic mean 
was .56. We view this as a respectable start, and given that 
this is a new problem, a good baseline against which to 
judge future efforts. 
 Our analysis suggests that there are two sources of 
errors. First, errors in entity coreference resolution leads to 
duplicate low-level quantity frames and incomplete higher-
order influence frames.  A second source of errors was 
modal modified exchange verbs, as in: “You can buy heat 
from a gas company”. Given that exchange relationships 
involve two distinct quantity transfer relationships, failures 
on these sentences significantly reduce performance.  

Narrative Functions for Type-level Influences 

Recently QP theory was expanded to include type-level 
influences (Hinrichs & Forbus, 2012).  Type level 
influences are a form of higher-order qualitative reasoning, 
expressed in terms of causal relationships between 
predicates and concepts, rather than specific individuals. 
Type-level influences can provide significant benefit in 
large-scale domains and planning tasks.  For example, the 
strategy game Freeciv3, an open-source version of the 
classic computer game Civilization, provides a rich 
environment for experimenting with how qualitative 
reasoning can be used for modeling the kinds of reasoning 
and learning involved in understanding economics, 
strategies, and tactics.  In Freeciv players build 
civilizations by founding cities, researching new 
technologies, improving the land around their cities, and 
building settlers to found new cities, to expand their 
civilization further.  Such games are far more complex than 
chess, for example, and require many hours to learn.  
                                                
3 http://freeciv.wikia.com/wiki/Main_Page 
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Interestingly, important advice can often be expressed in 
language whose semantics is well captured by type-level 
influences.  For example, the statement  

“Adding a university in a city increases its science 
output” 

can be formally expressed via this type-level influence: 
 
(positivelyDependsOn-TypeType 

  (MeasurableQuantityFn cityScienceTotal) 

  FreeCiv-City FC-Building-Univerity 

  cityHasImprovement) 

 

That is, the science output of a city (which is a measurable 
quantity, i.e. one that can be read out of the simulator) can 
be positively affected by adding an improvement to the 
city  (by achieving a cityHasImprovement statement)   
where the type of improvement is a university (FC-
Building-University).  

 To extend narrative functions to handle such type-level 
influences, we added one new type of narrative function, 
IntroductionOfFCRelation, indicating that new game-
relevant information was detected.  The new detection 
rules were of two types.  The first extracts a layer of causal 
relationships from the events found in the linguistic 
analysis.  For example, the sentence above includes two 
events, one referred to by “adding” and the other referred 
to by “increases”.  Since there is a doneBy relationship 
produced by the parser that links the two events, the 
narrative function rules infer a causal relationship between 
them.  That is, the Incorporation-Physical event causes 
the IncreaseEvent event.  The second type of detection 
rule looks for causal patterns that suggest an influence at 
work.  For example, if an event causes some statement to 
be true, and the same event is the causal antecedent of a 
quantity change event, then that suggests that statement is 
the condition to use in the type-level influence. 
 In addition to new narrative function rules, additional 
facts were added that biased the scoring system for 
abduction to prefer solutions containing type-level 
influences and narrative functions.  For example, the 

interpretation of “adding” above to mean the arithmetic 
operation applied over two numbers did not give rise to 
causal connections that allowed an influence to be 
produced, leading the system to automatically prefer 
physical incorporation as the intended meaning of the 
word. 
 Figure 2 depicts a partial dependency structure showing 
how the influence above was inferred from the analysis of 
the sentence.  The entities and relationships below the 
dashed line were produced by the parser, while the 
statements below it were produced by the narrative 
function rules.  Notice that upper layer consists of very 
general causal relationships. We suspect that this structure 
will be very general: The variations in the specifics of 
language might be handled by rules that produce these 
general causal relationships, while the more complex 
narrative functions can be captured by patterns that are 
truly domain-independent.  Whether or not this scales is, of 
course, an empirical question. 

When viewed as advice, is this type of information 
useful?  To find out, we ran a Companion (Forbus et al 
2009) with and without the following pieces of advice: 
• Adding a granary in a city increases its growth rate.  
• Adding a research lab in a city increases its science 

output. 
• Adding a library in a city increases its science output. 
• Adding a university in a city increases its science 

output. 
• Irrigating a place increases food production. 
• Mining a place increases its shield production. 
 

 
We created different maps by saving the game on the 
initial turn, with the default map settings.  A Companion 
then played for 100 turns on each map under two different 
conditions.  In the baseline condition, the Companion used 
a qualitative model that was previously learned, entirely 
through demonstration.  In the experimental condition, the 
Companion also had access to the type-level qualitative 
influences obtained by reading the six sentences above.  
Figures 3 and 4 show the difference in the two conditions, 
averaged over 10 games.  The improvement in population 

 
Figure 2: Type-level inference derivation from 

language analysis 
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growth (Figure 3) is due to the effect of irrigation, while 
the improvement in science output (Figure 4) is due to the 
other improvements.  The improvement in science output 
is statistically significant (p < 0.041), while the 
improvement in food production is not quite significant (p 
< 0.06).  We believe that the full effect of irrigation on 
population takes longer than 100 turns to manifest, and 
may also become significant over longer portions of the 
game.  Regardless, the type-level influences extracted from 
language altered the behavior of the system such that it 
tasked worker units with creating irrigation and built 
libraries in its cities. This is encouraging evidence for the 
utility of type-level influences, expressed via natural 
language, for giving advice to cognitive systems.   

Related Work 

While our computational approach to constructing 
narrative function is not intended as a process-level 
cognitive simulation of reading, it is compatible with the 
results of (Graesser et al., 1994) in that inferences 
concerning the interconnections implied by the text are 
constructed on-line, during the understanding process.  The 
representation of narrative functions developed in Tomai 
(2009) goes beyond work on story grammars (e.g. 
Trabasso et al., 1984) in that it supports multiple points of 
view, and Tomai’s abductive algorithm supports both 
interleaving of patterns and allowing story elements to 
participate in multiple narrative functions, which are 
difficult to handle in story grammars. 

Our abductive approach differs from Hobbs (2004) by 
only allowing assumptions about choice sets, rather than 
arbitrary domain assumptions. Furthermore, Hobbs (2004) 
favored minimal assumptions in their cost function while 
our system relies more heavily on type-level reasoning to 
select among competing choices. It also differs from 
Ovchinnikova (2012), which uses a knowledge base 
extracted from WordNet and FrameNet and uses lexical 
knowledge to weight abductive inferences.  In contrast, our 
approach focuses on how discourse and narrative goals can 
guide abductive inference from the top down. That said, 
the two approaches are not mutually exclusive and 

exploring their combination might be worthwhile. Finally, 
Blythe et al (2011) investigated an implementation of 
weighted abduction using Markov logic networks, but was 
not a top-down narrative algorithm, like ours. 
 The closest work in using natural language to improve 
strategy game performance is that of Branavan et al (2011), 
who used dependency parses of the Civilization 2 manual 
to suggest linkages between game concepts to bias a Monte 
Carlo learner.  They limited their experiments to a game 
board 1/4th the normal size, which facilitated experiments, 
but also simplified the problem, since many more 
challenging aspects of the game were factored out.  We are 
tackling the full complexity of the game: At 100 turns a 
real game is just starting, whereas theirs were over.  Our 
approach requires less text, i.e. just six sentences, 
completely understood, leads to significant performance 
gains.  Moreover, our player uses qualitative reasoning and 
achieves immediate learning improvements, whereas their 
system used the game engine to do massive (8-way parallel 
lookahead) computation.  Most complex dynamic systems 
people deal with do not have accurate simulations 
available, and thus we believe our approach will scale 
better to more real-world applications. 

Conclusions & Future Work 

We have shown evidence that the concept of narrative 
function can be used to understand texts whose meaning 
include information expressible via QP theory.  It performs 
as well on the original examples of Kuehne (2004), but 
also does respectably well on material from a science text.  
Moreover, we have shown that this approach can be used  
to learn advice from language whose meaning can be 
captured via type-level influences.   
 While much improved over Kuehne (2004), the biggest 
limitation of the current system remains coverage.  We 
plan to address this by several lines of future work.  First, 
we plan to expand the coverage of instance-level 
qualitative descriptions, to handle the range of QP-bearing 
language found in science books.  Second, we plan to 
expand the coverage of type-level qualitative descriptions, 
to handle the sorts of descriptions of continuous processes, 
quantities, and relationships found in both science books 
and in discussions of planning and strategies involving 
dynamical systems (for which Freeciv is a useful 
laboratory).  Third, we plan to expand the coverage of 
narrative functions to handle the rest of the material in such 
texts.  Introducing new principles, problem-solving 
strategies, and examples, for instance, are common types 
of narrative functions in such texts.  Fourth, our current 
abduction system does not support backtracking well, nor 
does it gracefully incorporate evidential reasoning or the 
use of analogical abduction.  We are currently designing a 
new abduction system aimed at overcoming these 
limitations.  

 
Figure 4: Science output improves with advice 
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