
 

 

Towards a Comprehensive Standard Model of Human-like Minds 

Thomas R. Hinrichs and Kenneth D. Forbus 

Department of EECS, Northwestern University, 2133 Sheridan Rd. Evanston, IL 60208 
{t-hinrichs, Forbus}@northwesetern.edu@aaai.org 

 

 

 

Abstract 

The Standard Model of particle physics has been an effective 
framework for describing entities of the domain relative to 
each other and thereby predicting missing particles.  In this 
sense, it plays a similar role to the periodic table of the ele-
ments.  Could something analogous work for AI?  In this pa-
per, we propose a dozen elements of a standard model of the 
mind and characterize their interrelationships.  Naturally, this 
set reflects our own experience and biases and is not exhaus-
tive.  We also describe some of the ways in which this ap-
proach to a standard model differs from that in physics and 
suggest some limitations. 

 Introduction   

A standardized, quasi-universal model of the mind is ap-

pealing because it could provide a way to characterize the 

scope of a particular contribution, where it fits with respect 

to other efforts, and whether it extends, elaborates, or con-

tradicts existing models, which motivated the development 

of a proposal by Laird et al. (in press).  We agree that with-

out a unifying framework, AI research can look like five 

blind men describing an elephant. On the other hand, an 

overly precise or premature model could close off or mar-

ginalize otherwise promising approaches.  Moreover, the 

analogy to the Standard Model in particle physics breaks 

down in the following ways:  

1. There are no obvious symmetry laws that will 

make it predictive. 

2. There may be little agreement on which elements 

to include. 

3. There is no conventional granularity of modeling 

and/or level of abstraction with which to enumerate 

and describe elements. 

Consequently, the nature of what a standard model of the 

mind might look like is still an open issue.  The Laird et al. 

proposal comes from decades of experience with cognitive 
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architectures that started out focusing on skill learning.  Fol-

lowing Newell (1990), their standard model takes the form 

of a cognitive architecture, albeit a very abstract generaliza-

tion that can describe systems based on both production 

rules and graph-based computations.  Our focus is different.  

Just as the software running on today’s computer architec-

tures is only weakly specified by the hardware architecture, 

much of what is interesting about human-like minds appears 

to be at the level of their software, i.e. the kinds of 

knowledge, reasoning, and learning that they can do.  For 

example, it would not be surprising to find that many other 

mammals also exhibit the power law of learning1. In that 

case, how much is the proposed standard model telling us 

about human-like minds, as opposed to minds more 

broadly?  Given that, as best as we can tell, a signature fea-

ture of human-like minds is extraordinarily rich conceptual 

structures, any standard model of minds needs to focus on 

contents as well as on architecture.  Perhaps a map might be 

a better metaphor, for some aspects of understanding minds. 

With these caveats in mind, in this paper we suggest a first 

cut at elements of a standard model that are as much con-

cerned with contents as processing.  It will obviously be very 

schematic, and biased towards areas where we have worked 

previously.  But we think this different perspective may help 

broaden the conversation and help lead towards a better 

framework. 

A Generalized Model 

We begin by specifying our assumptions, what constitutes 

an element of the model, and how elements are related.  

When we talk about a human-like mind, we assume some 

high-level criteria, such as agency, adaptability over diverse 

time scales, and bounded rationality. Such a system has pur-

poses, it changes in response to its environment and experi-

1 We know of little direct evidence on this point, although there are 

arguments that rats can learn rules (Murphy et al. 2008) and learn-

ing spatial knowledge can be modeled by a power law (Yadav et 

al. 2010).   



ence, and its behavior degrades gracefully with limited re-

sources.  These assumptions motivate and constrain the ele-

ments of a model. 

Proposed Elements 

We propose a dozen elements of a standard model that could 

serve as points of comparison between architectures.  Any 

given agent architecture may include a subset or superset, 

but these serve to define some dimensions along which al-

ternative concrete models can be compared. 

Goal-Seeking Behavior 

The hallmark of any mind, much less a human-like mind, is 

that it behave with purposes.  The idea that a machine can 

do this is generally attributed to Weiner (Rosenblueth et al. 

1943).  By itself, goal seeking may be little more than a feed-

back mechanism, but when an agent’s goals pertain to its 

own internal states or another agent’s mental state, that re-

quires addressing the problems of adaptability and bounded 

rationality. 

Our particular model of goal-seeking behavior in the 

Companions architecture (Forbus and Hinrichs, in press) in-

volves explicitly represented goals, goal tradeoffs, and acti-

vation levels.  These activation levels can, in turn, be repre-

sented as fluent quantities in qualitative process models, al-

lowing reflective deliberation to influence relative goal ac-

tivation, and for goal activation levels to conditionalize 

other processes (Hinrichs and Forbus, 2016). 

Analogy 

We view analogy as a primitive component of minds.  We 

do not treat analogy itself as a kind of inference because it 

is an assessment of similarity over descriptions, rather than 

assertions and therefore serves a role closer to unification.  

In our model, analogy is a building block on which infer-

ences and other operations are often built.  Analogical pro-

jection, inductive generalization, memory retrieval, seman-

tic disambiguation, visual classification, and even theory of 

mind are all based, in our modeling, on a foundation of anal-

ogy. 

There are many alternative models of analogy itself, all 

centered on a notion of similarity, but our particular model 

is based on structure mapping, as implemented in the Struc-

ture Mapping Engine (Forbus et al. 2016). 

Learning 

Machine learning is, of course, a major sub-discipline of AI 

and reflects the importance of adaptation in any model of a 

mind.  A salient distinction to make is between skill learning 

and concept learning.   A standard model should account for 

both, regardless of learning mechanism(s). 

A central part of our model of learning is analogical gen-

eralization, as embodied in SAGE (McLure et al. 2015). 

SAGE incrementally learns generalized concepts through 

merging sufficiently similar examples via analogy. SAGE 

has been applied to word sense disambiguation (Barbella & 

Forbus, 2013) and spatial concept learning from sketched 

depictions (McLure et al. 2015).   

SAGE generalizations plus qualitative process represen-

tations have also been used to account for conceptual change 

phenomena (Friedman, 2012), and in combination with mul-

timodal interaction it has been used to model vocabulary ac-

quisition through representational change (Kandaswamy, 

2016). 

In addition to analogy, learning relates to other elements 

of a standard model.  It can be thought of as memory plus 

inference.  With the right inductive bias, an agent can learn 

a qualitative model to help performance on some planning 

tasks (Hinrichs & Forbus 2012). 

Memory 

We see memory, especially episodic or autobiographical 

memory, as a crucial element of a mind.  Memory is the raw 

material of learning, but it also provides the historical con-

text that serves as a viewpoint, or a sense of self. 

Efficiently retrieving episodes or cases from an associa-

tive memory quickly runs into the problem of bounded ra-

tionality.  As experience accumulates, the ability to find sa-

lient precedents or explanations should not degrade notice-

ably.  Our answer to this problem is a model of long-term 

memory retrieval called MAC/FAC (Forbus, Gentner and 

Law, 1995). MAC/FAC is a two-stage model of retrieval in 

which an inexpensive feature-based filter feeds candidate 

cases to the analogical second stage.  The FAC stage uses 

analogy to return the most similar case. 

Inference 

Inference suggests the ability to transcend simple stimulus-

response and engage in deliberation.  Primitive inference co-

vers deduction, induction and abduction, but also analogy 

and Bayesian inference.  Structured, multi-step inferences 

include planning and And-Or tree solving, for example.  

Minds are not solely recognition machines, but are capable 

of synthesis and indirect reasoning.  Although bounded ra-

tionality would appear to rule out exhaustive theorem prov-

ing, some amount of inference is a necessary element of any 

standard model. 

Representation 

Human-like minds support inference, communication, nam-

ing and reflection.  These capabilities demand rich, struc-

tured representations.  A standard model need not commit to 

how much representation is symbolic vs. sub-symbolic, but 

there must be some way to drive linguistic expression and 

understanding and reasoning about objects not currently in 

an agent’s perceptual field of view.  Moreover, because hu-

man-like minds know a great deal about the world, 

knowledge is interconnected in ontologies, rather than 

solely limited to task-specific policies or recognition net-

works.  We do believe that there is overwhelming evidence 

at this point for the necessity of relational representations in 



human cognition, although whether or not symbolic repre-

sentations plus statistics are sufficient for human cognition, 

versus distributed representations also playing a role, is still 

an open question at this point (Forbus et al. 2017). 

Theory of Mind and Social Interaction 

The recognition of, accommodation for, and interaction with 

other minds occurs remarkably early in human develop-

ment.  Children learn rapidly via imitation, and human chil-

dren seem unique in their urge to be helpful to others.  Given 

the rise of software assistants and robots that need to work 

with people, considerable efforts have been made recently 

on modeling theory of mind and social interaction.  Qualita-

tive reasoning can be used for modeling blame assignment 

for event outcomes (Tomai & Forbus, 2007), and analogy 

has been used to model moral decision making (Dehghani et 

al. 2008) and how children learn in a false belief training 

study (Rabkina et al. 2017). 

To us, social interaction builds on a theory of mind and 

covers all kinds of communication, most notably verbal lan-

guage.  Vygotsky (1962) and Tomasello (1999) both argue 

for the centrality of social behavior as a means of bootstrap-

ping intelligence.  While one might quibble about whether 

theory of mind and social interaction should be lumped to-

gether or treated as distinct elements, there is little doubt 

they should be part of a standard model. 

Attention 

Bello and Bridewell (in press) convincingly argue that at-

tention should be a first-class element of any model of 

agency. They point out that any interesting form of agency 

involves choice, and under bounded rationality this must en-

tail control or focusing of attention. 

We might further suggest that attention is modulated by 

emotion (i.e., arousal levels), and in turn influences what is 

remembered, serving as a kind of lossy compression for per-

cepts. 

Emotion 

Emotion is increasingly appreciated as a central part of cog-

nition (Gratch & Marsella, 2004; Minsky, 2006).  In Ap-

praisal Theory, beliefs about a situation are evaluated by cal-

culating appraisal variables (e.g. desirability, likelihood), 

from which emotions about those specific entities and be-

liefs are generated.  These emotions trigger coping strategies 

for dealing with the situation.  Coping strategies can include 

internal strategies, like giving up on a cherished goal, or ex-

ternal, such as working when one would rather be playing 

when a deadline looms.  A standard model of human-like 

minds should include emotion as a core element.   

One treatment of emotion as it affects problem-solving 

behavior is described in (Wilson et al. 2013), where analog-

ical retrieval is used for an initial appraisal, modeling the 

rapid response that organisms seem to have.  A later cogni-

tive appraisal helps balance the initial response, and retro-

spective analysis before consolidation of the problem-solv-

ing episode into long-term memory provides a more bal-

anced view of what happened.  Thus operations which ini-

tially were avoided (a coping strategy) because they seemed 

too hard but eventually were found to lead to solving a hard 

problem were stored as more desirable, thereby changing fu-

ture behavior. 

Reflection 

Reflection is the ability to think about one’s thinking.  The 

need for reflection in a standard model derives from the con-

straint of bounded rationality.  A purely reactive system is 

bounded, to be sure, but lacks the open-ended reasoning 

abilities that are a hallmark of human-like minds.  Reflection 

need not entail a distinct level with different representations, 

but can simply be a mechanism for associating names with 

distinguishable mental states on demand.  Reflection is the 

means by which an agent can not merely do a task or be in 

a state, but know what it is doing and both reason about, and 

communicate about, its internal state. 

Causal and Qualitative modeling 

Models provide ways of reasoning abstractly and indirectly, 

allowing efficient projection and explanation.  Modeling, 

especially qualitative modeling, is relevant to a standard 

model because it is applicable to modeling any continuous 

system, that is, social relationships (e.g. degree of friend-

ship) and mental state properties (e.g. degree of difficulty of 

a problem), in addition to the physical world.  Qualitative 

representations allow reflection and reasoning about states 

defined with respect to relations between quantities, without 

requiring them to be pre-enumerated or named. 

Spatial and Temporal reasoning and context 

Clearly, human-like minds must reason about time and 

space.  What makes this worth including in a standard model 

is the indexical context they provide in the form of Here and 

Now.  It is hard to imagine how an agent could be an indi-

vidual without some locality in time and/or space.  Even 

without physical embodiment, the ability to reason about 

that context is critical for reasoning about other agents and 

their ego-centric worldview. 

Omitted elements 

Our list is almost certainly incomplete, largely because it fo-

cuses on areas in which we have worked.  Some obvious 

omissions include:  

1) Physical embodiment. Our group is starting to look at vi-

sion and gesture recognition via a Microsoft Kinect which 

may lead to an increased emphasis on embodiment. 

2) Real-time behavior. We focus primarily on what Newell 

(1990) calls the social band of cognition, so this has not been 

a major issue for us, though bounded rationality certainly is.  

3) Ethics.  There has been a great deal of hand-wringing 

lately about building in ethics from the start.  However, 



given that people aren’t born with innate ethics, we believe 

that our approach of using analogy based on stories in 

MoralDM provides a better approach.  It is also important 

for artificial minds to have a sense of empathy, which likely 

relies on analogy between self and others.   

Interrelationships 

As elements, these are coarse building blocks.  How do they 

fit together? What dependencies exist between them?  Is 

there a common substrate or can they be treated as stove-

piped systems?  A set of elements is not a model until their 

interrelationships are constrained.  Table 1 is an attempt to 

present these interrelationships in the form of pairwise com-

positions.  It helps to think of the model elements as abstract 

operations on mental states, rather than as dynamic pro-

cesses or static structures.  Thus, "representation" is the 

mapping from mental states to symbolic names, rather than 

any particular encoding.  Because the composition is not 

symmetric, entries in the cells should be taken to denote a 

mental state or process that results from or is supported by 

the application of the row heading element to the column 

heading element.  So, for example, inductive model acqui-

sition results from the application of learning to modeling, 

whereas modeling of the learning process can support the 

design of experiments.  To the extent that element composi-

tions have well-defined outcomes, some table of this sort, 

while not predictive, may suggest the breadth of phenomena 

covered (or missing) by a model. 

Unfortunately, lack of space makes for some extremely 

abbreviated entries.  For example, the cell for emotions ap-

plied to spatial & temporal modeling simply says: “Apprais-

als w.r.t. res. limits” which conceivably might fail to evoke 

the sense of panic that can result from the realization of rap-

idly diminishing time before a deadline. 

Although this table is a first pass and has some holes in it, 

it does suggest that there could be value in relating proposed 

modeling elements.  A more complete model would better 

cover the space of behaviors and capabilities we see in hu-

man minds, and missing or unclear relationships between el-

ements may indicate elements at the wrong level of abstrac-

tion or of the wrong kind.   Some of the patterns we do see 

in this model lead us to three conjectures: 

Conjecture 1: Every plausible reasoning mechanism can 

be reduced to some combination of similarity assessments 

which we would call analogy.  In other words, analogy is 

ontologically prior to induction and abduction (and for the 

most part, the induction of rules precedes the formal deduc-

tive application of those rules) 

Conjecture 2: Every lossy compression mechanism in-

volves a similarity judgement of some sort.  We have sug-

gested above that a critical ingredient of bounded rationality 

can be modeled as a kind of compression.  We conceive of 

cognitive compression as the elision of "similar" or non-in-

formative content.  SAGE is our model of how this is done. 

Conjecture 3: Qualitative state representations reduce or 

condense descriptions to their essences, supporting infer-

ence amid the constraints of bounded rationality.  For exam-

ple, one way to look at qualitative process models is as a 

highly condensed implicit representation of state machines, 

in which state transitions are inferred from quantity rela-

tions, rather than explicitly enumerated.  This makes quali-

tative representations effective not merely for physical pro-

cesses, but also for representing internal mental states and 

continuous aspects of social reasoning (Forbus & Kuehne, 

2005). 

Although such conjectures are not direct consequences of 

the model in the way that missing particles are predicted by 

the physics Standard Model, they are an informal result of 

thinking about the big picture in a way that is facilitated by 

having a more comprehensive model. 

Future Prospects 

The effort of trying to achieve some consensus on a standard 

model of the mind is worthwhile, regardless of whether it 

produces a single standard model. By identifying the dimen-

sions along which models differ, it will undoubtedly encour-

age researchers to think about where the holes are in their 

accounts, and islands of agreement may lead to integrated 

models that encompass more diverse phenomena, rather 

than fine tuning isolated mechanisms.  We further suggest 

that it is important to think of such a model as not just an 

architecture, but with additional commitments to the kinds 

of knowledge and reasoning that must be supported.  In 

other words, a map as well as an architecture, whose inter-

connections might be used to fill in missing pieces, just as 

was done with the Periodic Table in chemistry. 

 Finally, there are many kinds of minds in nature, so 

speaking of “the mind” seems unduly limiting. Building 

models that are general enough to compare and contrast 

across species would sharpen what we mean by human-like 

minds as well as enable us to understand intelligence more 

deeply. 
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Table 1: Interrelationships between elements`
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