

Collaborative Autonomy through Analogical Comic Graphs

Matthew Klenk1, Shiwali Mohan1, Johan de Kleer1, Daniel G. Bobrow1, Tom Hinrichs2
and Ken Forbus2

1Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA, 94304
2Northwestern University, 633 Clark St, Evanston, IL 60208

{klenk,mohan,dekleer,bobrow}@parc.com and {hinrichs,forbus}@northwestern.edu

Abstract
For more effective collaboration, users and autonomous sys-
tems should interact naturally. We propose that sketch-based
interaction coupled with qualitative representations and anal-
ogy provides a natural interface for users and systems. We
introduce comic graphs that capture tasks in terms of the tem-
poral dynamics of the spatial configurations of relevant ob-
jects. This paper demonstrates, through a strategy simulation
example, how these models could be learned by demonstra-
tion, transferred to new situations, and enable explanations.

Introduction
While there have been tremendous achievements in machine
learning (e.g., AlphaGo [10]), significant challenges remain
for the widespread adoption of autonomous agents in open
world mission critical applications. First, while games ena-
ble straightforward definitions of goals and rewards, many
applications require complex tradeoffs over varying time-
scales. Second, in open worlds, the training and deployment
environments frequently differ. Third, autonomous systems
do not work in isolation, but as teams; therefore, they must
be able to explain their actions to facilitate trust and improve
team performance.
 As observed by inverse reinforcement learning [9], agent
designers may only have a rough idea of task reward func-
tions. Natural collaboration cannot start with users provid-
ing reward functions. Instead, our approach learns inspecta-
ble models from example executions. Inspectable models
use relational representations that provide human-like simi-
larity inferences, via analogy, ensuring that the agent’s de-
cisions make sense to users. Example task executions could
be abstracted into an inspectable model that captures the
spatial temporal relationships between relevant objects and
regions as indicated through a sketch-based interface. We
call this model a comic graph, and, in this paper, we describe

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

how comic graphs could be used to learn new tasks, to trans-
fer acquired knowledge to new situations, and to collaborate
with users by explaining the agent’s decisions.
 Comic graphs are qualitative representations of spatial
configurations through time that describe events and tasks.
Execution histories are segmented into snapshots, like pan-
els in a comic strip, where each panel represents a distinct
state with temporal relations between them (e.g., Fred exit-
ing a room would have three panels: (1) Fred walking to-
ward the door, (2) Fred in the doorway, and (3) Fred outside
the door). This sequence of comic panels both explains the
exiting room task as well as providing guidance for an au-
tonomous agent performing the task. Many tasks are per-
formed in multiple ways (e.g., Fred may stop to pick up his
backpack before walking out the door), therefore each panel
may have multiple successors in the comic graph. Previous
research has shown these qualitative relational representa-
tions enable event detection and explanation in video [2].
Here we show how these representations support training,
performance and explanation in an unmanned aircraft
(UAV) attack mission.
 Our approach is built on the Companion cognitive archi-
tecture [5], which is aimed at reaching human-level AI by
creating software social agents (i.e., systems that interact
with people using natural modalities, working and learning
over extended periods of time as apprentices rather than
tools). The two central hypotheses of the architecture and
our approach are (1) analogical reasoning and learning are
central to cognition, and (2) relational representations, espe-
cially qualitative representations, are key to human intelli-
gence. The architecture is built on three computational mod-
els of analogical processes: matching (SME [4]), retrieval
(MAC/FAC [3]), and generalization (SAGE [7]). For this
paper, it is necessary to know that these processes operate
over relational representations and have been used as cogni-
tive models to account for experimental results.

PRELIMINARY VERSION: DO NOT CITE

Learn Comic Graph by Example
Consider training an agent to pilot a UAV on an attack mis-
sion. The UAV can move and fire its weapons. The target is
a Surface to Air Missile site (SAM) that could shoot down
the UAV. Users train a Companion by performing the mis-
sions and highlighting task relevant regions. The attack mis-
sion could be described in terms of four tasks: ingress,
strike, egress and abort. While interacting with a simulator
to control the UAV, the user communicates which task they
are executing using natural language, and then through a
sketching interface (CogSketch [6]), the trainer annotates
the task-relevant objects and regions. This type of training
requires considerably less expertise than fine tuning reward
functions and can be potentially distributed across multiple
trainers.

 Figure 1 illustrates a training episode for the strike task of
an attack mission where the user takes 17 actions in the sim-
ulator and indicates three task relevant regions (the units’
weapons ranges and cover) by sketching. After the SAM is
destroyed, the user states that they have completed the strike
task successfully and that the next task is to egress.
 The Companion will abstract the spatial temporal config-
uration of these regions and objects into a sequence of comic
panels that capture the changes in the qualitative relation-
ships over time. In this case, there are four comic panels
(summarized here in natural language): (CP11) the UAV is
approaching cover and target; (CP12) the UAV continues ap-
proaching the target while moving through cover; (CP13) the
UAV and SAM are within weapons range of one another;
(CP14) the SAM is destroyed. As indicated above, the qual-
itative representations determine how the task execution is
segmented temporally. This single sequence is a comic
graph which serves as an inspectable model of how to exe-
cute a strike task during an attack mission. As the trainer
performs additional strike missions, each resulting sequence
of comic panels is merged into the comic graph via analog-
ical generalization. Figure 2 illustrates how two additional
examples are incorporated.

Note that each training episode could occur not only over
different configurations, but also different sets of relevant
objects and regions. For example, in one of the episodes
there is no cover region. The resulting comic graph (shown
in Figure 2) captures different ways in which the strike task
could be performed. From the initial state (a generalization
of all three initial comic panels) where the UAV moves to-
ward the target, it can either enter the UAV’s weapon range
(CP22), fly parallel to cover (CP32), or enter cover directly
(CPg2). After exiting cover, the UAV and SAM are in range
of each other (CPg3). In the final state (CPg4), the SAM has
been destroyed. The generalization panels (CPg1, CPg2, CPg3,
CPg4) are generalizations created by SAGE capturing the
commonalities between the examples while still maintaining
links to the specific comic panels. Here there is only a single
initial and terminal panel, but this representation allows
multiple initial and terminal conditions. For example, if in a
later training exercise, an opposing aircraft engaged the
UAV, the trainer may elect to terminate the strike task and
begin an abort task, flying away from the attack. This would
create a terminal comic panel with a different next task tran-
sition than CPg4.
 To capture the fact that some ways of performing the task
are better than others, we learn a value function over the
comic panels. The value function captures how likely it is
that the task will be executed correctly given the current
comic panel. Successful execution is defined by arriving in
a state that corresponds to a successful terminal comic pan-
els. In the case of the training example without cover, the

Figure 1: Training episode where the user specifies that they are
demonstrating a strike task and indicates that the weapon ranges
of the SAM and UAV are important as well as the fact that moun-
tains provide cover.

Initial Strike Comic Graph

Extend Comic Graph
through Analogy

Figure 2: Comic graph (lower right) from multiple training in-
stances. Orange comic panels correspond to initial task states
and green panels represent terminal states.

UAV may be shot down before striking the target resulting
in a failed task execution. Consequently, CP21 and CP22 have
lower value functions.

Ground Comic Graph into a Policy
Because the comic graph captures the spatial dynamics of
successful task execution, it guides action selection in new
environments. This is done in three steps: (1) using analogy,
we ground the most similar initial comic panel to identify
the objects and regions relevant to task execution; (2)
through directed policy search, we identify a value function
over the state action space; (3) using the learned policy, we
select actions until a comic panel transition occurs. These
steps repeat until the Companion enters a terminal comic
panel that specifies the next task, and if there is a terminal
panel with no next task, the mission is complete.
 Figure 3 illustrates these three steps for the first comic
panel transition of the learned strike task model. In the first
step, using symbolic descriptions of spatial concepts [7], we
identify the task relevant regions in the current state through
analogical inferences from the initial task comic panel, CPg1.
Next, we ground the reward function and perform directed
policy search to identify the policy that leads to the best
comic panel transition. Using the simulator as a transition
function T(s,a) → s′, we perform Monte Carlo Policy Search
[11] from the initial state, s0. After each action, we deter-
mine the comic panel corresponding to the transition.

 Consider the move left action, T(s0,aleft) → s1, the state
pair (s0,s1) corresponds to the comic panel CPg1 because they
contain the same qualitative spatial relationships (the UAV
is moving toward cover as well as the target and none of the
regions are overlapping). Therefore, this reward is neutral.
Now consider the move right action, T(s0,aright) → s2,. While
the regions are still not overlapping, the objects are all mov-
ing further away. These relationships do not correspond to
any comic panels of the current comic graph transitions.
Therefore, we impose costs on these actions through a neg-
ative reward value. This process continues until we reach
transitions that correspond to the successor comic panels
{CPg2, CP22, CP32} or a finite horizon. By only looking
ahead to single panel transition, this is an orders of magni-
tude smaller search space than performing a Monte Carlo
Search for the entire task or mission. The transitions that re-
sult in the next comic panels are assigned positive reward
and are marked as terminal reinforcement learning states.
 We set the rewards for each comic panel by scaling its
value function with the analogical similarity between the
panel and the current situation. While the comic panels CP32
and CPg2 have the same value, they are scaled differently in
the current situation because the current situation is more
similar, as defined by SME, to the CP32.
 The directed search results in a policy tree that the Com-
panion follows until the transition to CP32. From the result-
ing state, the entire process iterates with the comic graph

Figure 3: Comic graphs could enable robust autonomous action by (1) grounding relevant regions through analogy, (2) transferring the
reward function from the comic panels to state transitions, and (3) directing policy search.

transitions consisting of only CP32→CPg2. This process con-
tinues until either there are no applicable actions (e.g., the
UAV is destroyed) or the Companion reaches a terminal
state in the comic graph. In this case, once the UAV destroys
the SAM, the Companion enters the terminal panel, CPg4,
indicating the next task is egress. Next, the Companion ex-
ecutes the comic graph model of the egress task in the same
way, and completes the mission when there are no more
tasks to execute.

Breadth of Explanations
By capturing task relevant qualitative distinctions, comic
graphs support a broad range of explanations. Through
multi-modal interaction, the user should immediately recog-
nize if the Companion is not considering task relevant ob-
jects or regions. Due to the user’s understanding of the sce-
nario, they should be able to quickly identify if an action is
consistent with the Companion’s expected comic panel tran-
sition. By showing the sequence of comic panels the Com-
panion expects to satisfy the current task, the user could de-
termine if that is a realistic plan for the current environment.
Due the structure of comic graphs, the Companion can an-
swer questions about the relationships between tasks and
missions.
 Comic graphs support the following types of questions.
“What is the mission?” can be explained in terms of the task
labels provided by the user during training. For example, the
attack mission was learned in terms of four tasks with tem-
poral relationships between them: ingress, strike, egress and
abort. One level down, the user can ask “why is the current
task ‘strike?” Here the Companion will display the ground-
ing of the terminal comic panel of the ingress task at the ap-
propriate point in the execution history. Next, the user can
ask, “what is the strike task?” which the Companion answers
by displaying the comic graph of spatial configurations of
relevant objects demonstrating the temporal sequence. User
can also ask “why did you just take the move-left action?”
Instead of trying to explain this in terms of the underlying
value function, the comic graph highlights the qualitative
transitions that the Companion is pursuing.
 Another advantage of the comic graph structure is that it
maintains example training and execution sessions. This al-
lows for the following types of queries. The user can also
ask “what is cover? And why is it relevant?” Here the system
would produce previous examples where cover was used in
destroy-target missions. Or when asking one of the above
questions about the mission, task or spatial configurations,
the Companion could produce previous examples that
demonstrate the concept.
 Explanations not only support joint execution perfor-
mance, but also provide an opportunity for corrective feed-
back. This could be in terms of what parts of the scenario
are relevant (e.g., “This is not cover”) or about which action

should have been taken (e.g., “You should move left here”).
We use model based diagnosis [1] to scan back through the
audit trails to determine which inference, analogy, actions,
or representational choices contributed to the poor perfor-
mance. The diagnoser can identify multiple possible correc-
tive action sets to can repair the model (yet preserve prior
learning). The diagnoser can determine the likelihood of
each such set, and, if multiple alternative sets are equal
likely to propose a question to the user.

Discussion
This paper introduces comic graphs as an inspectable mod-
els based on qualitative relations and analogy supporting hu-
man machine collaboration. Our approach uses comic
graphs to address three autonomy challenges. Instead of
hand authoring reward functions, comic graphs are learned
by example through natural interaction. Second, comic
graphs support flexible execution in new environments and
open worlds through a combination of analogy and rein-
forcement learning. Finally, comic graphs enable explana-
tions that improve individual and joint performance.

References
[1] Console, L., Hamscher, W. and de Kleer, J. (1989). Readings

in model-based diagnosis, Morgan Kauffman.
[2] Dubba, K., Reddy, S., and Cohn, T. (2015). Learning rela-

tional event models from video. Journal of Artificial Intelli-
gence Research 53: 41-90.

[3] Forbus, K., Gentner, D., and Law, K. (1995). MAC/FAC: A
model of similarity-based retrieval. Cognitive Science, 19,
141-205.

[4] Forbus, K. D., Ferguson, R. W., Lovett, A., and Gentner, D.
(2016). Extending SME to handle large-scale cognitive mod-
eling. Cognitive Science, DOI: 10.1111/cogs.12377, pp 1-50.

[5] Forbus, K, Klenk, M. and Hinrichs, T. (2009, July/August).
Companion Cognitive Systems: Design Goals and Lessons
Learned So Far. IEEE Intelligent Systems, 24(4), 36-46.

[6] Forbus, K., Usher, J., Lovett, A., Lockwood, K., & Wetzel, J.
(2011). CogSketch: Sketch understanding for Cognitive Sci-
ence Research and for Education. Topics in Cognitive Sci-
ence. 3(4), pp 648-666.

[7] Hawes, N., Klenk, M., Lockwood, K., Horn, G. S., & Kelle-
her, J. D. (2012). Towards a Cognitive System that Can Rec-
ognize Spatial Regions Based on Context. In AAAI.

[8] McLure, M., Friedman, S., and Forbus, K. (2010). Learning
concepts from sketches via analogical generalization and near-
misses. Proceedings of the 32nd Annual Conference of the
Cognitive Science Society. Portland, OR.

[9] Ng, Andrew Y., and Stuart J. Russell. "Algorithms for inverse
reinforcement learning." ICML. 2000.

[10] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G. & Dieleman, S. (2016). Mastering the
game of Go with deep neural networks and tree search. Na-
ture, 529(7587), 484-489.

[11] Sutton, R. S., & Barto, A. G. (1998) Introduction to rein-
forcement learning (Vol. 135). Cambridge: MIT Press.

