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Abstract 
The dynamics of the world is often bound up in processes.  
These include continuous processes, such as flows and mo-
tion, and discrete processes, such as count and break.  Things 
that occur in the world can often be described at multiple lev-
els of detail, using combinations of continuous and discrete 
processes, and it is important to be able to shift among levels 
of detail as needed for communication and understanding.   
This paper describes step semantics, a framework that draws 
upon prior work in qualitative reasoning and discrete action 
representations to provide a set of representation conventions 
for processes described in natural language, independent of a 
particular task or dataset.  We explore its potential in two 
ways: Analyses of recipes with complex temporal structure 
and learning from AI2’s ProPara dataset.   

 Introduction   

Human level complex question answering requires deep un-
derstanding of processes and procedures. These processes 
can include continuous quantities, like speed, or discrete 
quantities, like integer counts.  Moreover, processes and 
their sub events are often described at different levels of de-
tail.  For example, “cook dinner” can be viewed as a discrete 
event, but it can involve many instances of continuous pro-
cesses (e.g. mixing, splitting, heating, cooling) when viewed 
at a finer level of detail.  Similarly, the life cycle of a frog 
might be described in terms of three discrete states: eggs, 
tadpoles, and adults, even though the growth of legs in a tad-
pole and the shrinkage of its tail happen smoothly over many 
days.  Question-answering systems need to be able to repre-
sent both discrete and continuous processes and reason 
about them in ways that are compatible with each other.   
 Although considerable advances have been made in rea-
soning for question-answering, understanding processes is 
still a major challenge.  Few datasets include questions that 
require inference about processes, and most are in the 
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domain of science tests, e.g. ARC (Clark et al. 2018) & Pro-
Para (Dalvi et al. 2018).  These datasets are steps in the right 
direction, but there are more subtle phenomena that they do 
not test, as explained below.  
 This paper presents a representation for processes de-
scribed in text that combines qualitative process theory (For-
bus, 1984) with models of discrete actions and change from 
OpenCyc and FrameNet to go beyond what either could do 
alone.  We show the utility of this synthesis by examining 
both recipes, which can incorporate complex temporal struc-
ture and combinations of continuous processes and discrete 
actions, and learning from AI2’s ProPara dataset.  We argue 
that this synthesis provides a prerequisite for human-level 
reasoning for answering questions about processes. 

Background & Related Work 

To provide a set of representation conventions for pro-
cesses described in natural language, we draw upon prior 
work in qualitative reasoning and discrete action represen-
tations, which we summarize here. 

Qualitative Process Theory 
Qualitative process theory is a representational system for 
describing continuous processes.  Processes provide a no-
tion of mechanism, in that, aside from the actions taken by 
agents, ultimately all changes are explainable in terms of the 
effects of processes.  This strong inductive bias simplifies 
learning and conceptual change (e.g. Friedman et al. 2017).  
Liquid flow, for example, happens between a source and 
destination.  Its direct effects – direct influences – are spec-
ified as part of the process.  For example, in liquid flow,  
 (I+ (AmountOf ?dest) (FlowRate ?lf)) 
 (I- (AmountOf ?src) (FlowRate ?lf)) 

 



That is, the amount of liquid in the source is decreased by 
the flow rate of the liquid flow, and the amount of liquid in 
the destination is increased by the same rate.  Processes are 
active when their conditions are satisfied, e.g. for liquid 
flow, when the pressure in the source is greater than the 
pressure in the destination.  Continuous processes are typi-
cally expressed in language via verbs, e.g. flow, move.  Par-
ticipants are typically described in language via role infor-
mation about the verb, including prepositional phrases.  For 
example, “Water flowed out of the bathtub onto the floor.” 
describes a liquid flow whose source is the bathtub and 
whose destination is the floor.  Notice that the path is im-
plicit: This is a common property of language, we tend to 
leave implicit things that are not important or are inferable 
by the listener.   
 Causal laws associated with objects support inferring the 
indirect effects of processes via qualitative proportionali-
ties, which are partial information about functional depend-
encies.  For example, in a contained liquid (Hayes, 1984),  
 (qprop+ (Level ?l) (AmountOf ?l) 
 (qprop+ (Pressure ?l) (Level ?l)) 
That is, a change in amount will cause a change in level, 
which in turn will cause a change in pressure.   
 Quantities in QP theory are described in terms of ordinal 
relationships with other quantities, where the relevant set of 
comparisons is automatically derived from the structure of 
the domain theory.  For example, a liquid which has a fluid 
path to other liquids will lead to their relative pressures be-
ing tracked, because that is part of what determines if liquid 
flow is active.  If phase changes such as freezing and boiling 
are under consideration, the temperature of the liquid will 
also be compared with its melting and boiling points.  These 
limit points are often mentioned in texts, e.g. “When all the 
water is drained from the pasta…”  While sometimes spe-
cific numerical values are known (e.g. “Cook the roast until 
its internal temperature is 165 degrees.”), often they are not 
(e.g. “Wait until the mixture has cooled.”).   
 Qualitative representations carve time up into discrete 
units, based on when qualitative properties change.  Follow-
ing Hayes (1984), we represent changes over time in terms 
of histories, which are pieces of space-time over which the 
qualitative properties of some set of objects is the same.  For 
instance, the cooking episode in the history of the creation 
of a roast starts when the roast is placed in the oven and ends 
when it is removed.  Its spatial aspect is the union of the 
spatial aspects of the participants in it, e.g. the oven and the 
roast.  We note that, in many qualitative reasoning projects, 
a more global notion of qualitative state is often used, where 
all of the entities under consideration are lumped together.  
We prefer using histories here because they allow for finer-
grained decomposition of behavior that seems more suitable 
to the level of partial information found in language.  

Events and Discrete Actions 
To represent events, we draw upon a combination of con-
cepts from FrameNet (Ruppenhofer et al. 2016) and the 
OpenCyc ontology. Specifically, we use neo-Davisonian 
representations, where events are reified and role relations 
are used to describe their particular aspects, such as partici-
pants, location, and duration.  For example, consider the 
word “convert”.  In Cyc conventions, the word itself is de-
noted by an entity (i.e. Convert-TheWord).  FrameNet 
has four senses of convert when used as a verb, which 
draw on three semantic frames (i.e. FN_Undergo_trans-
formation, FN_Cause_change, and FN_Ex-
change_currency).  Each sense is also linked in the KB 
to an event from the Cyc ontology (i.e. Converting-
Something, Convincing-CommunicationAct, Cur-
rencyExchange, IntrinsicStateChange).  The 
FrameNet information provides two valuable sources of in-
formation for supporting natural language understanding.  
The first is a mapping from lexemes (i.e. word senses) to 
frames.  For example, eight lexemes evoke the FN_Creat-
ing frame. The second are a set of valence patterns that 
help constrain parsing by stating what patterns of auxiliary 
phrases are common.  The OpenCyc information provides 
semantic constraints, including type information, allowable 
role relations, and inference rules concerning that type of 
event.   
 We assume events take time, although for some perspec-
tives, that time is so short that it can safely be treated as an 
instant (Allen & Hayes, 1990).  Events whose internals are 
irrelevant to understand a particular text can be considered 
as discrete actions.  To provide the inferential semantics 
for discrete actions, we assume STRIPS operators (Fikes & 
Nilsson, 1971) for simplicity.   
 We note that in the Qualitative Reasoning community, 
there have been several prior efforts that integrate discrete 
and continuous models of actions and processes, albeit for 
very different purposes.  Hogge (1987) described how QP 
descriptions of processes could be compiled into operators 
for use with a temporal planner.  Forbus (1989) explored 
how STRIPS operators could be added to envisionments 
based on QP theory, to simulate systems that incorporated 
actions alongside physical processes.  Drabble (1993) 
showed how QP theory could be combined with an HTN 
planner to both generate and execute plans involving both 
actions and processes.  None of these prior efforts ad-
dressed integrating continuous and discrete representations 
in understanding natural language, which is our focus here.      

Answering Questions about Processes 
Reading comprehension is largely evaluated through ques-
tion answering tasks.  State of the art performance on these 
tasks is generally achieved using artificial neural networks 
that take a query and context (e.g. a paragraph) as inputs and 



predict a span of text within the context that contains the 
answer (e.g. Chen et al. 2017, Seo et al. 2017).  However, 
by definition this poses a challenge when the answer to a 
question is not explicitly stated in the source context para-
graph.  In other words, questions that require inference to 
ascertain implicit information are still a challenge. This is 
illustrated by several new datasets that require more sophis-
ticated reasoning, like tracking state changes in processes 
(ProPara), and a host of other knowledge and reasoning 
types (ARC).  An analysis on a subset of the ARC dataset 
suggests that a large proportion of questions (99/192, 52%) 
involve causal or physical knowledge (Boratko et al. 2018).  
An analysis by Crouse & Forbus (2016) suggests that 29% 
of the problems in 4th grade science tests require qualitative 
reasoning of the form QP theory provides.    
 The ProPara dataset (Dalvi et al. 2018) is the first large 
dataset of human generated natural language paragraphs 
about processes that are annotated with status, step, and lo-
cation of participating entities.  Along with the ProPara da-
taset, Dalvi et al. (2018) introduced two artificial neural net-
work models to track state changes: a system that uses bilin-
ear attention over sentences and an end-to-end system that 
uses bilinear attention over the entire paragraph. As of this 
writing, the two most successful models for ProPara en-
hance neural reading approaches with rules or knowledge 
graphs.   Tandon et al. 2018 characterized ProPara as a struc-
tured prediction task, using commonsense rules derived 
VerbNet to avoid unlikely answers. Das et al. 2018 achieved 
state of the art results by recurrently building dynamic 
knowledge graphs that track entity locations. Das et al. 2018 
also evaluated their system on a dataset of natural language 
recipes (Kiddon et al. 2018), which had previously been in-
terpreted with neural process networks that simulate recipe 
actions and their effects (Bosselut et al. 2018).  These recent 
papers suggest that commonsense knowledge and structured 
representations (e.g. in the form of knowledge graphs in Das 
et al. 2018 or domain-specific state predictors in Bosselut et 
al. 2018) are important for understanding the many complex 
aspects of procedural texts.  We use ProPara to explore the 
step semantics framework and to understand how it can sup-
port some of these additional aspects of process understand-
ing.  

Step Semantics 

Language is a blunt instrument.  The challenge of learning 
by reading is to assemble, from both the signal in texts and 
the reader’s preexisting knowledge, a reasonable extension 
of that reader’s knowledge.  Step semantics is a framework 
for specifying what a reader should learn from the language 
describing the steps of a process.  Importantly, language en-
ables people to intermingle continuous and discrete descrip-
tions, hence our drawing together continuous processes, 

discrete actions, and events to provide the representational 
capacity necessary. 
 We call our account step semantics for two reasons. First, 
it is about the steps in a process viewed as a sequence of 
operations or events.  (Operations, for recipes and proce-
dures, events for natural processes that can be decomposed, 
such as life cycles and the formation of rain.) Second, often 
the internal structure of a step relies on one or more contin-
uous processes, i.e. representable via the notion of process 
in qualitative process theory.  At a coarser grain of descrip-
tion, the continuous changes are summarized via step 
changes (Rickel & Porter, 1994). 

Ontology 
We assume that a natural language description of a process 
consists of a sequence of sentences.  The understanding pro-
cess must create a description of states and steps.  By state 
we mean an episode in a history (Hayes 1984), i.e. a set of 
propositional statements, including fluents, that is taken to 
hold over some time (instant or interval) describing a set of 
individuals.  By step, we mean an event, or a set of events, 
that describes what happens during the transition between 
its before state and after state.  The before/after relations im-
pose a sequential ordering on states.  This ordering can be 
cyclic, as in oscillations or life cycles.  There can be alter-
nate steps from a state, corresponding to events that either 
are alternatives to each other (e.g. bake in a microwave ver-
sus bake in an oven) or are occurring in parallel (e.g. the 
sprouting of legs and shrinking of its tale occurring at the 
same time in a tadpole’s maturing).   
 The relationship between sentences and steps can be com-
plicated.  In the simplest case, e.g. ProPara, each sentence is 
assumed to be a single step, each state has at most one step 
leading to it and at most one step leading from it, and the 
order of events is given by the order of sentences.  None of 
these assumptions hold more generally. The mapping be-
tween sentences and steps can be one to many.  In the other 
direction, a step can be spread across multiple sentences in 
language. The incremental nature of natural language is why 
learning by reading systems using QP theory rely on a 
frame-based equivalent notation (McFate et al. 2014).  In 
complex processes, e.g. recipes, steps can be undertaken in 
parallel (e.g. creating gravy while roasting a turkey), and can 
include multiple next steps (e.g. the reason to separate eggs 
is to do something different with the yolks versus the 
whites), and multiple previous steps (e.g. combining parts 
created by earlier steps).  The temporal order in the events 
being different from the sequence of sentences describing 
them is very common in fiction, but is also used in instruc-
tion as a motivation.  For instance, stories about why Hawaii 
caught a lucky break when Hurricane Lane dropped from a 
category 5 to a category 2 storm typically started with the 
good news and then described why this was such good news. 



 It should be clear from these complexities that under-
standing processes expressed in text, despite whatever pro-
gress is made on ProPara, remains a challenging problem.   

Features 
There are four fundamental kinds of steps: 

• Changes of existence: A step can create or destroy some-
thing. 

• Changes of property: A move step changes the location 
of something, for instance, and painting changes its 
color. Transformations, e.g. phase transformations such 
as boiling, change the type of an object.   

• Change of quantity: A quantity change step indicates that 
the given quantity has risen or fallen during the step.  
The continuous processes that are causing this are often 
implicit.  This is a useful thing to say if there are com-
peting continuous processes occurring during a step, 
since knowing the result on a parameter of interest pro-
vides information about the relative magnitudes of ef-
fect.  For example, evaporation from a bathtub is 
swamped by the change in mass from even a small 
stream of water flowing into it. 

• Occurrence of a sub-process: A subprocess step describes 
the changes wrought by some process occurring within 
the larger process being described.  For instance, if the 
water cycle is the process being described, there will 
typically be steps describing the roles of evaporation, 
condensation, and precipitation as part of that descrip-
tion. 

These four types are mutually exclusive.  As noted 
above, a single sentence may imply multiple steps, and a 
single step might be communicated by multiple sentences.  
A system with broad knowledge of the world will have 
representations encompassing multiple levels of detail and 
incorporating multiple perspectives (Falkenhainer & For-
bus, 1991).   This vocabulary of steps provides an interface 
layer between language and these representations, the spe-
cific level of detail and perspective depend on the level of 
detail in the natural language description.  For instance, 
consider a moving object that is part of a larger mechanical 
system.  Its movement might be simply described as a sin-
gle change in property (i.e. location) step, or it may be de-
scribed as a sub-step in the larger, more detailed descrip-
tion of the entire system. 
 Inertia is assumed for existence and property changes, i.e. 
if something exists then it continues to do so, until explicitly 
terminated or changed by some other step.  Quantity 
changes, on the other hand, are subject the operations of 
continuous processes – one cannot melt chocolate, for ex-
ample, and then leave it on the counter for an hour and as-
sume it will remain molten.   
 Part of the hierarchy of process descriptions arises from 
hierarchies in place descriptions.  In describing 

photosynthesis, for example, chloroplasts might be de-
scribed as “in the leaf”.  A common heuristic is that the lo-
cation of a process has to include the location of all of the 
constituents being used in it.  So, the creation of sugar hap-
pens in the leaves, while the process as a whole must also 
include the roots and stems, since they collect and transport 
water that are used in the process.   
 When fluids are involved, we have found that both the 
classic piece of stuff and contained fluid ontologies (Hayes, 
1984) are useful.  In linear (cyclic or acyclic) steps, the mov-
ing liquid can be characterized in terms of molecular collec-
tions (Collins & Forbus, 1987), i.e. a specialization of the 
piece of stuff ontology such that the fluid moving is consid-
ered to be large enough to have macroscopic properties (e.g. 
temperature and pressure in moving water or air), but so 
small as to maintain coherence (e.g. not split at a fork in a 
piping system).   

Connection to Language 
We use FrameNet as a bridge between continuous processes 
and language (McFate & Forbus, 2016). 
 We note that there are many complexities in carving up 
constituent processes in language.  For example, “Roots ab-
sorb water and minerals from the soil.”  Should this be 
viewed as two separate absorption processes, one for water 
and one for minerals?  Without either additional knowledge 
or additional explanation, it is impossible to tell.  Liquids 
are often used for transporting other things, in suspension or 
solution, in biological and engineered systems, and if the 
next sentence continues with “This combination of water 
and mineral flows…”, then this expectation is satisfied.  But 
in general there will be multiple possible interpretations 
which need to be maintained (or regenerated on backtrack-
ing) to understand such explanations.  We begin by examin-
ing how simple steps can be recognized in terms of the verbs 
used in a sentence, then discuss how the semantics of verbs 
linked to processes can be used to extract additional infor-
mation about a step. 
Creation Steps: These are represented by the FrameNet 
frame FN_Creating and the linked Cyc event type Crea-
tionEvent. For biological creatures, the corresponding 
linked frames are FN_Giving_birth and BirthEvent.  
We note that FrameNet does not treat giving birth as a sub-
frame of creating, but since Cyc does include BirthEvent 
as a specialization of CreationEvent, we treat this as a 
subcategory.  The lexemes for this frame include create, as-
semble, form, formation, generate, make, produce, and sev-
eral others. 
Destruction Steps: These are represented by the FrameNet 
frame FN_Destroying, and the linked Cyc event type De-
structionEvent.  There are subframes for biological 
creatures, e.g. FN_Killing, KillingByOrganism. 



Property Change Steps: There are quite a variety of these, 
e.g. FN_Cause_change, which can apply to names, reli-
gious beliefs, political climates, and so on.  Similarly, 
FN_Change_of_phase_scenario covers phase changes 
such as freezing, boiling, and solidifying.   
Quantity Change Steps: These include frames such as 
FN_Change_of_temperature, which covers verbs such 
as heat, warm, cool, chill, and refrigerate, and 
FN_Change_position_on_a_scale, which covers verbs 
such as rise, balloon, fluctuate, increase, etc.   
Subprocess/Event Steps: Examples include FN_Motion, 
FN_Fluidic_motion, and FN_Giving.  The role relations 
describe changes in the participants, e.g. prepositional 
phrases involving “from” and “to” identify the source and 
destination of something whose physical location or owner-
ship changes.   
 Part of the complexity of natural language understanding 
of process descriptions comes from unpacking steps from 
the semantic interpretation.  Another source of complexity 
is assembling a set of plausible temporal relationships 
among the steps.  ProPara attempts to simplify these issues 
by treating each sentence as representing a single step, and 
assuming a strict identification of order of sentences with 
order of events that they describe.  (An exception consists 
of cycles, where language like “continuing the cycle” indi-
cates the existence of a cycle, but this lies outside the se-
mantic representations stipulated in ProPara.) 

Examples 

To illustrate how step semantics can be used for natural lan-
guage understanding, we use examples from the domains of 
recipes and ProPara. 

Recipes 
Consider the following recipe for French toast1: 

1. In a small bowl, combine, cinnamon, nutmeg, and 
sugar and set aside briefly. 

2. In a 10-inch or 12-inch skillet, melt butter over me-
dium heat. Whisk together cinnamon mixture, 
eggs, milk, and vanilla and pour into a shallow con-
tainer such as a pie plate. Dip bread in egg mixture. 
Fry slices until golden brown, then flip to cook the 
other side. Serve with syrup. 

 
Despite being short and simple, this recipe includes several 
different types of steps (including some that are not explic-
itly stated) and is written in such a way that we cannot rely 
on steps being properly enumerated or being separated into 
distinct sentences.  In the first step, the three dry ingredients 
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(cinnamon, nutmeg, and sugar) undergo a mixing process 
which makes them individually irrecoverable.  The second 
numbered step includes several actions (melting, whisking, 
pouring, dipping, frying, and flipping).  While melting, but-
ter undergoes changes in property (i.e. phase) and quantity 
(i.e. temperature).  In whisking, individual wet and dry in-
gredients are combined and (in the same sentence) are 
poured into another container.  In the bread-dipping step, in-
gredients are not destroyed, but there are changes in prop-
erty (i.e. moisture and location).  In the following sentences, 
multiple steps (frying, flipping) are combined into one sen-
tence.  In frying and flipping, there is a qualitative limit point 
(“until golden brown”) and there is an implicit change of lo-
cation before the final serving step. 
 

Lexeme FrameNet Frames Entities involved 
Combine FN_Amalgamation,  

FN_Creation 
Cinnamon, nutmeg, 
sugar 

Melt FN_Change_of_tem-
perature, 
FN_Change_of_phas
e_scenario 

Butter 

Whisk FN_Self_motion,  
FN_Amalgamation,  
FN_Creation 

Cinnamon mixture, 
eggs, milk, vanilla 

Dip FN_Dunking Bread, egg mixture 
Fry FN_Apply_Heat, 

FN_Change_of_tem-
perature, 
FN_Amalgamation 

Slices, (melted) 
butter 

Flip FN_Move_in_place Bread 
 

Table 1: Lexemes, frames, and entities for French toast 
recipe. 

 
 This recipe also exhibits a subtle temporal structure.  
Melting the butter does not need to happen before mixing 
ingredients and dipping bread, but all of those things need 
to happen before frying.  These constraints cannot be in-
ferred by the order that each of the steps is introduced, since 
each step does not necessarily depend on all steps previously 
mentioned.  Instead, they can be inferred by reasoning about 
the entities involved in each step and their properties.  Table 
1 shows how individual lexemes and frames can be used to 
characterize each step.   
 The following recipe for roasted brussels sprouts2 illus-
trates another complex temporal structure: 

1. Preheat oven to 400 degrees F. 
2. Cut off the brown ends of the Brussels sprouts and 

pull off any yellow outer leaves. Mix them in a 
bowl with the olive oil, salt and pepper. Pour them 

2 https://www.foodnetwork.com/recipes/ina-garten/roasted-brussels-
sprouts-recipe2-1941953 



on a sheet pan and roast for 35 to 40 minutes, until 
crisp on the outside and tender on the inside. Shake 
the pan from time to time to brown the sprouts 
evenly. Sprinkle with more kosher salt (I like these 
salty like French fries), and serve immediately. 

 Unlike the French toast recipe, this recipe describes steps 
such that each step necessarily begins before steps that are 
described later.  However, the roasting step is supposed to 
temporally subsume the pan-shaking step (even though the 
recipe lacks a phrase like “while the sprouts roast…” to ex-
plicitly indicate that one step occurs during another).  One 
way to make this inference is to identify the goal of pan 
shaking as a color property change of the sprouts (i.e. 
“browning”) that is the ending condition for the roasting 
step. 
 These recipes are both relatively short and straightfor-
ward.  However, they illustrate that (1) steps are not neces-
sarily executed in the order that they are described, (2) that 
steps that are described with a single lexeme can denote 
multiple types of change (e.g. temperature and phase), and 
(3) that understanding the temporal constraints between 
steps hinges on the semantics of the processes (e.g. roasting, 
browning) and entities involved (e.g. pan). 

ProPara 
ProPara consists of 488 paragraphs about processes and a 
set of parameterized questions about the participants in each 
process paragraph.  These questions concern when an entity 
is created, destroyed, or moved.  Consider the following par-
agraph from the ProPara dataset:  
“Chloroplasts in the leaf of the plant traps light from the sun. 
The roots absorb water and minerals from the soil. This 
combination of water and minerals flows from the stem into 
the leaf. Carbon dioxide enters the leaf. Light, water and 
minerals, and the carbon dioxide all mix together. This mix-
ture forms sugar (glucose) which is what the plant eats. Ox-
ygen goes out of the leaf through the stomata.” 
After reading this paragraph, a system ought to be able to 
answer questions like this one: 
Q: Where is sugar produced? 
A: In the leaf. 
Our approach to answering these questions is to start with a 
general-purpose semantic parser, using a large knowledge 
base (NextKB3) and rich semantic interpretations based on 
Discourse Representation Theory (Kamp & Reyle, 2013), 
and use training data to customize the interpretation process 
for question answering.  We call this analogical Q/A train-
ing. This approach has been used before on Geoquery 
(Crouse et al. 2018a), getting state of the art results with less 
data than typically required, and learning to recognize 

                                                 
3 NextKB integrates the OpenCyc ontology with FrameNet contents, a large 
lexicon, and support for qualitative and analogical reasoning.  It will be 
available as a creative commons attribution resource shortly. 

physical processes in paragraphs from science test questions 
(Crouse et al. 2018b).  We combine this approach with step 
semantics to learn entailments from ProPara training data.  
The rest of this section describes how we do that and our 
preliminary results. 
 Analogical Q/A training works by taking natural lan-
guage questions and some form of answers, and produces 
cases (i.e. sets of logical statements) that are retrieved and 
used in subsequent question answering.  Typically natural 
language answers are provided, but here we use the table 
format provided by AI2, translated into predicate calculus, 
as shown in Figure 1.  In training, the system is learning to 
map the FrameNet/Opencyc semantics it constructs to in-
stances of events from the categories CreationEvent, De-
structionEvent, and MovementEvent.  We call it analogical 
Q/A training because what is created during the learning 
process are query cases, which are simple cases that provide 
a bridge between the logical forms produced by language 
and representations about processes.  Queries to answer 
questions are generated by applying and composing query 
cases via analogy to interpret new texts.   

 
(isa participant123 Participant) 
(isa event123 CreationEvent) 
(outputsCreated event123 participant123) 
(outputsCreatedLocation event123 tolocation123) 

 
(isa participant123 Participant) 
(isa event123 DestructionEvent) 
(inputsDestroyed event123 participant123) 

 
(isa participant123 ProParaParticipant) 
(isa fromlocation123 Location) 
(isa tolocation123 Location) 
(isa event123 MovementEvent) 
(objectMoving event123 participant123) 
(fromLocation event123 fromlocation123) 
(toLocation event123 tolocation123)

 
Figure 1. Target logical form for each possible state 

change. 
The process of constructing query cases during training 
works like this: First, the NLU system generates a set of syn-
tactic and semantic choices, representing the space of possi-
ble interpretations for each sentence.  Second, mappings be-
tween this space of interpretations and the target semantics 
(i.e. one of the three choices in Figure 1) are constructed.  
This involves using structural relations in the KB to find 
paths between concepts and relations.  For example, here is 
a path that indicates that pulling is a kind of motion: 



PullingAnObject → CumulativeEventType → 
Movement-Rotation → MovementEvent. 

Role relations from the semantic interpretation are mapped 
to roles in the target logical form by using inheritance rela-
tions involving predicates, e.g.  

objectActedOn → EventOrRoleConcept →  
objectMoving. 

Typically there will be multiple potential matches, and these 
are filtered and scored based on constraints from Gentner’s 
(1983) structure-mapping theory (e.g.1:1 mappings, prefer 
more systematic structures), albeit with re-representation 
occurring as part of the processing, similar to (Fan et al. 
2009).  The final step constructs query cases from these con-
nections, and stores them into a case library for subsequent 
retrieval during Q/A.   
 Question-answering during testing proceeds as follows.  
Each test paragraph is read sentence by sentence.  For each 
sentence, for each participant p, the following three catego-
ries of queries are asked: (Cat-1) Is p created (destroyed, 
moved) in the process? (Cat-2) When is p created (de-
stroyed, moved)? (Cat-3) Where is p created (destroyed, 
moved from/to).  These queries are processed by using ana-
logical retrieval from the case library constructed during 
training. The best query cases are instantiated and ranked 
according to how well they match the sentence semantics. 
The consequents of the highest ranked query cases are used 
to predict the state change of the queried participant. Finally, 
all state changes are aggregated and the following common 
sense rules are applied to propagate the states of each par-
ticipant: 

1. Inertia: states are propagated, both forward and 
backwards, until a new state change occurs. 

2. Collocation: If a participant X is converted to par-
ticipant Y (X is destroyed when Y is created), and 
the position of Y is not known, then we assign the 
previous position of X to Y. 

The combination of the queries and the common sense rules 
are used to generate a state change grid, in the format used 
by AI2, to compare against their answers.  Table 2 compares 
our results on this task with the following models: ProComp 
(Clark et al. 2018), ProLocal, ProGlobal (both from Dalvi et 
al. 2018), ProStruct (Tandon et al. 2018), and KG-MRC 
(Das et al. 2018). Results are displayed as F1 scores for each 
category, as well as their respective macro-average. The 
ProStruct metric is different as the task was formulated as a 
structured prediction task. 
 While better than the prior rule-based model on two out 
of three categories, our approach does not yet out-perform 
the artificial neural network models, although it does better 
than ProLocal on two out of three categories, and better than 
all of them on Cat-2 questions. We believe there are at least 
two reasons for this.  The first is the paucity of information 
extracted in cases currently, which does not provide enough 
discrimination during analogical retrieval, considerably 

reducing our recall score.  We plan on exploiting more of 
the ontology and FrameNet information to address this.  The 
second factor is that we were neither using coreference res-
olution nor the full set of commonsense rules used by the 
AI2 systems.    
 
 

 Model Cat-1 Cat-2 Cat-3 Macro 

averaged 

Rule 

Based 

ProComp  57.14 20.33 2.40 26.62 

Artificial 

Neural 

 Networks 

ProLocal 62.65 30.50 10.35 34.50 

ProGlobal 62.95 36.39 35.90 45.08 

ProStruct - - - 53.70* 

KG-MRC 62.86 40.00 38.23 47.03 

Step  

Semantics  

Our Model 49.50 43.92 17.13 36.85 

 
Table 2. Comparison between models on ProPara dataset. 
Displayed values are F1 scores for each category, which are 
then macro-averaged. *ProStruct uses a different metric 
from previous papers. 

Discussion 

In this paper we propose a framework for representing state 
changes that occur in natural language descriptions of pro-
cesses and procedures.  Our analysis of recipes and learning 
experiment with process paragraphs suggests that this 
framework is capable of capturing some information from 
texts about processes. 
 We see several important lines of future work.  First, we 
need to explore the ideas for improving ProPara perfor-
mance noted above, to see how far we can push analogical 
Q/A training.  It would not surprise us to find that exploiting 
additional linguistic and world knowledge during compre-
hension would lead to significant improvements.  Second, 
we need to integrate step semantics into our learning by 
reading system, thereby enabling it to handle processes and 
procedures that go beyond ProPara, such as recipes includ-
ing explicit cycles, forks, and joins, as well as moving be-
yond the 1:1 sentence/step model.  These lines of work will, 
we hope, contribute to an account of human-level reasoning 
for question-answering about processes and procedures. 
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