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Abstract 

Reference resolution is one of the core components of language 
understanding.  In spite of its centrality, psychological 
evidence has shown that the reference resolution process is 
prone to errors and egocentric bias.  In this work, we propose 
an extension to Analogical Reference Resolution, a 
computational model based on analogical retrieval, which 
accounts for such errors.  We test the extended model on a 
study by Epley et al. (2004) and replicate human patterns of 
bias and correction. 
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Introduction 

Reference resolution is the process of identifying the entities 

a speaker intends to refer to in an utterance.  Although 

common ground (Clark & Carlson, 1981, 1982) has long been 
held as the basis for successful reference resolution, 

experimental evidence paints a more complex picture (Epley, 

Morewedge, & Keysar, 2004; Keysar et al., 1998, 2000; 

Keysar, Lin, & Barr, 2003; Lin, Keysar, & Epley, 2010).  

Listeners adopt a two-stage strategy when resolving referring 

expressions: an initial, automatic judgment that only makes 

use of the listener’s knowledge followed by a slower 

corrective process that takes common ground into account.  

This two-stage process arguably leads to greater efficiency 

by avoiding the cognitive overhead of keeping explicit track 

of common ground when unnecessary (Keysar et al., 1998).  
Given that interlocutors’ situation models are often aligned 

and become more so over the course of a conversation 

(Pickering & Garrod, 2004), coupled with the fact that 

corrections in an interactive setting are relatively cheap, this 

two-stage strategy is an efficient way to make use of the 

cognitive resources at the listener’s disposal. 

The processes involved in reference resolution are quite 

powerful.  For instance, people are remarkably adept at 

understanding near misses, referring expressions which fail 

to accurately describe their intended referent (Donnellan, 

1968).  For example1: 

A: “Do you see the man drinking champagne?” 
B: “He’s actually drinking sparkling water.” 

B is able to interpret A’s referring expression even though 

it is an erroneous description of the man in question.  

Furthermore, according to Keysar et al. (1998), B is able to 

do so without a full, explicit model of A and A’s potential 

misconceptions.  What can account for this ability? 

 
1 Adapted from (Kripke, 1977). 

Nakos, Rabkina, and Forbus (in press) argue that structure 

mapping lies at the heart of reference resolution.  According 

to Structure-Mapping Theory (SMT; Gentner, 1983), 

structure mapping underlies analogical comparison.  It has 

been proposed as the process responsible for human 

similarity judgments (Gentner & Markman, 1997).  SMT 

offers a flexible, domain-independent, and psychologically 

plausible explanation for the ability to match descriptions to 

referents even in the presence of errors.  It also provides an 

explanation for the gradations of correctness exhibited by 

erroneous descriptions.  Analogical comparison has been 
shown to be invoked spontaneously by people (Day & 

Gentner, 2007), making it a plausible fit for the automatic 

process proposed by Keysar et al. (1998). 

In this paper, we extend our model of Analogical Reference 

Resolution (ARR) to incorporate the two stages proposed by 

Keysar et al. (1998).  Analogical retrieval provides the initial, 

automatic judgment, while a corrective process, introduced 

here, identifies common ground violations and triggers re-

representation if needed.  We test our implemented model on 

the stimuli used in Epley et al.’s (2004) perspective-taking 

experiment. 

We begin by reviewing SMT and the computational 
models built on it.  Next, we recap ARR and how it makes 

use of structure-mapping.  Then we discuss Keysar et al.’s 

two-stage model of reference resolution, the experiments 

used to test it, and a body of related research.  From there, we 

describe an extension to ARR, a corrective process that 

provides a flexible way for the model to handle perspective-

taking and re-representation.  We then test our extended 

model, briefly discuss other models of reference resolution, 

and conclude. 

Background 

Analogy 

Structure-Mapping Theory (SMT; Gentner, 1983) argues that 

analogical comparison involves computing mappings 

between structured descriptions of objects or situations.  In 
particular, mapping occurs between a base case, typically a 

set of facts retrieved from memory, and a target case, which 

describes a new entity or situation to compare to.  The outputs 

of the mapping process are a set of correspondences 

indicating which items in the base correspond to which items 



in the target, a similarity score proportional to the depth and 

connectedness of the mapping, and a set of candidate 

inferences, facts which are projected from the base to the 

target on the basis of shared structure. 

The Structure-Mapping Engine (SME; Forbus et al., 2016) 
is a computational implementation of SMT that has been used 

to model a wide range of cognitive phenomena, including 

conceptual change (Friedman & Forbus, 2010), visual 

similarity (Lovett & Forbus, 2017), and problem-solving by 

analogy to prior experience (Klenk & Forbus, 2007).  Entities 

and expressions are represented with predicate calculus. 

SME has also been used as the basis for a model of 

analogical retrieval called MAC/FAC (“many are called/few 

are chosen”; Forbus, Gentner, & Law, 1995).  Given a probe 

case, MAC/FAC searches a case library for the case most 

similar to it.  Inspired by the dichotomy between human recall 

(which favors surface-level matches) and similarity 
judgments (which favor deeper, structural matches), 

MAC/FAC has two stages.  The first, MAC, uses cheap, 

vector-based representations to identify the cases that are 

most likely to be similar to the probe.  The second, FAC, 

performs full analogical comparison between each of these 

candidates and the probe.  The case with the highest structural 

similarity score is returned. 

Analogical Reference Resolution 

The central claim of the ARR model (Nakos et al., in press) 

is that the automatic stage of reference resolution relies on 

analogical retrieval.  The hearer constructs a representation 
of the referent based on the speaker’s description and then 

searches through a set of potential referents for the one that 

is most similar to it.  In this model, structural similarity 

accounts for the ability to resolve near misses.  The greater 

the structural overlap between a referent and its description, 

the stronger the reference, even if the description is not 

completely accurate. 

In computational terms, ARR consists of constructing a 

probe case based on the speaker’s description and then calling 

MAC/FAC over a case library of relevant entities.  For 

example, if a speaker used the description “the red apple”, the 

probe case might consist of (red apple123) and 

(apple apple123), where apple123 is a token 

representing the entity described by the phrase. 

The case library constitutes the model’s representation of 

the visual scene.  It contains facts about whatever entities are 

visible.  So if there was actually a green apple on a table, the 

case library would contain a case consisting of (green 

apple1), (apple apple1), (table table2), and 

(on apple1 table2).  The cases in the case library must 

use the same representations as the probe case for SME to 

capture their similarities.  But unlike the probe case, the cases 

in the case library are not necessarily derived from language.  

The green apple found in the case library may be an apple 

that is visually salient, one that was remembered from a 

previous situation, or one that was described hypothetically.  

As long as the representations are encoded by processes using 

the same vocabulary of predicates as the probe case, ARR is 

agnostic to their source. 

MAC/FAC typically retrieves one case, the case that has 

(approximately) the highest structural similarity score with 

the probe.  MAC/FAC will only fail to retrieve a case if none 
of the cases in the case library have any overlap with the 

probe.  This means that it will always return a match if one is 

possible, even if the best one it can find is extremely tenuous. 

ARR imposes a similarity cutoff on the matches returned 

by MAC/FAC, below which retrieval is considered to have 

failed.  This puts a limit on near misses and prevents a grossly 

erroneous description from matching an arbitrary referent for 

lack of a better option.  When MAC/FAC returns a single 

match above the threshold, the description is considered 

uniquely identifying and the reference succeeds.  When 

MAC/FAC returns no match above the threshold, the 

description is too inaccurate to pick out the intended referent 
and the reference fails. 

A more interesting situation crops up when MAC/FAC 

returns more than one match for a description.  This can 

happen when the top matches for the probe have similarity 

scores that are nearly equal.  MAC/FAC returning more than 

one case indicates that the probe was not able to strongly 

distinguish between them; the reference is ambiguous.  This 

definition of ambiguity goes a step beyond the traditional 

one, where an underspecified description applies equally well 

to multiple referents.  ARR also identifies when an erroneous 

description could apply to multiple entities (e.g., “the man 
drinking champagne” when there is a woman with 

champagne and a man with sparkling water) or when a 

correct description fits a distractor closely enough to cause 

confusion (e.g., “the man drinking champagne” when there 

are two men, one with champagne and one with sparkling 

water). 

These features make analogical retrieval a natural fit for the 

automatic stage of reference resolution.  Analogical retrieval 

is an existing process used in other modes of cognition, rather 

than an ad hoc algorithm designed specifically for reference 

resolution.  It accounts for hearers’ robustness to near misses 

by appealing to structural similarity.  Finally, analogical 
retrieval is conducted in parallel (Forbus et al., 1995) and 

does not rely on conscious attention (Day & Gentner, 2007), 

making it suitable for use in an automatic process. 

Perspective Taking in Reference Resolution 

Keysar et al. (2000) examined the role of common ground in 

language understanding using a pair of perspective taking 

experiments.  Their experiments were designed to determine 

whether people include common ground in their initial search 
for a referent or whether it is factored in later, after an initial 

judgment has been made.  They set up a grid of boxes 

containing everyday objects between two people, a director 

and a subject.  Several of the boxes were blocked on the 

director’s side so that only the subject could see their 

contents.  The director gave the subject verbal instructions to 

move certain objects to new locations in order to reach a goal 

configuration.  The subject’s eye gaze was tracked to 



determine which potential referents were considered and with 

what timing. 

The key factor in the experiment was that some of the 

referring expressions used by the director best described an 

object that could only be seen by the participant, a distractor.  
For example, the director might refer to “the small truck” 

when there are three trucks: a small one that can only be seen 

by the subject, and a large truck and a medium truck that can 

be seen by both people.  If subjects take common ground into 

account during their initial search for a referent, they should 

ignore the distractor (i.e., the small truck), and their gaze 

should move immediately to the medium-sized truck. 

On the contrary, Keysar et al. (2000) found that 

participants typically looked at the small truck first and only 

later corrected to the medium-sized truck, in some cases 

going so far as to reach for the wrong object.  This finding is 

consistent with the Perspective Adjustment model proposed 
by Keysar et al. (1998).  The Perspective Adjustment model 

holds that the initial stage of reference resolution ignores 

common ground and instead searches over the set of objects 

that are relevant to the hearer, regardless of whether the 

speaker is aware of them.  This initial search is followed by a 

slower process that is responsible for checking that the 

speaker is, in fact, aware of the selected referent, triggering a 

search for a more suitable one if necessary.2 

Several other studies have replicated these findings with 

minor changes to the experimental setup.  Keysar et al. (2003) 

show that the effect persists even in the absence of direct 
visual perception of the distractor object.  They also show that 

hearers still show an egocentric bias when they are explicitly 

made aware of the speaker’s ignorance.  Epley et al. (2004) 

confirm the findings in adults and demonstrates that the same 

egocentric bias exists in children.  However, children are 

even slower to correct themselves after selecting a referent 

that is not in common ground, suggesting that the second 

process has not fully developed yet.  Lin et al. (2010) delve 

deeper into the nature of the corrective process and show that 

the ability to correct for the egocentric bias in reference 

resolution is impaired by cognitive load.  Together, these 

findings paint a picture of an effortful secondary process 
which, when executed successfully, can correct the snap 

decisions made by the initial reference resolution process. 

Reference Correction 

ARR cannot model these experimental results by itself.  

Restricting the case library to entities known to the hearer can 

replicate the egocentric bias but not the process used to 

correct it, since ARR performs a single retrieval over a fixed 

set of entities with no way to check its output or change its 
results.  To address this issue, we extend ARR with a 

corrective process that checks the selected referent against 

common ground, reconfigures ARR if needed, and kicks off 

 
2 Keysar et al. (1998) suggest that the two stages may operate in 

cascade, with the corrective process beginning as soon as partial 
results from the initial search are available.  For simplicity, we treat 
the two stages as sequential here and leave a cascade model for 
future work. 

another round of analogical retrieval to obtain a final result.  

The addition of this corrective process brings ARR in line 

with the Perspective Adjustment model described by Keysar 

et al. (1998) and provides a principled way for ARR to take 

perspective into account. 
The timing data from Keysar et al. (2000) suggests that the 

corrective process is comparatively slow and frequently does 

not complete in time to prevent subjects from reaching for the 

wrong item.  Per Lin et al. (2010), the corrective process 

draws on cognitive resources that are shared across a variety 

of tasks.  Subjects under increased cognitive load are more 

prone to making egocentric errors.  This suggests that the 

corrective process is more cognitively demanding than the 

automatic initial judgment.  Here we posit three steps in the 

corrective process that account for the increased cognitive 

demand: Theory of Mind reasoning, suppression, and re-

representation.  We consider each in turn. 
Theory of Mind (ToM) is one person’s understanding of 

another person’s mental states.  For example, children who 

have yet to develop full ToM are unable to distinguish their 

beliefs from another person’s (Wimmer & Perner, 1983).  

The ability to track others’ beliefs is crucial for determining 

what is in common ground, but the egocentric stage of 

reference resolution suggests that people do not store this 

information explicitly.  Instead, hearers must perform at least 

some ToM reasoning on the fly.  Such reasoning can be 

arbitrarily difficult due to both the open, flexible nature of 

common ground and the infinite regress of the mutual 
knowledge paradox (Clark & Marshall, 1981).  Copresence 

heuristics can alleviate some of the difficulty by limiting the 

search to a plausible set of scenarios, but in principle, the 

corrective process may have to perform a large amount of 

work to catch an error.  This explains the need for a fast, 

automatic process in the first place: to form an initial 

judgment quickly enough for real-time understanding, at the 

cost of occasional errors that will have to be corrected. 

The corrective process for our model begins with an error 

identification step, an inferential process that includes ToM 

reasoning.  The hearer applies a set of ToM rules to determine 

whether common ground has been violated (i.e., the speaker 
does not know about the selected referent).3  In principle, 

error identification can include other types of reasoning, such 

as making sure the referent is suitable for the task at hand.  

But without further experimental evidence, it is unclear 

whether these checks are performed as part of error 

identification or another step in the resolution process.  As 

such, we limit our error identification to common ground 

violations for the current work. 

The second step of the corrective process is suppression.  

Referents that are deemed unsuitable by the error 

identification step are removed from further consideration.  
This impacts ARR in two ways.  First, a temporary case 

3 Our model makes no claims as to how these rules are acquired.  

One possibility is that the rules are learned from experience by way 
of analogical generalization (Gentner & Medina, 1998).  Rabkina, 
McFate, Forbus, and Hoyos (2017) argue that ToM rules are learned 
this way. 



library is constructed without the suppressed entities.  This 

achieves the desired effect of ruling out referents that are not 

in common ground.  Second, the removed entities are ignored 

when determining the meaning of gradable adjectives like 

“small” or “large”.  This enables ARR to select a new referent 

that matches the description, as described below. 
The third step of the corrective process deals with re-

representation.  Suppression alone may not be enough for 

ARR to find the correct referent.  Sometimes the cases 

themselves must be altered to reflect a new interpretation of 

the scene.  Consider our running example: an occluded small 

truck, along with a medium truck and a large truck in 

common ground.  Once the small truck has been suppressed, 

the hearer adjusts his or her interpretation of the sizes of the 

remaining trucks.  Since there are two trucks, one larger and 

one smaller, the medium-sized truck is re-represented as the 

“small” one, allowing it to match the description “the small 
truck” without issue. 

To handle gradable adjectives like “small” and “large” in a 

way that allows for re-representation, our model uses a two-

stage encoding process.  The first stage encodes type 

information and relative magnitude of the objects along any 

relevant dimensions (size, position, etc.).  Comparisons are 

only made within object categories; if the scene contains 

trucks and candles of varying sizes, they will be compared 

separately, leading to a natural interpretation of phrases like 

“the small truck”. 

The second stage uses these relative magnitudes to assign 

attributes to the objects, a process we refer to as enrichment.  
For instance, in the original scene, the trucks will be encoded 

as small, medium, and large based on their relative 

sizes.  Once the small truck has been suppressed, the 

attributes are recalculated and the remaining two trucks are 

marked as small and large, respectively.  The separation 

of the underlying comparisons from the final assignment of 

attributes allows our model to deal with gradable adjectives 

in a general, flexible way.  The interaction between 

suppression and enrichment is shown in Figure 1. 

To recap, our corrective process begins by identifying 

common ground violations using ToM inference.  It then 

suppresses any unsuitable entities, removing them from 

further consideration.  This is followed by re-representation, 

which recomputes the semantics of attributes that correspond 

to gradable adjectives.  With representations finalized, the 
corrective process then invokes ARR again to make the final 

choice of referent. 

Evaluation 

To demonstrate our model of reference resolution, we 

replicate the perspective taking experiment from Epley et al. 

(2004) using their stimuli.  Our model is presented with a 

description from one of the trials and the corresponding set 

of potential referents.  For the sake of simplicity, we factor 
out natural language processing, visual object identification, 

and actually obeying the speaker’s direction to move the 

identified object.  Instead, we encode the object description 

by hand and use CogSketch (Forbus et al., 2011) to encode 

the visual scene.  CogSketch is a sketch understanding system 

that allows users to create diagrams with visual objects 

 
Figure 2: Sample visual scene encoded in CogSketch. 

 
 

Figure 1: Interaction between enrichment and suppression in the corrective process.  Given a representation of a scene (a), 
enrichment produces attributes for relative size and position (b).  These are used for initial retrieval. If error identification 

determines that the retrieved referent is occluded, suppression produces a reduced scene without the occluded entity (c). 

This scene is then enriched, yielding a modified set of attributes (d). 

(isa truck1 Truck)

(isa truck2 Truck)

(isa truck3 Truck)

(biggerThan truck1 truck2)

(biggerThan truck2 truck3)

(occluded truck3)

(isa truck1 Truck)

(isa truck2 Truck)

(biggerThan truck1 truck2)

(isa truck1 Truck)

(isa truck2 Truck)

(isa truck3 Truck)

(large truck1)

(medium truck2)

(small truck3)

(occluded truck3)

(isa truck1 Truck)

(isa truck2 Truck)

(large truck1)

(small truck2)

a) b)

c) d)

Enrichment

Enrichment

Suppression



identified using menus.  A sample sketch is shown in Figure 

2. CogSketch automatically computes visual relationships 

between objects, creating a set of facts suitable for use with 

ARR. 

Given a description and a scene, our system invokes ARR 
to produce an initial judgment of the intended referent.  If our 

system is modeling reference resolution correctly, then for 

trials where the description is ambiguous, the initial referent 

should be the distractor, which is known to the hearer but not 

the speaker.  Our system then uses a set of simple rules to 

check whether the speaker can see the selected entity.  If not, 

the system suppresses the initial referent, updates size and 

position attributes by rerunning the enrichment process, and 

invokes ARR again.  If our system is behaving correctly, the 

new referent chosen this way should be the correct one. 

We find that this is indeed the case.  The Epley et al. (2004) 

stimuli consist of four visual scenes, each with four 
descriptions that pick out entities in the scene.  For each 

scene, one of the trials is a test condition where the 

description fits an occluded entity more closely than the 

intended referent.  In each of the 16 trials, our model behaves 

as expected, immediately selecting the correct referent when 

no distractor is present and successfully correcting itself from 

the distractor when the egocentric choice fails. 

There is one trial that breaks the pattern.  In a scene with 

two rabbits, one stuffed and one made of chocolate, the 

description “the bunny” applies to both of them equally well.  

In this case, ARR notes the ambiguity before going on to 
correct its interpretation to the visible bunny.  In another 

study, Keysar et al. (2003) constructed their stimuli 

specifically to avoid this type of ambiguity. 

Related Work 

Many other computational models of reference resolution 

have been proposed over decades of research, beginning with 

Winograd’s (1972) SHRDLU system, which used procedural 

semantics to interpret referents in a block world domain.  

More recent work has focused on robotics (Chai et al., 2014; 
Williams & Scheutz, 2015), visual scenes (Gorniak & Roy, 

2004; Kennington & Schlangen, 2017), and multimodal input 

(Chai, Hong, & Zhou, 2004; Kehler, 2000). 

Our approach has the most in common with Chai et al.’s 

(2014).  Their system handles reference resolution using 

inexact graph matching between a vision graph, a 

representation of the observed scene, and a dialogue graph, a 

graph of entity mentions and coreference.  Their work 

explicitly deals with the issue of common ground and its 

effect on human-robot interactions, particularly when 

mismatched sensory capabilities put the robot at a 
disadvantage. 

Unlike their system, ARR is not limited to visual 

characteristics, and the graph-matching process it uses (SME) 

is believed to be employed in multiple areas of cognition.  

Furthermore, the corrective process outlined in this paper 

accounts for errors in human reference resolution which Chai 

et al.’s system does not address.  On the other hand, their 

system has the advantage of working more naturally with 

sensor data and quantitative scales, where ARR must rely on 

sketched data and symbolic representations. 

Discussion 

In this paper, we have extended the ARR model of reference 

resolution to account for the pattern of egocentric bias and 

error correction observed in studies like Epley et al. (2004).  

Resolution consists of an initial call to analogical retrieval 

that does not take perspective into account, followed by a 

more elaborate corrective process which performs ToM 

inference, suppression, and re-representation as needed.  A 

simulation using Epley et al.’s stimuli shows that our model 

behaves as predicted, matching the error pattern of human 

subjects.  This provides preliminary evidence for ARR as a 

plausible cognitive model. 
Analogy provides a useful starting point for further 

investigation.  If analogical retrieval is at the heart of 

reference resolution, the claims of Structure-Mapping Theory 

should apply.  In particular, human subjects should prefer 

referents that are structurally similar to the description, 

favoring systems of relations over surface attributes.  

Designing an experiment to test this hypothesis would shed 

light not only on reference resolution but the use of analogy 

in human similarity judgments. 

Another open question is what type of analogical retrieval 

is at work during reference resolution.  Our model currently 
uses MAC/FAC to retrieve the entity that is most similar to 

the description, but an alternative approach is SAGE-WM 

(Kandaswamy, Forbus, & Gentner, 2014), which models 

working memory as a case library ordered by recency.  

SAGE-WM performs retrieval by searching for the most 

recent case with a strong structural match to the probe.  This 

model better captures referential phenomena that rely on 

temporal ordering, like anaphora, but sacrifices MAC/FAC’s 

clean handling of ambiguity.  Determining how these 

retrieval strategies interplay in online reference resolution is 

an area for future work. 

Further study is also needed to clarify the specific steps 
involved in the corrective process.  In this paper, we have 

proposed one possible form of correction which explains the 

findings of Epley et al. (2004).  More work will need to be 

done to extend this process to correction that goes beyond 

simple ToM reasoning.  More sophisticated knowledge about 

the speaker, contextual factors such as task suitability, and 

other forms of re-representation should be taken into account. 

In particular, it is unclear from the available data whether 

suppression operates incrementally or in batch.  Incremental 

operation would mean that only the selected referent is 

suppressed when a common ground violation occurs.  Batch 
operation would mean that, once a common ground violation 

is detected, all entities are checked against the common 

ground and the ones the speaker does not know about are 

ruled out in bulk.  Empirically, incremental operation would 

suggest that, when faced with multiple distractors, people 

tend to look at each one in turn before settling on the 

appropriate referent. On the other hand, batch operation 

would suggest that people skip past subsequent distractors, 



an effect that should persist to consecutive trials over the 

same scene. Further extensions to the testing paradigm 

proposed by Keysar et al.’s (2000) should shed light on this 

matter. 

Reference resolution is not a new problem in the fields of 
linguistics, psycholinguistics, or artificial intelligence.  

Formal theories of reference, psychological evidence, and 

practical algorithms all shed different kinds of light on one of 

the fundamental processes of language.  We believe that 

Analogical Reference Resolution can help bridge the gap 

between these traditions, providing a model that accounts for 

human experimental data and can serve as a component in 

larger AI systems. 
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