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Abstract 

To interact with humans, artificial intelligence (AI) systems must understand our social world. 

Within this world norms play an important role in motivating and guiding agents. However, very 

few computational theories for learning social norms have been proposed. There also exists a long 

history of debate on the distinction between what is normal (is) and what is normative (ought). 

Many have argued that being capable of learning both concepts and recognizing the difference is 

necessary for all social agents. This paper introduces and demonstrates a computational approach 

to learning norms from natural language text that accounts for both what is normal and what is 

normative. It provides a foundation for everyday people to train AI systems about social norms. 

1.  Introduction 

Our social world is a game. With the goal of maintaining social approval, we conform to what is 

common and abide by unwritten rules. Being players of this game by nature, we automatically 

learn these norms through instruction, observation of action-feedback pairs, and trial and error. 

As artificial intelligence (AI) systems become even more integrated into society, they must be 

equipped with these same faculties. Systems must have knowledge of our norms to communicate 

effectively. For example, elder care systems ought to avoid asking about one’s husband if they are 

aware that he has just passed. 

 Norms are critical for social cohesion as they constrain desires, allowing for cooperation, as 

well as guide behavior during uncertainty. Furthermore, being capable of learning norms is 

crucial, for new situations often call for new guidelines. How then, do we provide AI systems 

with the means to gain such social and moral knowledge? How do we teach them the rules of the 

game? 

 In a recent proposal Malle, Bello, and Scheutz (2019) discuss the importance of norm 

competence for artificial agents and what is required for such a task. As the authors suggest, 

simply manually encoding knowledge for such a dynamic and contextual phenomenon is not 

feasible. Systems must be capable of learning as we do, through rich modalities such as natural 

language. Important computational work has been done for learning norm representations 

(Sarathy et al. 2017) but it remains open how these can be learned by artificial agents through 

more natural modalities. Furthermore, systems must be capable of distinguishing between how 

frequent a behavior is and its normative status. For example, the act of cheating is quite common, 

but few would argue that it is permissible. To the best of our knowledge, this capability has not 

been demonstrated by any current approach. 
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 This paper provides a foundation for AI systems to learn norms via natural language (NL) 

instruction and testimony. We have constructed a novel frame representation inspired by frame 

semantics (Fillmore, Wooters, and Baker 2001) that represents both the normative status and 

prevalence of a norm. We demonstrate our working system that utilizes Dempster-Shafer (DS) 

theory (Shafer 1976) and performs pragmatic inference via narrative function rules (Tomai and 

Forbus 2009) to learn norms from language. 

 We start by providing background on norms and DS theory. We then introduce our qualitative 

norm frame representation and explain how such frames can be extracted from natural language. 

Then we show how DS theory can be used to combine evidence for norm frames. Next, we 

introduce a dataset and show that our approach is capable of learning norms from teachings 

presented in NL. We conclude with related work and future research. 

2.  Background 

2.1  What is a norm? 

The usage of the term norm varies between disciplines. Even within disciplines the concept of 

normativity varies. Some consider a norm as an Is, or a claim of prevalence (e.g., “Children 

sometimes share with others.”). However, many philosophers have taken the concept of a norm as 

that of an Ought. This traditional view holds a norm to be claim about what should happen, or an 

ought-rule (Kelsen 1990). For example, “One should share with their peers.” As far back as 

Hume, philosophers have discussed the need to distinguish between an Is and an Ought (Hume 

and Levine 2005). Cialdini, Reno, and Kallgren (1990) further argue for the need to distinguish 

between the Is and the Ought because they refer to separate sources of human motivation. To 

account for this fundamental distinction, recent theories have unified the concept of a norm by 

defining two norm types: injunctive and descriptive (Aarts and Dijksterhuis 2003; Cialdini, Reno, 

and Kallgren 1990). Injunctive norms specify what ought to happen, or, in the case of social 

norms, what people (dis)approve of. On the other hand, descriptive norms specify what does 

happen or what most others do. Both types of norms influence human behavior. 

 Norms have also been shown to be conditional. Though we seem to collectively agree upon 

some universal norms within a society, such as not harming others, the validity of many norms is 

conditional upon context. For example, the behavior of wearing clothes is made salient in a public 

environment but not at the beach (and explains why some attest to having nightmares of going to 

school without pants!). Cialdini, Reno, and Kallgren (1990) found that subjects littered more in an 

already littered environment than in a clean environment. Aarts and Dijksterhuis (2003) similarly 

found that the situation of a library, along with the goal of visiting, activated representations of 

specific behaviors like being silent. 

 We often gain knowledge of norms through explicit means such as instruction and testimony. 

Injunctive norms are relayed to children via instruction (e.g., “You should share with others.”). 

Because descriptive norms instead describe what happens, they are often relayed through 

testimony of one’s own experience (e.g., “People often run in the park.”). Other means are more 

implicit and require further analysis and inference. A child can learn the same sharing norm by 

observing their sister share her toy, relaying a descriptive norm, and then receiving praise from 
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their mother, providing evidence for an injunctive norm. We also learn norms through second-

hand experience from stories, movies, and other media. There is a vast typology of sources for 

learning norms. Furthermore, within each type, evidence is provided by multiple individual 

sources. To formalize this evidential reasoning process in machines, we therefore need a 

mathematical theory of evidence. Here we use Dempster-Shafer (DS) theory, which we overview 

in the next section. 

2.2  Dempster-Shafer Theory 

Dempster-Shafer (DS) theory (Shafer 1976) is often defined as a generalization of the Bayesian 
theory of subjective probability.  We use Dempster-Shafer theory to explicitly represent epistemic 
states, such as the evidence for a proposition being mixed, and for combining evidence. 

2.2.1  Frame of Discernment 

DS theory considers an exhaustive set called the frame of discernment (FoD), denoted as Θ, of 
elements that are mutually exclusive. Each element of the FoD can be interpreted as a possible 
answer to a question. 

2.2.2  Basic Belief Assignment 

Whereas traditional probability theory would assign a probability just to singletons in the set, DS 
theory assigns probabilities to the powerset of the frame of discernment, denoted as 2Θ. A basic 
belief assignment (BBA), or mass assignment, is a function, denoted as m(A), that maps each 
subset of Θ to a real number in [0,1], such that 𝑚(∅) = 0 and all assignments sum to 1. Elements 
with non-zero mass are called focal elements. 

2.2.3  Belief and Plausibility Functions 

To represent uncertainty, DS theory computes an interval for a given set of hypotheses. This 
interval represents a range from the direct evidence for the set and its subsets, to the evidence that 
is not committed to the negation of the set. The lower and upper limit of these intervals are 

computed by the belief function and the plausibility function, respectively. 
 Belief: a function that expresses the total belief of a set and all its subsets. Formally, the belief 
in a set A is defined as:  𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵|𝐵⊂𝐴 . 
 Plausibility: a function that expresses how much evidence does not contradict the set. 
Formally, the plausibility of a set is the sum of the basic belief assignments of all sets that 
intersect that set. The plausibility of a set 𝐴 can also be computed from belief as: 𝑃𝑙(𝐴) = 1 −
𝐵𝑒𝑙(𝐴𝐶) where 𝐴𝐶  is the complement of 𝐴. 
 Uncertainty Interval: the interval [𝐵𝑒𝑙(𝐴), 𝑃𝑙(𝐴)] represents uncertainty in the set 𝐴 and it 
narrows as more evidence in favor of 𝐴 is accumulated. An example mapping from intervals to an 
intuitive notion of truth for a proposition 𝐴 would be: [1,1] = true, [0,0] = false, [0,1] = 
completely ignorant, [Bel(A), 1] = supported, [0, Pl(A)] = refuted, and [Bel(A), Pl(A)] = evidence 
for and against. 
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2.2.4  Dempster’s Rule of Combination 

A fusion operator is used to combine multiple sources of evidence to determine the total support 
for a given hypothesis. Our approach uses Dempster’s rule of combination (Dempster 1967) 
which computes a new belief function that combines two sources of evidence. Formally, 
Dempster’s rule of combination computes the sum of the mass product intersections. This 
evidence combination is both associative and commutative and thus evidence can be combined in 
any order and belief combination can be chained. Dempster’s rule is defined as: 𝑚1 ⊕ 𝑚2(𝑐) =
∑ 𝑚1(𝑎)𝑚2(𝑏)𝑎∩𝑏=𝑐 /(1 –  𝐾), where 𝐾 represents the conflict between the evidence being 
combined and is computed as: 𝐾 = ∑ 𝑚1(𝑎)𝑚2(𝑏)𝑎∩𝑏=∅ . 
 DS theory has been used for combining pieces of evidence for sensor fusion (Premaratne et al. 
2009) and in various areas of AI research such as learning indirect speech acts (Wen, Siddiqui, 
and Williams 2020) and similar norm learning work (Sarathy et al. 2017). There are key 
properties of DS theory that make it powerful for reasoning about norms. The lack of requirement 

for priors is a most obvious advantage over Bayes, as it’s not clear how one would obtain them in 
this context. The ability to explicitly represent ignorance is another strength of DS theory. False 
normative belief can have harmful outcomes, so it is important to distinguish between a reliable 
source and an unreliable one when using their testimony to reason about norms. Unlike classical 
probability theory, DS theory allows belief to be “unassigned” to any element (or assigned to the 
entire frame of discernment) which allows the explicit representation of ignorance. Similarly, 

another benefit lies in the ability to explicitly represent ambiguity by assigning mass to sets of 
propositions, rather than just singletons. Imagine a child’s first visit to Texas Roadhouse. They 
walk in and see another kid throw their peanut shells on the floor. Surprised, they look to other 
people expecting them to provide negative feedback. However, no one responds. At this point, the 
child is uncertain if this event provides evidence that “throwing peanut shells on the floor in 
Texas Roadhouse” is obligatory or just optional. Within DS theory you can assign mass directly 

to that ambiguous set, {Obligatory, Optional}, without having to determine how to distribute the 
mass across the individual propositions. Though this sort of ambiguity does not arise in the work 
presented here as norms are introduced explicitly, we note its importance for norm learning in 
general moving forward. 

3.  Learning Norms from Language 

The goal of the norm learning approach presented here is then to learn the evaluation and 
prevalence of a certain behavior given (or not) a certain context, from teachings presented in 
natural language. More formally, 𝐸(𝐵)|𝐶 and 𝑃(𝐵)|𝐶, where 𝐸 = Evaluation, 𝑃 = Prevalence, 

𝐵 = Behavior, 𝐶 = Context (again, this variable can be unknown or universal). We first describe 
our qualitative representation for norms and the pragmatic reasoning process that extracts norms 
from natural language. We then show how we represent belief assignments and perform 
Dempster-Shafer computations to do such learning. 

3.1  A Qualitative Norm Frame Representation 

We represent norms as frames to tie together the actions, contextual preconditions, and 
corresponding evaluation and prevalence values. Frames were introduced as data structures for 
structured knowledge representation and reasoning (Minsky 1975). A frame expresses knowledge 
of a set of concepts connected to one another via relations or slots. Frame-based representations 
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have been used to represent semantics (Fillmore, Wooters, and Baker 2001) and constructs of 
qualitative process (QP) theory (McFate, Forbus, and Hinrichs 2014). Here, we represent a norm 
frame as a conceptual knowledge structure that is connected to other concepts in their slots via 

four relations: the behavior the norm is about, the context in which the norm is valid, the 
evaluation of the norm, or how permissible the behavior is in the context, and the prevalence of 
the norm, or how often the behavior is observed in the given context.  
 In his discussion of the logical form of events Davidson (1967) pointed out that representing 
events as predicates is insufficient, as there may be arbitrarily many arguments. He argued instead 
for representing events as entities. We argue that this is also the case for norms, as we rarely 

know the contextual preconditions and may only know how frequent a behavior is but not its 
normative status. Thus, norm frames are also Davidsonian. Our representation requires only that a 
given norm frame’s behavior slot and at least one of either evaluation or prevalence is filled. The 
context slot is not required. A norm frame can thus be thought of as a rule like structure that maps 
from an action-scenario to a corresponding frequency and/or normative status. 
 All the concepts within the norm frame slots are grounded in the NextKB knowledge base 

(Forbus and Hinrichs 2017). Knowledge in NextKB is partitioned into logical environments 
defined as Cyc-style microtheories. These microtheories are also hierarchical, so each inherits 
facts from its parents. This knowledge base contains a large ontology of everyday human actions 
and locations. These concepts serve as type constraints for the behavior and context slots of a 
norm frame. The grounded concepts for evaluation consist of the modals from the Traditional 
Threefold Classification (TTC) of Deontic Logic (McNamara 1996). This scheme posits that 

there are five normative statuses: three first-order, {Obligatory, Optional, Impermissible} and two 
second-order, Permissible = {Obligatory, Optional} and Omissible = {Optional, Impermissible}. 
For prevalence, we define the discrete set of frequencies as: {Continuously, Often, Sometimes, 
Rarely, Never}. The working second-order frequencies are defined as: MoreThanSometimes = 
{Continuously, Often}, Sometimes, LessThanSometimes = {Rarely, Never}. Given the deontic 
and prevalence alphabets, denoted as 𝔻 and ℙ respectively, we define a norm frame as follows: 

 
Definition (Norm Frame). A norm frame is a rule like frame structure of the form: 
 

(isa ?norm Norm) 

(context ?norm ?c) 

(behavior ?norm ?b) 

(evaluation ?norm ?e) 

(prevalence ?norm ?p) 

  
 where ?c and ?b are concepts for locations and actions/states from NextKB, ?e is in 𝔻 and ?p in 
ℙ.   
 A reified norm frame thus represents a mapping from a context-behavior pair to qualitative 

values of permissibility and/or prevalence. Given this definition, descriptive and injunctive norms 
are defined as follows: 
 

Definition (Descriptive Norm). A descriptive norm is a norm frame whose prevalence slot is 
equal to Often or Continuously. 
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Definition (Injunctive Norm). An injunctive norm is a norm frame whose evaluation slot is equal 
to Obligatory or Impermissible. 
 

 A norm frame can thus be thought of as a “potential norm”, as only a subset would be 
considered as norms based on their evaluation and prevalence slots. Our conception of a norm 
differs from recent computational formalizations. For example, Sarathy (2020), taking inspiration 
from Malle et al. (2017), take a norm as “an instruction to (not) perform action A in context C, 
provided that a sufficient number of individuals in the community (1) indeed follow this 
instruction and (2) demand of each other to follow the instruction.” We do not make such an 

optimal world assumption and instead keep the two conditions separate; the evaluation of a norm 
frame need not align with the prevalence. As stated earlier, most evaluate the act of cheating as 
impermissible, but cheating still happens quite often. So, under our norm definitions people can 
demand others to not perform an action (satisfying demand condition 2), being an injunctive 
norm, and still fail to follow this instruction by frequently performing the behavior (failing to 
satisfy prevalence condition 1), being a descriptive norm. 

 Presented in Figure 1 is an example of the formal predicate calculus representation for the norm 
of eating on the bus (which most would say is omissible and rarely happens). Again, the concepts 
EatingEvent and Bus-RoadVehicle tie into a rich ontology containing collections of human 
actions, locations, times of day, etc. and many relations. 

 

(isa norm1 Norm) 

(context norm1 Bus-RoadVehicle) 

(behavior norm1 EatingEvent) 

(evaluation norm1 Omissible) 

(prevalence norm1 Rarely) 

Figure 1. Example norm frame for eating on the bus. 

3.2  Linguistic Expressions of Norms 

It is important to distinguish between a norm as a knowledge construct and its linguistic 
expression. An imperative (a command, deontic declaration, or an evaluative statement) is the 
linguistic expression of an injunctive norm. “It expresses an act of will, specifically the meaning 
that the other person is to behave in a certain way” (Kelsen 1990). Contrarily, testimony of one’s 
own experience, often declarative utterances, express descriptive norms. Such statements can be 

true or false, which must be distinguished from imperatives. The norm expressed by the statement 
“People never eat on the bus.” is a fact that can be empirically measured, while the norm 
expressed by “You should not eat on the bus.” is not. Statements of testimony like the former 
express a descriptive norm and the latter an injunctive norm. This distinction also portrays how 
the concepts of Is and Ought are expressed differently in language. Furthermore, both types of 
speech acts are merely expressions of, and should be distinguished from, the underlying norm. 

3.3  Narrative Function 

Imperatives and testimony as described here have a typical syntactic and semantic structure. First, 
they make an evaluative claim (e.g., “You ought to”) or provide testimony for a frequency (e.g., 
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“People often”). Secondly, they introduce a behavior i.e., the object of a norm. And optionally, 
they introduce contextual features such as location, time of day, etc. Therefore, when we hear 
“you should”, we then expect the speaker to introduce the behavior being suggested. These 

expectations help us construct a meaningful and cohesive interpretation. Narrative functions 
(Barthes 1977; Labov and Waletzky 1996) serve as a representation for such pragmatic 
constraints that guide understanding. They are acts of a narrator/speaker during dialogue. For 
example, explaining the setting and introducing a character are both narrative functions. To infer 
a narrative function is then to infer what information is relevant or what the intended meaning is 
with respect to context and ongoing discourse. 

 Detecting narrative functions via abductive rules has been used for understanding natural 
language sources such as moral decision-making stories (Tomai and Forbus 2009) and extracting 
QP frame information (McFate, Forbus, and Hinrichs 2014). The narrative functions they 
compute generate expectations for the system, deriving the intended meaning of the utterances 
from the lexical, syntactic, and sematic representations. Next, we describe how our model detects 
specific narrative functions from NL to construct norm frames. 

3.4  From Natural Language to Norm Frames via Abduction 

The process for converting a parse into a norm frame is three-fold: First, the system performs 
semantic parsing. Second, it extracts norm frame features via abductive rules. Third, norm frames 
are constructed from the extracted features. We go over each step in the following sections and 

then provide examples of rules that compute a narrative function. 

3.4.1  Semantic Parsing, Feature Extraction, and Norm Frame Construction  

Our system is built within the Companion cognitive architecture (Forbus & Hinrichs, 2017) 
which uses the semantic parser CNLU (Tomai and Forbus 2009). CNLU uses Allen’s (1994) 

bottom-up chart parser plus a broad lexicon to create parse trees. It maps from English words to 
concepts in NextKB (Forbus and Hinrichs 2017) and builds a semantic interpretation of the input 
using frame semantics extended from FrameNet (Fillmore, Wooters, and Baker 2001).  Discourse 
Representation Theory (Kamp & Reyle, 1993) is used to handle contexts needed for modals and 
counterfactuals, as well as logical and numerical quantification. 
 CNLU represents ambiguity in parses in the form of choice sets. A choice set is a disjunctive 

set of choices for the meaning of terms. Narrative functions are effectively pragmatic rules that 
constrain these sets, as expectations rule out potential choices. For example, in the sentence “You 
can run in the park” the word “run” has multiple potential meanings. It could mean fluid flow, as 
in “The water in the sink was running.”, or the human act of running. Clearly, the intended 
meaning here is the latter. By representing the expectation for a human behavior within 
imperatives like this, we constrain the set of possible semantics. The choice for fluid flow would 

be ruled out and the act of running would come through. 
 After parsing a sentence, our system attempts to abductively prove narrative functions. By 
proving these statements, the system extracts relevant features and builds corresponding norm 
frames. We have developed two narrative functions, IntroductionOfInjunctiveNormEvent and 
IntroductionOfDescriptiveNormEvent. We define the former as narrative events that introduce an 
evaluation of a situation or behavior and the latter as events that portray how prevalent a certain 

situation or behavior is. The reasoner attempts to prove these narrative functions by assuming 
them, which queries the respective Horn clause rules that analyze the semantics and returns 



T. OLSON AND K. FORBUS 

8 

variable bindings. Figure 2 provides an example of converting a semantic parse to a norm frame. 
This process can be thought of as finding a mapping between a sentence and corresponding 
concepts that fill the norm frame slots. For example, the narrative function 

IntroductionOfInjunctiveNormEvent is true when there exists a mapping S → (E, B, C), where S is 
the sentence parsed, E is the deontic status mapped from a modal found in the semantics, and B 
and C are the extracted concepts for behavior and context. Each slot, the evaluation, prevalence, 
behavior, and context, have their own respective set of detection rules that search for relevant 
semantic patterns. Because context is optional, if the context detection rules fail, then C is bound 
to the collection Location-Underspecified, the most general concept for locations. Once all 

extraction rules succeed, another rule constructs a new norm frame, its slot relations, and fills 
them with the extracted concepts. This frame is then stored in the current discourse microtheory. 
 

Figure 2. Example of constructing a norm frame from a semantic parse. 

3.4.2  Example Rules 

Table 1 provides example rules that detect when a descriptive norm has been introduced. The first 
rule constructs the logical form for the narrative event and the norm frame from bindings returned 
by the extraction rules. Narrative events are represented as nonatomic terms like so, 

(PresentationEventFn ?sid ?event-id). The variable ?sid denotes the sentence that was processed 
and ?event-id is a unique symbol identifier created by the presentation event. The rules for the 
first antecedent in the second rule, providesPrevalence, analyze the syntactic and semantic 
information produced by the parser CNLU to identify statements of frequency (e.g., “People 
commonly do X”). As their name suggests, the rules for the second and third antecedents, 
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introducesBehavior and introducesConditionalContext, detect introductions of behaviors and 
locations. For example, the most common pattern for behaviors found after parsing is the relation 
(performedBy <action> <agent>) and (eventOccursAt <action> <location>) for context. In the 

rule provided at the bottom of Table 1, the statement (ist-Information <context> <fact>) 
indicates that <fact> holds in microtheory <context>.  Abductive reasoning happens at the level 
of these ist-Information antecedents. The reasoner assumes these statements to be proved, which 
generates variable bindings. 
 As stated previously, to handle ambiguity the extraction rules narrow the space of choice sets 
via type constraints. The rules ensure that the extracted behavior is a specialization of type Action 

or ConfigurationOfAgent. The context is ensured to be a specialization of the collection Location-
Underspecified, indicative of common locations like LibrarySpace and DinnerParty. These 
collections tie into a rich ontology that supports reasoning about actions, states, and locations. 

Table 1. Example rules that compute narrative functions for descriptive norms. 

(<== (introducesDescriptiveNorm  

      (PresentationEventFn ?sid ?event-id) 

       ?norm) 

  (normMentionedViaPrevalenceStatement   

    ?sid ?context ?behavior ?prev) 

  (buildNormPrevalenceOnly 

    ?sid ?event-id ?context ?behavior ?prev    

    ?norm  

    (normMentionedViaPrevalenceStatement 

      ?sid ?context ?behavior ?prev))) 

 

(<== (normMentionedViaPrevalenceStatement 

  ?sid ?context ?behavior ?prev) 

 (providesPrevalence ?sid ?prev) 

 (introducesBehavior ?sid ?behavior 

  ?behavior-var) 

 (introducesConditionalContext  

    ?sid ?context ?behavior-var)) 

 

(<==(providesPrevalence ?sid ?prev) 

  (ist-Information (DrsCaseFn ?sid) 

    (frequencyOfEventType ?event ?prev)))  

  
 Table 2 shows the various mappings that result from the narrative function rules for injunctive 
norms. It is important to note the theoretical difference between causal necessity (a must) and 
normative necessity (an ought). "What Must I do to realize an end?" is not equivalent to "What 
Ought I do?" Or as Kelsen (1990) states, "administering poison being a means to killing, does not 

mean giving poison is an ought". Despite this conceptual distinction, in language we 
interchangeably use the word “must” for both causal and normative necessity. Similarly, the term 
“can” (physical possibility) overlaps with “may” (normative possibility). 
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Table 2. Mappings that result from running narrative function rules for injunctive norms. 

Natural Language Input Deontic Modal 

Ought to, Should, Must, 

*Lack of explicit evaluation* 
(e.g., “Sit in church.”) 

Obligatory 

Can, May Optional 

Should not, Must not, Cannot, 
Do not 

Impermissible 

 

  
 These mappings define a heuristic for determining where a given modal lies along the scale of 
deontic operators. Choosing the weaker element from the scale of deontic elements implies that 
the speaker believes none of the stronger elements. For example, we argue that within an 
imperative the terms “can” and “may” do not stand for permissible (in the traditional Deontic 
sense) but rather optional. When someone states, “You can eat on the bus.” they really mean it is 

optional, not obligatory nor impermissible. Assuming a sort of Gricean (1975) principle, it is the 
responsibility of the speaker to be as specific as possible, especially when placing themselves in 
an authoritative role by providing instruction. However, when formed as a question (“Can I eat 
here?”), the terms do seem to stand for permissibility. In this case, the inquisitor has determined 
the behavior they wish to perform and are now asking if it is not impermissible i.e., permissible. It 
is irrelevant if it is something they ought to do or just optional. This capability is necessary for 

creating systems that can interpret such modal language. A similar discussion can be found in 
works on scalar/quantity implicatures (Levinson 1983; Carston 1998) and Horn scales (Horn 
1972). 

3.5  Belief-Theoretic Norm Frames 

Once a norm frame is extracted from a sentence it is merged with existing evidence. Our 
framework represents basic belief assignments by explicitly representing evidence for the 
predicate calculus statements of evaluation and prevalence of a given norm frame. Here, an 
evidence source is a presentation event resulting from a narrative function. By tracking the 
collection of evidence for norm frame slots, norms become belief-theoretic, which we define as: 
 

Definition (Belief-Theoretic Norm). A belief-theoretic norm is a norm frame with an evaluation 
and/or prevalence frame of discernment and corresponding body of evidence. 

Definition (Evaluation Frame of Discernment). The evaluation frame of discernment is a set of 
possible logical statements of the form: 

((evaluation ?norm ?val-1) … (evaluation ?norm ?val-n)) 

 where ?norm is a reified norm frame, and ?val-1 to ?val-n are all the elements of 𝔻. The 

prevalence FoD is analogous, instead with the prevalence predicate and ?val-1 to ?val-n being all 
the elements of ℙ. 
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Definition (Body of Evidence). The body of evidence for evaluation and prevalence are sets of 
mass assignments which take the logical form:  

(evidenceFor ?pe ?ep ?mass) 

 where ?pe is a nonatomic term representing a narrative event, ?ep is a set of statements from 
the powerset of the evaluation or prevalence FoD, and ?mass is a mass assignment in the interval 
[0,1].  

 Each reified norm introduction event (i.e., the sentence, semantics and interpretation, and meta-
information such as the speaker) thus provides a basic belief assignment for the evaluation or 
prevalence statement(s). Intuitively, it provides evidence that a given norm frame’s evaluation 

and/or prevalence is equal to ?ep. Because ?ep is always a singleton, due to lack of ambiguity in 
direct testimony and instruction, here Dempster-Shafer theory does tend towards traditional 
probability theory. However, we assign a value of 0.9 for each BBA of a singleton and 0.1 for Θ, 
representing a measure of trust that is never complete. We plan to incorporate other more 
ambiguous sources of evidence in the future. 
 Like Sarathy et al.’s (2017) representation, our approach represents and learns belief-theoretic 

norms. Here, norm frames are learned by tracking basic belief assignments for the evaluation and 
prevalence slots. The confidence intervals for each evaluation or prevalence from the respective 
FoDs are computed by gathering all the evidenceFor statements for the corresponding norm frame 
slot and then chaining Dempster’s rule of combination. We have provided a belief-theoretic norm 
frame representation for the norm of eating on a bus in Figure 3 below. To save space, we have 
reduced the bodies of evidence to their resulting confidence intervals. 

(isa norm1 Norm) 

(context norm1 Bus-RoadVehicle) 

(behavior norm1 EatingEvent) 

 

Evaluation FoD 

[0.04,0.043] (evaluation norm1 Obligatory) 

[0.47,0.48] (evaluation norm1 Optional) 

[0.47,0.48] (evaluation norm1 Impermissible) 

 

Prevalence FoD 

[0.0,0.10] (prevalence norm1 Continuously) 

[0.0,0.10] (prevalence norm1 Often) 

[0.0,0.1] (prevalence norm1 Sometimes) 

[0.9,1.0] (prevalence norm1 Rarely) 

[0.0,0.1] (prevalence norm1 Never) 

 

Figure 3. Belief-theoretic norm frame representation for the act of eating on a bus. 
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3.6  Queries for Reasoning and Question Answering 

The system computes belief values for a given norm frame slot via back-chaining queries. We 
have developed three types of such queries for both evaluation and prevalence. We will describe 
only those for evaluation, but the queries for prevalence follow the same convention. Each of the 
following relations take an agent’s belief microtheory as the first argument which contains the 
predicate calculus representations of the norm frames and bodies of evidence. Effectively, these 
relations represent the epistemic states of an agent given available evidence. 

 (believesEvaluationOfBehaviorInContext ?mt ?b ?c ?e): Determines if a norm is believed in 
microtheory ?mt, where belief is true when (bel + pl) /2 ≥ belief threshold. We set the default 
belief threshold to 0.9. If the behavior ?b or context ?c is unbound, it binds them to the concepts 
from slots of the norm frame that is retrieved. Thus, one can query “Where should I not eat at?” 
and receive bindings for the variable ?c consisting of contexts like “in the bathroom”. 
 (confidenceInEvaluationOfBehaviorInContext ?mt ?b ?c ?e ?interval): Runs Dempster’s rule 

of combination across the basic belief assignments in microtheory ?mt for a norm frame with 
behavior ?b, context ?c, and evaluation ?e. It then computes the belief and plausibility functions, 
and binds ?confidence-interval to the interval [belief, plausibility]. 
 (mostBelievedEvaluationOfBehaviorInContext ?mt ?b ?c ?e): Runs Dempster’s rule of 
combination for a norm frame with behavior ?b and context ?c across the deontic frame of 
discernment and binds ?e to the deontic modal(s) with the highest belief value. 

3.7  Extraction and Learning Algorithm 

The full norm extraction and learning algorithm works as follows. It starts with a set of sentences 
and a symbol denoting the discourse microtheory and the microtheory that holds the agent’s 

beliefs. For each sentence, it performs semantic parsing, resulting in predicate calculus statements 
being inserted into a discourse microtheory, and then runs the narrative function rules that search 
for norm introductions in the discourse microtheory. This process constructs norm frames 
(multiple can be introduced due to left over ambiguity) and stores them in the ongoing discourse. 
Based on the constructed norm frames for the current sentence, the system then runs a set of plans 
that perform mass assignment and norm frame merging. This process first ensures norm frames 

were successfully extracted from the current sentence. If so, it queries the agent’s belief 
microtheory to determine if a norm frame already exists with the same context and behavior as 
one of the extracted norm frames. If one has already been encountered, it simply records the 
narrative event as evidence for the relevant slot in this frame. Otherwise, it chooses one of the 
extracted norm frames and records it in the beliefs microtheory. The evidence statement for this 
frame is stored as well. This learning process results in the agent’s belief microtheory being 

populated with predicate calculus representations of the extracted norm frames and basic belief 
assignments from the training data. We show this workflow in figure 4 below. 
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Figure 4. Workflow diagram for assimilating evidence from NL teachings. 

 To further illustrate our norm training framework, let us use the example norm involving eating 
on the bus. Imagine an agent is told by a bus driver, “You may eat on the bus.” The next day the 
agent is told by a close friend, “You should not eat on the bus.” And another friend similarly says, 

“Do not eat on the bus.” Later a stranger advises, “You should eat on the bus.” Then while 
entering the bus a sign reads, “You can eat on the bus.” This results in five explicit evidence 
sources for the same norm frame. 
 Consider the second friend’s instruction, “Do not eat on the bus.” After parsing we have the 
semantics below1. 

 

(not (DrsCaseFn discourse1)) 

(DrsCaseFn discourse1): 

   (performedBy action1 (GapFn :SUBJECT)) 

   (isa action1 EatingEvent) 

   (eventOccursAt action1 context1) 

   (isa context1 Bus-RoadVehicle) 

 
The negation of a subcontext provides the signal for a negative modal. Querying the narrative 
functions, a rule will first detect the negative modal and return bindings for the evaluation of 
Impermissible. The first antecedent for the injunctive norm narrative function rule has been 
proven, now the rule needs bindings for a behavior and a context. The extraction rules will 
attempt to abductively prove behavior introductions by assuming: (ist-Information (DrsCaseFn 

discourse1) (performedBy ?behavior-var ?agent)) and (ist-Information (DrsCaseFn discourse1) 

 
1 Note that the parser does introduce other potential isa relations due to ambiguity, but the semantics have been 

simplified for this example. 
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(isa ?behavior-var ?behavior-type)). This will match the performedBy and isa relations in the 
semantics and pass up bindings for the ?behavior-type as EatingEvent, as it satisfies the type 
constraints i.e., it’s a specialization of Action. Similarly, tracing through the eventOccursAt 

relation binds the context to Bus-RoadVehicle. The system has now proven each antecedent. It 
has detected a negative modal, a behavior, and a context, and therefore has encountered a 
negative instruction, or an IntroductionOfInjunctiveNormEvent.2 Now that the narrative function 
rules have constructed the norm frame, the system searches the agent’s belief microtheory and 
finds that a norm frame, norm1, with the same behavior and context has already been learned 
(from the encounter with the bus driver and the first friend). So, it stores the mass assignment: 

(evidenceFor presentation-event1 ((evaluation norm1 Impermissible)) 0.9). 
 Figure 5 shows the confidence in the norm being permissible as the five evidence sources are 
encountered. As a reminder, DS intervals for permissibility are computed via the back-chaining 
belief queries containing the equivalent set {Obligatory, Optional}. Figure 5 illustrates how the 
interval tightens as evidence is encountered. The system has high belief in the fact that eating on a 
bus is permissible after first talking to the bus driver. However, it is not completely certain yet. 

As it talks with friends, strangers, and consults other sources it tends to have less belief in the fact 
that eating on the bus is seen as permissible but becomes more confident in its evaluation. Notice 
that confidence increases rapidly due to lack of ambiguity in the mass assignments, i.e., a default 
mass of 0.9 is always assigned to a singleton as previously stated. 

 

Figure 5. Belief and plausibility values overtime for the permissibility of eating on the bus. 

 

 
2 Some rules require looking within nested discourse structure due to nested modals. For example, processing “You 

should not X” maps the semantic representation, (not (oughtToDo X)), to the deontic modal representation 

Impermissible(X). 
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4.  Evaluation 

Evaluating approaches to norm learning is difficult due to the subjective nature of social norms. 
Therefore, rather than focusing on if the learned norms are desirable themselves, we aimed to 
evaluate our approach with respect to how well it could extract, track evidence, and compute 
belief functions for norms presented in natural language. 
 To test our approach, we curated a training dataset of 100 natural language sentences, some of 

which we authored, and some were simplified from other sources, such as books on etiquette 
(Post and Post 2004; Post et al. 2017; Flannery and Sanders 2018) and posts on social norms 
(Social Norm Examples 2020) and morals (Kittelstad 2020) from the web. We ensured a 50/50 
split between imperatives and testimony and that each modal and prevalence pattern was present 
in the dataset. Two examples from the dataset are, “You should not eat in the bathroom.” and 
“People often sing at recitals.” We also constructed a dataset of negative examples to test the 

closure of our narrative function rules. This dataset consists of 135 sentences that were curated 
from 4 simplified Wikipedia articles (synopsis of Tell-Tale Heart, description of Mathematics, 
and biographies of Immanuel Kant and Sojourner Truth) as well as manually constructed atomic 
stories that aligned with a random subset of the training dataset. For example, we constructed the 
sentence “Karli yelled in the library” from the deontic declaration “You should not yell in the 
library.” The former sentence does not explicitly introduce a norm, but it does contain the same 

behavior and context, so it serves as an adversarial example. In summary, the entire training 
dataset consists of 235 sentences, 100 of which are positive examples (with a 50/50 split between 
introductions of injunctive and descriptive norms) and 135 being negative examples. 
 We annotated each positive example with natural language queries and their expected 
responses. For instance, for the norm of singing, the query and expected response pair generated 
was: (“How often is someone singing at a recital?”, Often). When a certain norm had conflicting 

sentences endorsing it, we manually labeled the queries with second-order concepts. For example, 
the set of imperatives contained the sentence, “You should eat in the kitchen.”, which provides 
evidence for obligation. It also contained the sentence, “You can eat in the kitchen.”, which 
endorses the behavior as being optional. In this case we only generate one query for permissibility 
(obligatory or optional). This means that the number of queries is less than or equal to the amount 
of datapoints.  

 To interpret and run the queries, the system parses the sentences into their respective logical 
forms via the same pragmatic inference process. We have built two simple syntactic rules for 
detecting norm requests: “What is your evaluation of <behavior, context>?” and “How often is 
someone <behavior, context>?”.  To maintain consistency across training and testing, we then use 
the same behavior and context narrative function extraction rules. To illustrate, “How often is 
someone singing at a recital?” maps to (believesPrevalenceOfBehaviorInContext ?beliefs-mt 

Singing MusicalPerformance ?prev). 

4.1  Experiment One 

Our first experiment evaluated the classification accuracy of our narrative function rules. We first 
ran the norm frame extraction algorithm on the training dataset of natural language sentences and 

then calculated precision and recall scores. We define a true positive as the event in which a 
narrative function rule fires on a positive datapoint and a true negative when all rules fail on a 
negative datapoint. 
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 We received perfect recall over the dataset i.e., norm frames were constructed for each positive 
example. On the negative examples, the narrative function rules failed as desired on 131 of the 
135 sentences, yielding a precision score of 0.96. The four false positives were sentences with 

common structure to the positive examples. These results yield an F1 score of 0.98. 

4.2  Experiment Two 

In the second experiment, we tested the learning of confidence intervals. Again, we are not 
concerned with the question of if the agent has desirable beliefs, but rather if our approach yields 

beliefs that are indicative of the dataset. For example, it should not believe that people never cry 
at funerals, because there are explicit sentences saying that we often do. Hence, this experiment 
ensured the norms introduced by each data point were believed by the system after training. To do 
so, we ran the set of natural language queries with respect to the agent’s belief microtheory after 
training and evaluated for accuracy. If norm extraction, mass assignment, and norm merging all 
succeed, then each respective belief query should return the correct response. This experiment 

also evaluates false and relative beliefs due to the nature of DS theory. As a reminder, we 
determine true belief by: (𝑏𝑒𝑙 +  𝑝𝑙) /2 ≥  0.9. By the fact that all masses sum to one, there can 
be only one element from the frame of discernment with a belief center of mass ≥ 0.9. Less 
formally, if the system believes what we say it should, then it also disbelieves what it should. 
 We achieved 100% query accuracy over the dataset. After training, 47/47 belief queries 
succeeded for injunctive norms and 47/47 for descriptive norms. Examples of learned norms are 

provided in table 3 below. Overall, our results suggest that the top-level interpretation rules for 
modal language are successful at detecting introductions of both norm types. Any failures would 
result from coverage and ambiguity for behavior and context introductions. These can be handled 
by extending our language and interpretation coverage and through interactive repair. These 
results also suggest that by representing norms as frames and storing mass assignments for slots, a 
system can correctly combine evidence to determine its belief in both norm types. No previous 

approaches have demonstrated this ability to learn both descriptive and injunctive norms. 

Table 3. Examples of learned norms. 

Training Sentence(s) Testing Query Model Output 

You can eat in the kitchen. 

You should eat in the kitchen. 

What is your evaluation of eating in the 

kitchen? 

Permissible 

Walk in the hallway. What is your evaluation of walking in 

the hallway? 

Obligatory 

You should not steal. What is your evaluation of someone 

stealing? 

Impermissible 

People sometimes steal. How often is someone stealing? Sometimes 

People often cry at funerals. How often is someone crying at 

funerals? 

Often 

People rarely talk in 

elevators. 

How often is someone talking in 

elevators? 

Rarely 
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5.  Related Work 

Our use of narrative function for extraction is analogous to that of McFate, Forbus, and Hinrich’s 
(2014) work on extracting QP frames from natural language. Like them, our largest issue with 
using rules for narrative functions is broadening coverage. We focused here on single action and 
location types, but we need to expand to cover mental acts, more sophisticated action and context 
descriptions, other evaluative statements, and so on. We will continue to extend these extraction 

rules manually and investigate learning them automatically via ILP techniques and analogy 
(Crouse, McFate, and Forbus 2018). 
 Dempster-Shafer theory has also been used for learning, including norms (Sarathy et al. (2017)) 
and indirect speech acts (Wen, Siddiqui, and Williams’s (2020)). However, the data these 
approaches used came from hand-crafted questionnaires and participant responses. We go beyond 
these efforts by providing a means to learn from natural language. Furthermore, the evidence 

representation presented here provides the capability to construct a typology of evidence types to 
reason over. For instance, a theory may posit that instruction holds more weight for normative 
reasoning than observation. By reifying the information bearing events in the evidenceFor 
statements, our approach can, for example, determine that a norm is valid due to a single 
instruction, regardless of how much evidence has been observed via other means. 
 The most relevant work comes from Sarathy et al.’s (2018) approach to learning cognitive 

affordances for objects from NL instruction. Narrative function serves a similar function as their 
pragmatic inference processes. Though their representation of an affordance is like a norm frame 
in that they are belief-theoretic, norm frames differ in that they contain both deontic status and 
prevalence as consequents. As discussed throughout this paper, this allows us to represent 
descriptive and injunctive norms in the same frame, importantly distinguishing between the 
dimensions of prevalence and evaluation. 

6.  Discussion and Future Work 

This paper provides a foundation for teaching artificial agents our norms through natural language 
instruction. This is important as a step towards ultimately enabling people who are not AI experts 

to train systems about social norms. We have shown that narrative functions as formal queries can 
be used to interpret imperatives and testimony presented in natural language. Our work further 
demonstrates that a combination of DS theory and a norm frame representation allows a system to 
learn both descriptive and injunctive norms.  
 We have shown how norms can be learned via explicit means. However, there are many other 
forms of social learning that introduce norms more implicitly, e.g., observing a mother shake her 

head shortly after her child yells in the store. Such behavior-response pairs yield evidence for 
norms as well. We plan to explore utilizing stories as a source of learning norms. The 
interpretation rules will be built out to perform said story understanding and pragmatic inference. 
This will also further test the utility of Dempster-Shafer theory as discussed in (Premaratne et al. 
2009). We will explore more sophisticated Dempster-Shafer update methods and frameworks 
(Falkenhainer 1988; Premaratne et al. 2009) and other evidence combination functions (Sentz and 

Ferson 2002) to support online learning. 
 Most importantly, we will explore the question of if and how moral norms can be represented 
and learned by machines. The alert reader might question how this approach (or any norm 
learning approach) keeps artificial agents from learning undesirable norms (e.g., outdated gender 
standards, racial stereotypes). As it stands, this approach cannot take such a critical stance on 
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learned norms. To do so, an agent must have a grasp of standards that transcend our cultures and 
times. We argue that such moral norms must be grounded in more than empirical matters. “That’s 
just not what we do here” is a weak justification for believing that harming others is 

impermissible. Whether this grounding must come from rational first principles, emotions, or 
some other source has long been debated (Brennan et al. 2013; Korsgaard 2012; Hume and 
Levine 2005; Nietzsche 2004). We will analyze such philosophical discussions in hopes to 
provide a foundation for artificial agents to gain knowledge of moral norms as well. 
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