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Abstract 
Reasoning is arguably at the heart of cognitive systems.  Human reasoning, while still 
outperforming AI reasoners in many ways, has some well-explored limitations, called cognitive 
illusions in the psychological literature.  This paper provides an initial theoretical analysis of 
several cognitive illusions in computational terms.  The basic phenomenon is outlined and three 
illusions are summarized.  An abstract model for reasoning systems is described to provide a 
program-independent way to characterize reasoning.  This model is then used to propose 
explanations for the three illusions, including a novel psychological prediction.  It also examines 
potential ways the reasoning model could be extended to either model human reasoning more 
closely, or to build cognitive systems that better complement weaknesses in human reasoning.   

1.  Introduction 

While humans are likely the smartest creatures on the planet, our reasoning is far from error-free.  
Cognitive illusions (also called cognitive biases) have been extensively catalogued in the 
psychological literature.  Like optical illusions providing insights into how vision works, such 
cognitive illusions can be used to provide insights into how human reasoning works.  
Considerable research has explored the role of heuristics in human reasoning, ranging from the 
seminal work of Tversky and Kahneman (1974) to Gigerenzer’s (2007) fast-and-frugal methods.  
These heuristics are built upon the particulars of our cognitive capabilities, such as how our 
memories work.  A classic example is the availability heuristic (Tversky & Kahneman, 1974), 
where we assess the probability of something by how easy it is to retrieve it.  Such heuristics 
sacrifice soundness and completeness in favor of efficiency, enabling us to reason flexibly and 
easily under tight resource constraints.  Given that, in many real situations, information is 
incomplete and actions must be taken in a timely manner, these trade-offs are often reasonable.  
However, the same illusions operate in situations where more careful analysis is required, and 
plague even trained professional intelligence analysts (Heuer, 1999).   
 The psychological mechanisms that give rise to these cognitive illusions are only partially 
understood.  But given the growing need to create AI reasoning systems that can work with 
people doing professional reasoning, it makes sense to also look at these illusions from a 
computational perspective.  There are three reasons for this: 

1. If AI reasoning systems can be constructed that are immune to these cognitive illusions, 
that could make them more useful by complementing human capabilities. 
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2. Today’s AI reasoning systems are superhuman for particular narrow types of reasoning 
(e.g. SAT solving, model checking), but still lack the flexibility of human reasoning and 
the ability to use reasoning with natural modalities to help frame problems.  A better 
understanding of human cognitive heuristics could lead to principles for creating more 
flexible AI reasoners. 

3. Given that human professional reasoning often involves tasks that require highly 
expressive representations (e.g. reasoning about knowledge, belief, and contexts), AI 
reasoning algorithms will invariably have their own trade-offs in terms of soundness, 
completeness, and efficiency.  Understanding what new cognitive illusions they might be 
susceptible to would help us improve them and design practices to minimize negative 
impacts. 

 This essay begins with a brief introduction to cognitive illusions.  It is far from comprehensive: 
the number of cognitive illusions that have been identified in the cognitive psychology literature 
is large1.   However, their distinctions are in terms of externals, rather than underlying 
mechanisms.  A computational analysis of underlying mechanisms might ultimately provide a 
more concise account of them.  Next an abstract AI reasoning model is described, introducing 
some relevant mechanisms.  These mechanisms will form the basis for the proposed explanations 
and solutions to the particular cognitive illusions examined here.  Some conclusions and 
suggestions for future work wrap up the essay. 

2.  Three Key Cognitive Illusions 

We focus on three illusions here because they have been identified as problems for intelligence 
analysts and implicated in the negative impacts of misinformation (aka “fake news”).  This 
section provides a concise summary of them, to set the stage. 
 
2.1 Confirmation bias 
Confirmation bias is an umbrella term referring to the tendency for people to prefer supporting 
beliefs that they already have.  This includes failing to seek evidence against such beliefs and 
discounting negative evidence when it is found.  Examples from recent history include conspiracy 
theories about COVID-19 and about the 2020 US Presidential election.  Several possible reasons 
have been suggested for confirmation bias.  One component may be due to the nature of retrieval 
from long-term memory.  Priming is the phenomena where what has been recently considered 
affects the probability of what is retrieved subsequently.  Hence an explanation for an action is 
more likely to retrieve other memories relevant to that explanation, rather than alternative 
explanations for that action.  If competing explanations are retrieved, they can be discounted by 
focusing on differences between that situation and the current situation, rendering them poorer 
matches. 
 An interesting computational model for confirmation bias has been based on ACT-R (Lebiere 
et al. 2013; Thomson et al. 2014).  They explored how mechanisms of that architecture could lead 
to confirmation bias, as well as other biases, namely anchoring, representativeness, and 

 
1 For example, the Wikipedia article “List of cognitive biases” includes 200 items, although many of them 

are variations of more general types, and 44 concern properties of memory recall.  (Retrieved 7/1/21) 
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probability-matching.  Confirmation bias was explained in two ways, the use of blended retrievals 
of instances and the effect of those utility estimates on subsequent information gathering efforts.  
The model was successfully matched against human performance on a sensemaking task.  
However, the model only uses a simple attribute-based model of instances, and it is not clear that 
it can be extended to handle the kinds of relational structure that apply more generally in 
reasoning tasks, e.g. explanations and causal models. 
 
2.2 Mirroring 
Mirroring refers to the tendency of using one’s own beliefs, values, and motivations when 
reasoning about someone else.  In cognitive development, the use of analogy between self and 
others (e.g. Meltzoff’s (2005) “like me” hypothesis) has been proposed as a valuable means of 
bootstrapping knowledge, as infants learn from those around them.  Similarity is only a good 
guide when the actors are similar in relevant respects, of course, hence for reasoning about other 
cultures, analogical inferences must be more carefully scrutinized.  Such inferences may or may 
not be conscious.  If unconscious, it may be an example of attribute-substitution (Kahneman & 
Shane, 2002), where to estimate a property that is unknown (e.g. the goal of an opponent) one 
substitutes an easier to compute property (e.g. one’s own goals).   
 Several attempts have been made to model mirroring computationally.  Yalcin & DiPaola 
(2018) argue that modeling empathy requires mirroring at multiple levels, but they do not propose 
a mechanism by which mirroring occurs.  Similarly, several papers have examined computational 
models of mirror neurons and tissues involving them but have not led to computational systems 
that can actually do mirroring (Thill et al. 2013).  An ACT-R model of like me simulation has 
been used for human-robot interaction experiments (Kennedy et al. 2009; Hiatt et al. 2011), but 
only for predicting properties of other agents in an embodied environment, not the kind of 
conceptual reasoning we are focusing on here.   
 
2.3 Misinformation effects 
The social impacts of misinformation, such as conspiracy theories in politics and in anti-
vaccination campaigns, are proving quite significant.  Misinformation is a tough problem 
because, even when people learn that a piece of news is incorrect, people often continue to use it 
in reasoning (Johnson & Seifert, 1994). When exposed to incorrect information, that incorrect 
information can override their prior knowledge (Rapp et al. 2020).  For example, participants read 
stories where deliberately false incidental information was injected, e.g. “Someone, maybe an 
actor named Oswald, has killed Lincoln.”  Later, when asked who killed Lincoln, some answered 
“Oswald”, while others gave the correct answer “Booth”, but did so more slowly (Gerrig & 
Prentice, 1991; Rapp & Salovich 2018).  Put another way, these studies suggest that recent 
information can overcome people’s knowledge of facts that they have known for years.   This 
suggests that people are poor at tracking dependencies in their reasoning, enabling information 
from different contexts to “leak” into the current situation.   A heavily studied aspect of 
misinformation effects is the continued influence effect (e.g. Lewandowsky et al. 2012), where 
retractions of misinformation are ineffective, in that the retracted information is still used in 
reasoning.  Evidence suggests that the timing of corrections does not matter (e.g. immediately 
versus two days later), and that belief in the mistaken information can return post correction (Rich 
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& Zaragoza, 2020).  We lump these phenomena together because their underlying source appears 
to be the processes involved in fact storage, retrieval, and verification. 
 Psychological studies of these phenomena are relatively recent, and there do not seem to be 
computational models of these effects yet.   

3.  An Abstract Reasoning Model 

To explore how cognitive illusions might arise in AI systems, we need a model of reasoning 
systems that we can use to compare against properties of human reasoning.  This section 
describes an abstracted version of the FIRE reasoning engine (Forbus et al. 2010) to play that 
role.  It captures the functional capabilities of FIRE while suppressing irrelevant properties and 
engineering details.  We choose FIRE because it is designed to model key aspects of human 
reasoning, including the ability to work with the highly expressive symbolic representations of 
knowledge needed to capture human conceptual structure, and a heavy reliance on analogical 
reasoning and learning (Gentner 2003).  Some aspects of it, e.g. the analogical processing models, 
are indeed psychological models and have been tested against a variety of phenomena and used to 
make novel predictions (e.g. Forbus et al. 2016).  Other aspects are not, as noted below.  I point 
out similarities and differences between how it operates and human reasoning, to the extent that 
we know them at this point.  
  
3.1 Knowledge Representations 
There is ample evidence that human knowledge includes structured, relational representations 
(Gentner & Maravilla 2018).  These include both propositional statements describing particular 
states of affairs and logically quantified knowledge to represent rules and other general 
statements.  We assume a higher-order logical representation, capable of using predicates as 
constants, in order to express type-level axioms and metaknowledge and to handle modal 
statements (i.e. explicit statements about knowledge and belief).  The kinds of information such 
knowledge encodes includes event schemas, causal laws, qualitative models, and action models.  
We further assume that there is a hierarchical arrangement of concepts, providing the multiple 
layers of description needed to reason with partial information and to make broad, robust 
generalizations (e.g. that animals require food to survive).   Schemas are implemented via 
neoDavidsonian conventions, i.e. schemas are represented via a bundle of assertions involving an 
explicit entity representing the event or situation of the schema, with role relations connecting the 
parts to the event.   
 An important aspect of representation often overlooked are representations for context.  We 
build on the Cyc notion of microtheories (Guha 1991).  A microtheory is a collection of 
statements taken together as a unit.  There is an inheritance relationship between microtheories, 
which enables contexts for a particular task to be dynamically constructed.  Typically the contents 
of a microtheory are internally consistent, and alternate contradicting perspectives are represented 
in terms of distinct microtheories.  For example, Newtonian, relativistic, and quantum laws of 
physics would be stored in distinct microtheories.  The ability to explicitly refer to contexts is 
important for reasoning with them, e.g. in solving a physics problem, there are rules of thumb that 
suggest which set of laws might be useful, and criteria for determining when one has made an 
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incorrect choice2.  Similarly, when an analyst is considering alternative explanations, these 
explanations can be worked up in distinct microtheories, which can then be compared and 
contrasted to guide further elaboration and decision-making.   
 
3.2 First-Principles Reasoning 
We assume that mechanisms for reasoning with rules containing variables are available.  Rules 
need not be logically sound, although the ability to detect contradictions, perhaps via additional 
reasoning, is assumed.  Moreover, rules may be used abductively, e.g. some antecedents might be 
marked as abducible, so that if they are not known, they can be assumed if needed to draw 
desirable conclusions (Hobbs et al. 1993).  We note that first-principles reasoning can be 
combinatorially explosive, and hence tends to be done with resource bounds, which trades off 
completeness for efficiency.  Often sets of rules can be treated as performing logical deduction, 
although non-monotonic predicates3 extend inferential capabilities beyond this.  We also note that 
logical rules are better at capturing what is possible or impossible, rather than what is typical.  
This is why probabilities are often used to guide abductive assumptions and why analogy is used 
as well as first-principles reasoning, as described below. 
 
3.3 Memories 
We assume a knowledge base that serves as a general storehouse, akin to long-term memory.  
Psychologists typically distinguish semantic memory, i.e. general knowledge, from episodic 
memory, i.e. knowledge of particular experiences.  Semantic memory consists of general facts in 
the knowledge base.  Episodic memories are encoded via microtheories in the knowledge base, 
e.g. what was gleaned from a reading a story, understanding a sketch, or solving a problem.  
Psychologists also distinguish declarative memories from procedural memory.  In this model, 
procedural memory lies in the knowledge base’s ability to store inference rules and task 
descriptions for plans as declarative representations, just like the other kinds of information in the 
knowledge base.  Functionally, inference rules provide new conclusions while plans are used to 
construct sequences of behavior and take actions, including invoking reasoning.   
 A number of cognitive architectures focus on learning procedural knowledge via the 
accumulation and tuning of production rules (e.g. Anderson 2009; Laird 2012; Choi & Langley 
2017).  My conjecture is that skill learning has little to do with cognitive illusions, that is, the 
accumulation of declarative knowledge along with fixed reasoning mechanisms seem to suffice 
for explaining the illusions examined here. 
 A major difference between human long-term memory and FIRE’s model is how retrieval 
works.  Spontaneous remindings can happen in both, although in FIRE, this currently only 
happens via analogical retrieval, as described below.  FIRE supports logical queries against its 
knowledge base, using a query pattern combined with a logical environment (i.e. a microtheory 

 
2 This provides a mechanism for implementing automatic model formulation as used in qualitative 

reasoning, which may be useful for some forms of social reasoning as well as physical reasoning (Forbus, 
2019).   

3 For example, uninferredSentence is true exactly when the statement which is its argument cannot 
be proven within the current logical environment.  With this predicate other nonmonotonic reasoning 
patterns, such as negation by failure, can be implemented. 
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and what it inherits from), and by default returns all matching answers.  By contrast, human 
explicit retrievals tend to be small in number, even though the number of potential matches can be 
huge.  Such tight bounds make sense for organisms that accumulate massive amounts of 
experience.  SOAR and ACT-R have been used to model long-term memory retrieval using 
spreading activation, although obviously testing at human scale is currently beyond the state of 
the art.   
 Two other forms of memory typically used in psychological explanations are short-term 
memory and working memory.  Short-term memory is the infamous 7 plus/minus 2 (Miller, 
1955), which FIRE does not model at all.  Working memory is harder to characterize.  Ericsson & 
Kintsch (1995) provides evidence that it can actually be huge, and that for some kinds of 
information, a brief intervention in a laboratory experiment can increase a participant’s capacity 
by a factor of 1,000, demonstrating that working memory involves expertise.  FIRE’s working 
memory is implemented via a reasoning system that incorporates a logic-based truth maintenance 
system (Forbus & de Kleer, 1993).  Propositions are recorded with justifications in terms of other 
facts, using clauses.  Thus any conclusion can be inspected and the underlying assumptions 
identified.  When an assumption is retracted, all beliefs based on that assumption are also no 
longer believed, unless there is alternative support for them in the network of clauses that 
constitutes working memory.   We note that the propositional reasoning algorithm used in the 
logic-based truth maintenance system may or may not be psychologically plausible, we treat it as 
an engineering approximation.  Similarly, the degree to which people record dependencies during 
reasoning is an open question.  The evidence cited below suggests that in people, dependency 
tracking is less than complete. 
 Both rule-based inference and analogical inference (see below) operate by adding facts and 
clauses to working memory.  Moreover, specialized inference capacities (e.g. visual processing 
and natural language understanding) also write their results to this working memory, thereby 
providing a tight integration across all forms of reasoning.  FIRE does not contain an automatic 
consolidation process to move material to long-term memory.  Instead plans or procedures 
associated with particular systems select material to move, often based on writing working 
memory microtheories (in their entirety, or with bookkeeping facts filtered out) to the knowledge 
base.  Dependency information from the working memory may or may not be stored during such 
consolidation, depending on the algorithm used.   
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 Figure 1 illustrates the abstract reasoning architecture.  The knowledge base is persistent, while 
working memory is temporary, cleared when a reasoning session is over.  Like the knowledge 
base, the contents of working memory are structured in terms of microtheories.  That is, every 
fact is in some microtheory.  Here, two alternate hypotheses are being explored in separate 
microtheories (i.e. Hypothesis1Mt and Hypothesis2Mt).  These microtheories inherit from other 
microtheories, such as a microtheory representing the shared background assumptions of the 
analytic problem being explored.  This includes microtheories from the knowledge base, thereby 
providing the rules and other knowledge needed to reason with.  The nodes A, B, and C are 
propositions, connected by a dependency structure that indicates C is believed on the basis of 
both A and B being believed.  If either of those propositions lose support, then C would 
automatically lose support as well. 
 
3.4 Analogy 
The work of Gentner (2003) and others suggests that analogy is ubiquitous in human cognition.  
Functionally this makes a lot of sense, because people have vast amounts of experience from 
interacting with the world and with others in their culture.  Analogical reasoning is powerful 
because it enables remembered experiences to be used directly via analogy in new situations, and 
supports learning more portable, transferable knowledge via analogical generalization (Forbus & 
Hinrichs, 2017).  Analogy also supports one-shot learning, i.e. cases representing experience can 
be directly applied to new situations.   
 We have developed models of the key processes involved in analogical reasoning and learning 
based on Gentner’s (1983) structure-mapping theory.  These systems been used to both model a 
variety of human phenomena and to build performance-oriented AI systems.  We consider this an 
analogy stack for cognitive architectures.  It consists of 

 
Figure 1: An abstract reasoning model.  Cases and generalizations are microtheories.   
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 Analogical matching (SME; Forbus et al. 2016) 
 Similarity-based retrieval (MAC/FAC; Forbus et al. 1995) 
 Generalization in long-term memory (SAGE; Kandaswamy & Forbus, 2012) 
 Generalization in working memory (SageWM; Kandaswamy & Forbus, 2014) 

  Here we focus on the functional properties that are important for reasoning for each in turn.  

3.4.1 Matching 

The Structure-Mapping Engine (SME) compares structured, relational representations.  
Analogical inferences are constructed by projecting statements from the base into the target, 
based on correspondences found between other entities and statements, or vice-versa.  Such 
analogical inferences can be deductive or abductive (Falkenhainer, 1990), based on the form of 
the relational knowledge projected.  This is one solution to the qualification problem (McCarthy 
1977), since analogical matching does not assume a complete set of preconditions in order to 
project facts between descriptions.  This means, for example, that incomplete explanations can 
still be used to draw conclusions in new situations, as long as there is enough overlap between 
them so that the prior case is retrieved.   As explained below, Rabkina et al. (2017)’s analogical 
theory of mind suggests a way that “like me” inferences in mirroring may be computed. 
 
3.4.2 Retrieval 
Analogical retrieval provides cases or generalizations to be used in reasoning.  That is, given a 
situation in working memory, stored experiences (in case libraries that are part of the knowledge 
base) and/or generalizations constructed from experience (in generalization pools, see below) that 
are similar to it are retrieved, so that SME’s candidate inference mechanism can be used to infer 
new facts about the situation.  Analogical retrieval is sensitive to both surface properties (i.e. 
attributes and relationships among entities) and higher-order relations (e.g. relationships between 
statements), but since surface properties tend to be more easily encoded, they tend to dominate in 
retrieval from concrete examples.  In people, the degree of similarity supports inference (e.g. Heit 
& Rubenstein, 1994), so being sensitive to similarity during retrieval is not unreasonable.  
Properties of analogical retrieval may be involved in both confirmation bias and misinformation 
effects, as described below. 
 
3.4.3 Generalization 
People learn incrementally and in a data-efficient manner from examples, leading to 
generalizations that can be used more broadly in reasoning.  The Sequential Analogical 
Generalization Engine (SAGE; Kandaswamy & Forbus, 2012)  models this.  SAGE builds 
models of concepts, given an incremental stream of examples.  Each concept is represented by a 
generalization pool.  All generalization pools are part of the knowledge base.  A generalization 
pool can contain both generalizations and outliers.  Generalizations are constructed (or extended) 
when a new example being added retrieves a very similar item from the pool.  If the item is an 
outlier, then a new generalization is formed, otherwise the example is added to the existing 
generalization.  Every statement in a generalization has an associated probability, calculated 
directly by the frequency of which examples include a statement that aligns with it.  Thus SAGE 
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provides a mechanism for constructing priors for probabilistic reasoning.  SAGE has been used to 
automatically construct probabilistic rules and Bayes nets (Halstead & Forbus, 2005), as well as 
to model human conceptual change (Friedman & Forbus, 2009).    
 There is also a working memory version of SAGE, SageWM (Kandaswamy & Forbus, 2014), 
which has been used to model immediate generalization effects, e.g. learning during forced-
choice tasks (Kandaswamy & Forbus, 2014).  SageWM keeps a bounded set of examples, sorted 
by recency, which is used to help provide context.  SageWM may be directly involved in 
misinformation effects that occur within a single experimental session, as described below.   

4.  Characterizing Some Cognitive Illusions Computationally 

As noted above, we focus on three cognitive illusions that are particularly relevant for intelligence 
analysis and misinformation: Confirmation bias, Mirroring, and Misinformation Effects.  
  
 
4.1 Confirmation Bias 
In confirmation bias, once a hypothesis is formed, people tend to (1) gather and pay attention to 
evidence that supports it and (2) ignore evidence that contradicts it.  My hypothesis is that 
confirmation bias in knowledge gathering is, at least in part, a cost paid for powerful human 
pattern-recognition capabilities.  Consider a problem being analyzed, where spontaneous memory 
retrieval suggests a similar problem whose solution can be adapted to solve the current problem.  
For example, a physics problem might bring to mind a problem with a similar diagram, even 
though the principle used to solve the problem is entirely different (Chi et al. 1981), and hence it 
will turn out to be irrelevant.  Such appearance matches are common in human retrieval.  If that 
first retrieval remains in working memory, then its properties could become part of the probe used 
to find the next reminding.  This will increase the likelihood that examples similar to the first 
retrieved are found, rather than seeking a more distinct alternative.  In MAC/FAC, a retrieved 2nd 
example will likely be a literal similarity4 to the first retrieval, because the candidate inferences 
from the first retrieval will be added to the probe.  Hence any example sharing both the problem 
set-up and solution will be the most similar.  Thus retrieving a different solution, perhaps better 
able to provide a relevant principle, will become harder.  This suggest that AI systems using 
similarity-based retrieval will be susceptible to confirmation bias in information gathering, unless 
precautions are taken.  How might this be overcome? Consider using Cyc-style microtheories in 
working memory as the probes for analogical retrieval.  If the inferences from the first retrieval 
are added to a new microtheory, rather than the problem microtheory, then an unpolluted problem 
microtheory can again be used as a probe to retrieve the next-most similar example5.   
 The reasoning model does not place values on prior beliefs, and thus as is could not exhibit 
selective attention about evidence for or against a cherished belief because it has none.  I actually 
view this as a limitation, given the need to focus reasoning becomes more acute as the scale of 
knowledge and tasks increases.  We plan to add automatic compiling of statistical metadata about 

 
4 That is, overlapping in both appearances and causal structure (Gentner, 1983).   
5 Obtaining alternate remindings is done by temporarily suppressing previously retrieved cases from the 

case library. 
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facts to FIRE, to enable using such metadata in knowledge refinement, akin to how it is used in 
SOAR (Laird 2012).  For example, measuring accuracy (i.e. how often they lead to correct 
inferences) and utility (i.e. how often they are used) should be useful in detecting incorrect 
learned facts arising from misinformation.    Another arena where confirmation bias in evidence 
evaluation arises is in education.  Feltovich et al. (2001) has argued that one reason for the 
persistence of misconceptions is that learners often resort to mental shields that block evidence 
which would force them to change cherished beliefs.   Friedman’s TIMBER model of conceptual 
change uses preferences between explanation properties to capture aspects of this phenomenon 
(Friedman et al. 2018).  TIMBER includes four dimensions of preference, namely specificity of 
information, whether or not an explanation is supported by instruction, whether it is compatible 
with prior knowledge, and whether an explanation uses constituents that are refinements of earlier 
knowledge.  The hypothesis is that different people rank these dimensions of explanation 
evaluation differently.  For example, by varying explanation preference rankings, TIMBER was 
able to account for 90% of student model transitions in a psychological experiment on students 
learning about circulatory systems (Friedman & Forbus, 2011).  Using TIMBER-like mechanisms 
with preferences that are biased in favor of new information might be able to ameliorate 
confirmation bias in gathering and evaluating information.   
 
4.2 Mirroring 
In mirroring, a reasoner believes (often implicitly) that other actors think the way we do.  As 
noted earlier, this can be viewed as a form of attribute substitution, i.e. when we don’t have a 
model of another person (or culture), we substitute reasoning about ourselves/our own culture.  
Such like me reasoning is powerful for bootstrapping human social reasoning and theory of mind 
when it works.  For example, Rabkina’s Analogical Theory of Mind experiments demonstrate that 
our analogy stack can be used to model learning theory of mind inference from examples and 
from language (Rabkina et al. 2017, 2018), and can be used in AI systems to infer the goals of 
other agents (Rabkina et al. 2020).  Thus mirroring can be a source of increased flexibility in 
reasoning, by drawing on a system’s experience and/or lessons from stories to draw conclusions 
in circumstances where it does not have prior knowledge or sufficient rules to directly infer 
something. 
 Analogy can also lead one astray, of course.  How would this occur in the reasoning model 
here?  I assume that episodic memories include things that happened to the system itself, but also 
observations it makes about other people, and the contents of stories.  If all these materials are 
placed in a single case library (or into a set of generalization pools differentiated by, for example, 
type of event) no matter who they occurred to, then analogical retrieval could include memories 
based on the actions and events affecting others, which could lead to mirroring.  If, on the other 
hand, generalization pools are further differentiated by the actor, more refined models could be 
generated.  Christmas traditions in the US, Germany, and Japan are rather different, for example.  
By choosing generalization pools built to model aspects of particular cultures, cross-culture 
contamination can be eliminated when desired.  For example, MoralDM (Dehghani et al. 2008) 
used different libraries of cultural stories to express protected values for different cultures in 
moral decision-making.  Since unions of case libraries (and generalization pools) are themselves 
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treated as case libraries (or generalization pools), retrievals can be sought more broadly when 
appropriate.    
 
4.3 Misinformation Effects 
The crux of the problem with misinformation is that (a) people often do not detect that a story 
contains facts that they know to be incorrect and use those incorrect facts and (b) even when 
people learn that a piece of news is incorrect, they often continue to use it in reasoning.  Why 
might that be?  Consider the impact of inserting incorrect facts into a story (Hinze et al. 2014; 
Rapp & Salovich 2018). For example, “I named the boat after the mythical high civilization that 
sank into the sea, Pompeii.”  When, immediately after reading the story, participants were asked 
what mythical city fell into the sea, some answered “Pompeii” instead of “Atlantis”.  Others 
replied “Atlantis”, but took longer to answer than participants who read versions of the story 
without the incorrect fact.  How can such local information override facts that participants already 
knew? 
 I propose an explanation based on implicit analogical processing.  While most research on 
analogy has assumed it is a conscious operation, in fact there is evidence that implicit analogies 
are commonly used in human cognition.  These are not distant, cross-domain analogies, but rather 
literal similarities, i.e. within-domain analogies that are commonly used in reasoning.  Consider 
Day & Gentner (2007), which found that participants used information from a previously read 
story to understand a new story, without any awareness that they had done so.  This explanation 
assumes that all information in working memory is in one or more microtheories, just as 
information in the knowledge base is6, and that implicit analogical retrieval is used to answer 
questions.  Such implicit retrievals operate over SageWM as well as long term memory.  There 
are three cases to explain: 

1. Participants who gave the wrong answer: Their retrieval strategy is to stop after a 
reasonably matching answer is found, and they hit the representation of the story in 
SageWM and used that information. 

2. Participants who gave the correct answer, but more slowly: Their retrieval strategy looks 
in parallel at SageWM and the KB, and when they get multiple answers, they use 
provenance information and statistical metadata to choose which answer to accept.  The 
explanation preferences used in Friedman’s TIMBER model of conceptual change 
(Friedman et al. 2018) could be adapted to choose which answer is preferred. 

3. Participants who gave the correct answer, but with no speed difference:  Their encoding 
strategy did more vetting during the story understanding process, and marked the relevant 
fact as incorrect, perhaps even including the correct fact with a relationship to the 
incorrect fact.   

Psychologically, based on the findings of Day & Gentner (2007), this explanation predicts that (1) 
the intrusion of  misinformation could occur for up to several days, and (2) intrusions will be 
more likely when the new stimuli are very similar to the original example.  This would make an 
interesting experiment.  While the experiment above looked at immediate effects, other 

 
6 There is some psychological evidence that the understanding of stories is “compartmentalized”, as per 

Gerrig and Prentice (1991), which is compatible with our assumption of microtheory-based storage. 
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experiments have looked at retrieval over longer periods, e.g. two days (Rich & Zaragoza, 2020).  
Their use of the identical situation is the strongest similarity case, and hence compatible with 
implicit analogical processing, but if the explanation is implicit analogical processing, then such 
intrusions should also occur with similar but not identical situations.  This is a prediction that 
seems worth investigating. 
 Computationally, the reasoning model presented earlier would need two modifications to fully 
capture these effects.  The first concerns recency.  SageWM does incorporate recency, in that the 
working memory generalization pools are temporally ordered, and so more recent acceptable 
retrievals will be found first.  But SAGE in long-term memory, and MAC/FAC, do not 
incorporate recency.  We think it unlikely that working memory stays intact for several days, so 
to explain the implicit analogy findings, extending MAC/FAC and SAGE to use recency seems 
necessary.  Time is used in the reasoning model for a number of purposes, e.g. ascertaining when 
particular cached data is stale, but we currently do not use temporal discounting when evaluating 
retrieved facts, as ACT-R and SOAR do. 
 What about the role of dependency information?  Seifert (2002) suggests one possible 
explanation is that while some of the incorrect information has been edited out, at least some of 
its consequences remain intact.  Since many psychological experiments exploring these 
phenomena operate over a single session, this suggests that human dependency tracking in 
working memory is hit-or-miss.  Similar results were found by Rich & Zaragoza (2016), who 
further note that implied misinformation is harder to correct than explicit misinformation, 
compatible with this hypothesis.   
 How can we build AI systems to avoid misinformation effects?  The reasoning model already 
likely records more dependency information than people do, and this provides better provenance 
information. More vetting of incoming information is another strategy, i.e. detecting 
misinformation immediately.  This of course would increase comprehension time, which could be 
problematic, especially in interactive dialogue.   
 What about misinformation that has made it into the knowledge base?  There are two 
suggestions that might help.  The first is to use memory consolidation methods that preserve 
dependencies, so that they are retrieved along with potential answers.  This would enable 
additional scrutiny during evaluating retrieved answers.  The second is based on a technique for 
regularizing knowledge proposed in TIMBER, namely retrieving other relevant cases when a 
qualitative domain theory changes, to re-analyze them in terms of the new information.  This 
would place the additional vetting into an off-line rumination process, as in Forbus et al. (2007).   

5.  Conclusions and Future Work 

Understanding reasoning in people and machines is a key goal of cognitive science, and 
improving our computational understanding of human reasoning should help us make better 
cognitive systems.  This theoretical paper has looked at three important cognitive illusions, 
confirmation bias, mirroring, and misinformation effects in computational terms.  An abstract 
reasoning model was described and used to suggest computational explanations for them, 
including a novel psychological prediction.  These explanations also suggest ways to avoid such 
illusions in AI reasoning systems aimed at complementing human reasoning.   
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 There are many avenues for future work.  The first is developing one or more datasets that can 
be used for experiments.  We are working on generating such an open-license dataset, both for 
replicability and to encourage reasoning research.  The second is to expand the catalog of 
cognitive illusions examined, to develop computational descriptions that perhaps might provide 
more structure and order to the phenomenon.  The third is based on the hypothesis that cognitive 
illusions arise from trade-offs.  AI reasoners designed to overcome human cognitive illusions are 
still going to be designed based on trade-offs.  What new cognitive illusions will they be subject 
to?  This is an interesting and important question, in order to make cognitive systems whose 
conclusions we can trust. 
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