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Abstract

Analogy is core to human cognition. It allows us to solve
problems based on prior experience, it governs the way we
conceptualize new information, and it even influences our vi-
sual perception. The importance of analogy to humans has
made it an active area of research in the broader field of artifi-
cial intelligence, resulting in data-efficient models that learn
and reason in human-like ways. While cognitive perspectives
of analogy and deep learning have generally been studied in-
dependently of one another, the integration of the two lines of
research is a promising step towards more robust and efficient
learning techniques. As part of a growing body of research
on such an integration, we introduce the Analogical Matching
Network: a neural architecture that learns to produce analogies
between structured, symbolic representations that are largely
consistent with the principles of Structure-Mapping Theory.

1 Introduction
Analogical reasoning is a form of inductive reasoning that
cognitive scientists consider to be one of the cornerstones of
human intelligence (Gentner 2003; Hofstadter 2001, 1995).
Analogy shows up at nearly every level of human cogni-
tion, from low-level visual processing (Sagi, Gentner, and
Lovett 2012) to abstract conceptual change (Gentner et al.
1997). Problem solving using analogy is common, with past
solutions forming the basis for dealing with new problems
(Holyoak, Junn, and Billman 1984; Novick 1988). Analogy
also facilitates learning and understanding by allowing peo-
ple to generalize specific situations into increasingly abstract
schemas (Gick and Holyoak 1983).

Many different theories have been proposed for how hu-
mans perform analogy (Mitchell 1993; Chalmers, French, and
Hofstadter 1992; Gentner 1983; Holyoak, Holyoak, and Tha-
gard 1996). One of the most influential theories is Structure-
Mapping Theory (SMT) (Gentner 1983), which posits that
analogy involves the alignment of structured representations
of objects or situations subject to certain constraints. Key
characteristics of SMT are its use of symbolic representa-
tions and its emphasis on relational structure, which allow
the same principles to apply to a wide variety of domains.
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Until now, the symbolic, structured nature of SMT has
made it a poor fit for deep learning. The representations pro-
duced by deep learning techniques are incompatible with off-
the-shelf SMT implementations like the Structure-Mapping
Engine (SME) (Falkenhainer, Forbus, and Gentner 1989; For-
bus et al. 2017), while the symbolic graphs that SMT assumes
as input are challenging to encode with traditional neural
methods. In this work, we describe how recent advances
in graph representation learning can be leveraged to create
deep learning systems that can learn to produce structural
analogies consistent with SMT.

Contributions: We introduce the Analogical Matching
Network (AMN), a neural architecture that learns to produce
analogies between symbolic representations. AMN is trained
on purely synthetic data and is demonstrated over a diverse
set of analogy problems drawn from structure-mapping liter-
ature to produce outputs that are largely consistent with SMT.
With AMN, we aim to push the boundaries of deep learning
and extend them to an important area of human cognition; in
particular, by showing how to design a deep learning system
that conforms to a cognitive theory of analogical reasoning. It
is our hope that future generations of neural architectures can
reap the same benefits from analogy that symbolic reasoning
systems and humans currently do.

2 Related Work
Many different computational models of analogy have
been proposed (Mitchell 1993; Holyoak and Thagard 1989;
O’Donoghue and Keane 1999; Forbus et al. 2017), each in-
stantiating a different cognitive theory of analogy. The differ-
ences between them are compounded by the computational
costs of analogical reasoning, a provably NP-Hard problem
(Veale and Keane 1997). While these computational models
are often used to test cognitive theories of human behavior,
they are also useful tools for applied tasks. For instance, the
Structure-Mapping Engine (SME) has been used in question-
answering (Ribeiro et al. 2019), computer vision (Chen et al.
2019), and machine reasoning (Klenk et al. 2005).

Many of the early approaches to analogy were connection-
ist (Gentner and Markman 1993). The STAR architecture
of (Halford et al. 1994) used tensor product representations
of structured data to perform simple analogies of the form
R(x, y) ⇒ S(f(x), f(y)). Drama (Eliasmith and Thagard
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[1] nucleus [8] sun
[2] electron [9] planet
[3] MASS([1]) [10] MASS([8])
[4] MASS([2]) [11] MASS([9])
[5] ATTRACTS([1]], [2]) [12] TEMPERATURE([8]])
[6] REVOLVES-AROUND([2], [1]) [13] TEMPERATURE([9]])
[7] GREATER([3], [4]) [14] REVOLVES-AROUND([9], [8])

[15] GREATER([10], [11])
[16] GREATER([12], [13])
[17] ATTRACTS([9], [8])
[18] CAUSES(AND([15], [17]), [14])
[19] YELLOW([8]])

Figure 1: Relational and graph representations for models of the atom (left) and Solar System (right). Light green edges indicate
the set of correspondences between the two graphs.

2001) was an implementation of the multi-constraint the-
ory of analogy (Holyoak, Holyoak, and Thagard 1996) that
used holographic representations similar to tensor products
to embed structure. LISA (Hummel and Holyoak 1997, 2005)
was a hybrid symbolic connectionist approach to analogy. It
staged the mapping process temporally, generating mappings
from elements that were activated at the same time.

Cognitive perspectives of analogy have gone relatively un-
explored in deep learning research, with only a few recent
works that address them (Hill et al. 2019; Zhang et al. 2019;
Lu et al. 2019). Most prior deep learning works have con-
sidered analogies involving perceptual data (Mikolov, Yih,
and Zweig 2013; Reed et al. 2015; Bojanowski et al. 2017;
Zhou et al. 2019; Benaim et al. 2020). Such problems differ
from those seen in the structure-mapping literature in that
they typically do not require explicit graph matching and they
involve only one relation which is unobserved.

Our approach is conceptually related to recent work on
neural graph matching (Emami and Ranka 2018; Georgiev
and Lió 2020; Wang, Yan, and Yang 2019). Such works
generally focus on finding unconstrained maximum weight
matchings and often interleave their networks with hard-
coded algorithms (e.g., (Emami and Ranka 2018) applies the
Hungarian algorithm to coerce its outputs into a permutation
matrix). These considerations make them less applicable here,
as 1) SMT is subject to unique constraints that make standard
bipartite matching techniques insufficient and 2) we wish to
explore the extent to which SMT is purely learnable.

3 Structure-Mapping Theory
In Structure-Mapping Theory (SMT) (Gentner 1983), anal-
ogy centers around the structural alignment of relational rep-
resentations (see Figure 1). A relational representation is a set

of logical expressions constructed from entities (e.g., sun),
attributes (e.g., YELLOW), functions (e.g., TEMPERATURE),
and relations (e.g., GREATER). Structural alignment is the
process of producing a mapping between two relational repre-
sentations (referred to as the base and target). A mapping is
a triple

〈
M,C, S

〉
, where M is a set of correspondences be-

tween the base and target, C is a set of candidate inferences
(i.e., inferences about the target that can be made from the
structure of the base), and S is a structural evaluation score
that measures the quality of M . Correspondences are pairs of
elements between the base and target (i.e., expressions or en-
tities) that are identified as matching with one another. While
entities can be matched together irrespective of their labels,
there are more rigorous criteria for matching expressions.
SMT asserts that matches should satisfy the following:

1. One-to-One: Each element of the base and target can be a
part of at most one correspondence.

2. Parallel Connectivity: Two expressions can be in a cor-
respondence with each other only if their arguments are
also in correspondences with each other.

3. Tiered Identicality: Relations of expressions in a corre-
spondence must match identically, but functions need not
if their correspondence supports parallel connectivity.

4. Systematicity: Preference should be given to mappings
with more deeply nested expressions.

To understand these properties, we use a classic analogy
(see Figure 1) from (Gentner 1983; Falkenhainer, Forbus, and
Gentner 1989), which draws an analogy between the Solar
System and the Rutherford model of the atom. A set of corre-
spondences M between the base (Solar System) and target
(Rutherford atom) is a set of pairs of elements from both sets,
e.g., {

〈
[1],[8]

〉
,
〈
[2],[9]

〉
}. The one-to-one constraint



Figure 2: An overview of the model pipeline

restricts each element to be a member of at most one corre-
spondence. Thus, if

〈
[7],[15]

〉
was a member of M , then〈

[7],[16]
〉

could not be added to M . Parallel connectivity
enforces correspondence between arguments if the parents
are in correspondence. In this example, if

〈
[7],[15]

〉
was

a member of M , then both
〈
[3],[10]

〉
and

〈
[4],[11]

〉
would need to be members of M . Parallel connectivity also
respects argument order when dealing with ordered relations.
Tiered identicality is not relevant in this example; however, if
[10] used the label WEIGHT instead of MASS, tiered iden-
ticality could be used to match [3] and [10], since such
a correspondence would allow for a match between their
parents. The last property, systematicity, results in larger cor-
respondence sets being preferred over smaller ones. Note that
the singleton set {

〈
[1],[8]

〉
} satisfies SMT’s constraints,

but it is clearly not useful by itself. Systematicity captures
the natural preference for larger, more interesting matches.

Candidate inferences are statements from the base that are
projected into the target to fill in missing structure (Bowdle
and Gentner 1997; Gentner and Markman 1998). Given a set
of correspondencesM , candidate inferences are created from
statements in the base that are supported by expressions in
M but are not part of M themselves. In Figure 1, one candi-
date inference would be CAUSES(AND([7],[5]),[6]),
derived from [18] by substituting its arguments with the
expressions they correspond to in the target. In this work, we
adopt SME’s default criteria for computing candidate infer-
ences. Valid candidate inferences are all statements that have
some dependency that is included in the correspondences or
an ancestor that is a candidate inference (e.g., an expression
whose parent has arguments in the correspondences).

The concepts above carry over naturally into graph-
theoretic notions. The base and target are considered semi-
ordered directed-acyclic graphs (DAGs) GB =

〈
VB , EB

〉
and GT =

〈
VT , ET

〉
, where VB and VT are sets of nodes

and EB and ET are sets of edges. Each node corresponds to
some expression and has a label given by its relation, func-
tion, attribute, or entity name. Structural alignment is the
process of finding a maximum weight bipartite matching
M ⊆ VB × VT , where M satisfies the pairwise-disjunctive
constraints imposed by parallel connectivity. Finding candi-
date inferences is then determining the subset of nodes from

VB \ {bi :
〈
bi, tj

〉
∈M} with support in M .

4 Model
4.1 Model Components
Given a base GB =

〈
VB , EB

〉
and target GT =

〈
VT , ET

〉
,

AMN produces a set of correspondences M ⊆ VB × VT
and a set of candidate inferences I ∈ VB \ {bi :

〈
bi, tj

〉
∈

M}. A key design choice of this work was to avoid using
rules or architectures that force particular outputs whenever
possible. AMN is not forced to output correspondences that
satisfy the constraints of SMT; instead, conformance with
SMT is reinforced through performance on training data.
Our architecture uses Transformers (Vaswani et al. 2017)
and pointer networks (Vinyals, Fortunato, and Jaitly 2015)
and takes inspiration from the work of (Kool, Van Hoof,
and Welling 2018). A high-level overview is given in Figure
2, which shows how each of the three main components
(graph embedding, correspondence selection, and candidate
inference selection) interact with one another.

Representing Structure: When embedding the nodes of
GB and GT , there are representational concerns to keep in
mind. First, as matching should be done on the basis of struc-
ture, the labels of entities should not be taken into account
during the alignment process. Second, because SMT’s con-
straints require AMN to be able to recognize when a node is
part of multiple correspondences, AMN should maintain dis-
tinguishable representations for distinct nodes, even if those
nodes have the same labels. Last, the architecture should not
be vocabulary dependent, i.e., AMN should generalize to
symbols it has never seen before. To achieve each of these,
AMN first parses the original input into two separate graphs,
a label graph and a signature graph (see Figure 3).

The label graph will be used to get an estimate of structural
similarities. To generate the label graph, AMN substitutes
each entity node’s label with a generic entity token. This is
intentional, as it reflects that entity labels have no inherent
utility for producing matchings according to SMT. Then, each
function and predicate node is assigned a randomly chosen
generic label (from a fixed set of such labels) based off its
arity and orderedness. Assignments are made consistently
across the entire graph, e.g., every instance of MASS in both



Figure 3: Original graph (left), its label graph (middle), and its signature graph (right)

the base and target would be assigned the same generic re-
placement label. This substitution means the original label
is not used in the matching process, which allows AMN to
generalize to new symbols.

The label graph is not sufficient to produce representa-
tions that can be used for matching, as it represents a node
by only label-based features which are shared amongst dif-
ferent nodes, an issue known as the type-token distinction
(Kahneman, Treisman, and Gibbs 1992; Wetzel 2006). To
contend with this, a signature graph is constructed that rep-
resents nodes in a way that respects object identity. To con-
struct the signature graph, AMN replaces each distinct entity
with a unique identifier (drawn from a fixed set of possi-
ble identifiers). It then assigns each function and predicate
a new label based solely on its arity and orderedness, ig-
noring the original symbol. For instance, ATTRACTS and
REVOLVES-AROUND would be assigned the same label as
they are both ordered binary predicates.

As all input graphs will be DAGs, AMN uses two sepa-
rate DAG LSTMs (Crouse et al. 2019) to embed the nodes
of the label and signature graphs (equations detailed in Ap-
pendix 7.4). Each node embedding is computed as a func-
tion of its complete set of dependencies in the original
graph. The set of label structure embeddings is written as
LV = {lv : v ∈ V } and the set of signature embeddings
is written as SV = {sv : v ∈ V }. Before passing these
embeddings to the next step, each element of SV is scaled to
unit length, i.e. each sv becomes sv/‖sv‖, which gives our
network an efficiently checkable criterion for whether or not
two nodes are likely to be equal, i.e., when the dot product of
two signature embeddings is 1.

Correspondence Selector: The graph embedding proce-
dure yields two sets of node embeddings (label structure and
signature embeddings) for the base and target. We utilize the
set of embedding pairs for each node of VB and VT , writing
lv to denote the label structure embedding of node v from
LV and sv the signature embedding of node v from SV . We
first define the set of unprocessed correspondences C(0)

Ĉ = {
〈
b, t
〉
∈ VB × VT : ‖lb − lt‖ ≤ ε}

C(0) = {
〈[
lb; lt; sb; st

]
, sb, st

〉
:
〈
b, t
〉
∈ Ĉ}

where [·; ·] denotes vector concatenation, ε is the tiered identi-
cality threshold that governs how much the subgraphs rooted
at two nodes may differ and still be considered for correspon-
dence (in this work, we set ε = 1e−5). The first element of
each correspondence in C(0), i.e., hc =

[
lb; lt; sb; st

]
, is then

passed through an N -layered Transformer encoder (equa-
tions detailed in Appendix 7.4) to produce a set of encoded

correspondences E = {
〈
h
(N)
c , sb, st

〉
∈ C(N)}.

The Transformer decoder selects a subset of correspon-
dences that constitutes the best analogical match (see Fig-
ure 4). The attention-based transformations are only per-
formed on the initial element of each tuple, i.e., hd in〈
hd, sb, st

〉
. We let Dt be the processed set of all selected

correspondences at timestep t (after the N attention layers)
and Ot be the set of all remaining correspondences (with
D0 = {START-TOK} and O0 = E ∪ {END-TOK}). The
decoder generates compatibility scores αod between each
pair of elements, i.e.,

〈
o, d
〉
∈ Ot ×Dt. These are combined

with the signature embedding similarities to produce a final
compatibility πod

πod = FFN
([

tanh (αod); s>bosbd ; s>tostd
])

where FFN is a two layer feed-forward network with ELU ac-
tivations (Clevert, Unterthiner, and Hochreiter 2015). Recall
that the signature components, i.e. sb and st, were scaled to
unit length. Thus, we would expect closeness in the original
graph to be reflected by dot-product similarity and identi-
cality to be indicated by a maximum value dot-product, i.e.
s>bosbd = 1 or s>tostd = 1. Once each pair has been scored,
AMN selects an element ofOt to be added toDt+1. For each
o ∈ Ot, we compute its value to be

vo = FFN
([

max
d

πod; min
d
πod;

∑
d

πod
|Dt|

])
where FFN is a two layer feed-forward network with ELU ac-
tivations. A softmax is applied to these scores and the highest
valued element is added to Dt+1. The use of maximum, mini-
mum, and average is intended to let the network capture both
individual and aggregate evidence. Individual evidence is
given by a pairwise interaction between two correspondences
(e.g., two correspondences that together violate the one-to-
one constraint). Conversely, aggregate evidence is given by
the interaction of a correspondence with everything selected
thus far (e.g., a correspondence needed for several parallel
connectivity constraints). When END-TOK is selected, the
set of correspondences M returned is the set of node pairs
from VB and VT associated with elements in D.

Candidate Inference Selector: The output of the corre-
spondence selector is a set of correspondences M . The candi-
date inferences associated with M are drawn from the nodes
of the base graph VB that were not used in M . Let Vin and
Vout be the subsets of VB that were / were not used in M , re-
spectively. We first extract all signature embeddings for both
sets, i.e., Sin = {sb : b ∈ Vin} and Sout = {sb : b ∈ Vout}.
In this module there are no Transformer components, with
AMN operating directly on Sin and Sout.



Figure 4: The correspondence selection process, where⇒ and⇐ are the start and stop tokens and E , Dt, and Ot are the sets of
encoded, selected, and remaining correspondences

AMN will select elements from Sout to return. Like before,
we let Dt be the set of all selected elements from Sout and
Ot be the set of all remaining elements from Sout at timestep
t. AMN computes compatibility scores between pairs of out-
put options with candidate inference and previously selected
nodes, i.e. αod for each

〈
o, d
〉
∈ Ot × (Dt ∪ Sin). The com-

patibility scores are given by a simple single-headed attention
computation (see Appendix 7.4). Unlike the correspondence
encoder-decoder, there are no other values to combine these
scores with, so they are used directly to compute a value vo
for each element of Ot. AMN computes this value as

α′od = tanh (αod)

vo = FFN
([

max
d

α′od; min
d
α′od;

∑
d

α′od
|Dt|

])
A softmax is used and the highest valued element is added to
Dt+1. Once the end token is selected, decoding stops and the
set of nodes associated with elements in D is returned.

Loss Function: As both the correspondence and candidate
inference components use a softmax, the loss function is
categorical cross entropy. Teacher forcing is used to guide
the decoder to select the correct choices during training. With
Lcorr the loss for correspondence selection and Lci the loss
for candidate inference selection, the final loss is given as
L = Lcorr + λLci (with λ a hyperparameter), which is
minimized with Adam (Kingma and Ba 2014).

4.2 Model Scoring
Structural Match Scoring: In order to avoid counting er-
roneous correspondence predictions towards the score of the
output correspondences M , we first identify all correspon-
dences that are either degenerate or violate the constraints
of SMT. Degenerate correspondences are correspondences
between constants that have no higher-order structural sup-
port in M (i.e., if either has no parent that participates in
a correspondence in M ). To determine if a correspondence〈
b, t
〉

violates SMT, we check whether the subgraphs of the
base and target rooted at b and t satisfy the one-to-one match-
ing, parallel connectivity, and tiered identicality constraints
(see Section 3). The check can be computed in time linear

with the size of the corresponding subgraphs. Let the valid
subset of M be Mval. A correspondence m is considered
a root correspondence if there does not exist another corre-
spondence m′ such that m′ ∈ Mval and a node in m′ is an
ancestor of a node in m. We define Mroot ⊆Mval to be the
set of all such root correspondences. For a correspondence
m =

〈
b, t
〉

in Mval, its score s(m) is given as the size of
the subgraph rooted at b in the base. The structural match
score for M is then sum of scores for all correspondences
in Mroot, i.e., s(M) =

∑
m∈Mroot

s(m). This repeatedly
counts nodes that appear in the dependencies of multiple
correspondences, which leads to higher scores for more in-
terconnected matchings (in keeping with the systematicity
preference of SMT).

Structural Evaluation Maximization: Dynamically as-
signing labels to each example allows AMN to handle never-
before-seen symbols, but its inherent randomness can lead to
significant variability in terms of outputs. AMN combats this
by running each test problem r times and returning the map-
ping M = arg maxMi

∑
j J(Mi,Mj), where J(Mi,Mj) is

the Jaccard index (intersection over union) between the corre-
spondence sets produced by the i-th and j-th runs. Intuitively,
this is the run that shared the most correspondences with other
runs and had the fewest unshared extra correspondences.

5 Experiments
5.1 Data Generation and Training
AMN was trained on 100,000 synthetic analogy examples,
with the hyperparameters used for AMN provided in Ap-
pendix 7.1 (in the supplementary material). A single example
consisted of base and target graphs, a set of correspondences,
and a set of nodes from the base to be candidate inferences.
Construction of synthetic examples begins with generating
DAGs. Each DAG consists of a set of k ∈ [2, 7] layers (with
the particular k for a graph chosen at random). Each node
is assigned an arity a, with the maximum arity being a = 3.
Nodes at layer i can be connected to a nodes from lower lay-
ers (i.e., layer j with j < i) selected at random. Nodes with
arity a = 0 are considered entities and nodes with non-zero



Figure 5: AMN output correspondences for an example from the Geometric Analogies domain

arities (i.e., a > 0) are randomly assigned as predicates or
functions and randomly designated as ordered or unordered.

To generate a training example, we first generate a set of
random DAGs C, which will later become the correspon-
dences. Next, we construct the base B by generating graphs
above C. As each DAG is constructed in layers, this simply
means that C is considered the lowest layers of B. Likewise,
for the target T we build another set of graphs above C. The
nodes of C are thus shared with both B and T . Each node of
C is duplicated, producing one node for B and one node for
T , and the resulting pair of nodes becomes a correspondence.
Any element in B that was an ancestor of a node from C
or a descendent of such an ancestor was considered a candi-
date inference. In Appendix 7.2 we provide a figure showing
each component of a training example. During training, each
generated example was turned into a batch of 8 inputs by re-
peatedly running the encoding procedure (which dynamically
assigns node labels) over the original base and target.

5.2 Experimental Domains
Though training was done with synthetic data, we evaluated
the effectiveness of AMN on both synthetic data and data
used in previous analogy experiments. The corpus of previous
analogy examples was taken from the public release of SME1.
Importantly, AMN was not trained on the corpus of existing
analogy examples (AMN never learned from a real-world
analogy example). In fact, there was no overlap between the
symbols (i.e., entities, functions, and predicates) used in that
corpus and the symbols used for the synthetic data. We briefly
describe each of the domains AMN was evaluated on below
(detailed descriptions can be found in (Forbus et al. 2017)).
1. Synthetic: this domain consisted of 1000 examples gener-

ated with the same parameters as the training data (useful
as a sanity check for AMN’s performance).

2. Visual Oddity: this problem setting was initially proposed
to explore cultural differences to geometric reasoning in
(Dehaene et al. 2006). The work of (Lovett and Forbus
2011) modeled the findings of the original experiment

1http://www.qrg.northwestern.edu/software/sme4/index.html

computationally with qualitative visual representations
and analogy. We extracted 3405 analogical comparisons
from the computational experiment.

3. Moral Decision Making: this domain was taken from (De-
hghani et al. 2008a), which introduced a computational
model of moral decision making that used SME to reason
through moral dilemmas. From the works of (Dehghani
et al. 2008a,b), we extracted 420 analogical comparisons.

4. Geometric Analogies: this domain is from one of the first
computational analogy experiments (Evans 1964). Each
problem was an incomplete analogy of the form A : B ::
C : ?, where each of A, B, and C were manually encoded
geometric figures and the goal was to select the figure
that best completed the analogy from an encoded set of
possible answers. While in the original work all figures
had to be manually encoded, in (Lovett et al. 2009; Lovett
and Forbus 2012) it was shown that the analogy problems
could be solved with structure-mapping over automatic
encodings (produced by the CogSketch system (Forbus
et al. 2011)). From that work we extracted 866 analogies.

5.3 Results and Discussion
Table 1a shows the results for AMN across different values
of r, where r denotes the re-run hyperparameter detailed
in Section 4.2. When evaluating on the synthetic data, the
comparison set of correspondences was given by the data
generator; whereas when evaluating on the three other anal-
ogy domains, the comparison set of correspondences was
given by the output of SME. It is important to note that we
are using SME as our stand-in for SMT (as it is the most
widely accepted computational model of SMT). Thus, we do
not want significantly different results from SME in the cor-
respondence selection experiments (e.g., substantially higher
or lower structural evaluation scores). Matching SME’s per-
formance (i.e., not producing higher or lower values) gives
evidence that we are modeling SMT.

In the Struct. Perf. column, the numbers reflect the average
across examples of the structural evaluation score of AMN
divided by that of the comparison correspondence sets. For
the other columns of Table 1a, the numbers represent average



Domain r Struct. Perf. Larger Equiv. Err. Free 1-to-1 Err. PC Err. Degen. Err.

Synthetic 1 0.713 0.000 0.313 0.346 0.007 0.102 0.020
Synthetic 16 0.952 0.001 0.683 0.695 0.005 0.020 0.011
Oddity 1 0.774 0.061 0.404 0.484 0.153 0.225 0.000
Oddity 16 0.955 0.074 0.485 0.564 0.131 0.139 0.000
Moral DM 1 0.610 0.014 0.021 0.093 0.002 0.170 0.030
Moral DM 16 0.958 0.081 0.164 0.329 0.000 0.041 0.016
Geometric 1 0.871 0.064 0.533 0.649 0.039 0.116 0.000
Geometric 16 1.040 0.069 0.714 0.788 0.029 0.043 0.000

(a) AMN correspondence prediction results for performance ratio (left), solution type rate (middle, ↑ better), and error rate (right, ↓ better)

Domain r Avg. CI F1 Avg. CI Prec. Avg. CI Rec. Avg. CI Acc. Avg. CI Spec.

Synthetic 16 0.900 0.867 0.967 0.861 0.735
Oddity 16 0.992 0.995 0.994 0.991 0.911
Moral DM 16 0.899 0.834 0.985 0.832 0.439
Geometric 16 0.958 0.955 0.990 0.951 0.917

(b) AMN candidate inference prediction results

Table 1: AMN experimental results

fractions of examples or correspondences (e.g., 0.684 should
be interpreted as 68.4%). Candidate inference prediction per-
formance was measured relative to the set of correspondences
AMN generated, i.e., all candidate inferences were computed
from the predicted correspondences, and treated as the true
positives. In many problems from the non-synthetic domains,
every non-correspondence node was a candidate inference
(which can lead to inflated precision and recall values). Thus,
we also report the specificity (i.e., true negative rate) of AMN
for only problems with non-candidate inference nodes.

In addition to our main results, we also provide qualitative
examples of AMN’s outputs on real analogy problems and
ablation studies for various aspects of AMN’s design. Both
the matching shown in Figure 5 as well as the solar system
analogy shown in Figure 1 were produced by AMN. Further
examples of AMN’s outputs can be found in Appendix 7.5.
Ablation experiments regarding the impact of both the signa-
ture graph and unit normalization of signature embeddings
(each detailed in Section 4.1) are given in Appendix 7.3.

Analysis: The left side of Table 1a shows the average ra-
tio of AMN’s performance (labeled Struct. Perf.), as mea-
sured by structural evaluation score, against the comparison
method’s performance (i.e., data generator correspondences
or SME). As can be seen, AMN produced matches with
structural evaluation scores at 95-104% the level of SME
on the non-synthetic domains, which indicates that it was
finding similar structural matches. This is ideal as it shows
that AMN matches SME’s systematicity preference, and thus
likely conforms fairly well to SMT in terms of systematicity.

The middle of Table 1a gives us the best sense of how well
AMN modeled SMT. We observe AMN’s performance in
terms of the proportion of larger, equivalent, and error-free
matches it produces (labeled Larger, Equiv., and Err. Free,
respectively). Error-free matches do not contain degener-
ate correspondences or SMT constraint violations, whereas
equivalent and larger matches are both error-free and have

the same / larger structural evaluation score as compared to
gold set of correspondences. The Equiv. column provides the
best indication that AMN could model SMT. It shows that
' 50% of AMN’s outputs were SMT-satisfying, error-free
analogical matches with the exact same structural score as
SME (the lead computational model of SMT) in two of the
non-synthetic analogy domains.

The right side of Table 1a shows the frequency of the dif-
ferent types of errors, including violations of the one-to-one /
parallel connectivity constraints, and degenerate correspon-
dences (labeled 1-to-1 Err., PC Err., and Degen. Err.). It shows
that AMN had fairly low error rates across domains (except
for Visual Oddity). Importantly, degenerate correspondences
were very infrequent, which is significant because it verifies
that AMN leveraged higher-order relational structure.

Table 1b shows that AMN was fairly effective in pre-
dicting candidate inferences. The high accuracy (labeled
Avg. CI Acc.) scores for both the Visual Oddity and Geomet-
ric Analogies domains indicate that AMN was able to capture
the notion of structural support when determining candidate
inferences. The non-zero specificity (labeled Avg. CI Spec.)
results show that, while it more often classified nodes as
candidate inferences, it was capable of distinguishing non-
candidate inference nodes as well.

6 Conclusions
In this paper, we introduced the Analogical Matching Net-
work, a neural approach that learned to produce analogies
consistent with Structure-Mapping Theory. AMN was trained
on completely synthetic data and was capable of performing
well on a varied set of analogies drawn from previous work
involving analogical reasoning. AMN demonstrated renam-
ing invariance, structural sensitivity, and the ability to find
solutions in a combinatorial search space, all of which are
key properties of symbolic reasoners and are known to be
important to human reasoning.
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7 Appendix
7.1 Model Details
In the DAG LSTM, the node embeddings were 32-
dimensional vectors and the edge embeddings were 16-
dimensional vectors. For all Transformer components, our
model used multi-headed attention with 2 attention layers
each having 4 heads. In each multi-headed attention layer,
the query and key vectors were projected to 128-dimensional
vectors. The feed forward networks used in the Transformer
components had one hidden layer with a dimensionality twice
that of the input vector size. The feed forward networks used
to compute the values in the correspondence selector used
two 64-dimensional hidden layers. The λ parameter applied
to the candidate inference loss Lci was set to λ = 0.1 in our
experiments. The models were constructed with the Pytorch
(Paszke et al. 2019) library.

7.2 Training Data Generation
In Figure 6, the dark green nodes indicate the initial random
graphs C after being copied into the base and target. The red
and blue nodes show the graphs built around B and T . The
light green edges indicate the gold set of correspondences
generated from C. On average, each example consisted of
26.9 expressions and 14.3 entities in the base (41.2 distinct
items in total), 27.0 expressions and 14.3 entities in the target
(41.3 distinct items in total), and 26.8 correspondences.



Figure 6: Synthetic example with a base (red), target (blue), and shared subgraphs (green)

7.3 Additional Experiments
Unit Normalization for Signature Embeddings: In Sec-
tion 4.1, we described how signature embeddings were scaled
to unit length to provide a simple criterion for whether two
nodes were likely the same node (i.e., they have a dot product
of 1). Intuitively, this feature would be most important for
allowing AMN to follow SMT’s one-to-one constraint, as it
gives AMN the ability to determine which nodes have already
been selected for correspondence. To measure the importance
of this feature, we performed a simple experiment where we
did not scale the signature embeddings to unit length (keep-
ing all other components of AMN the same). We retrained
AMN following the same training methodology as before,
and tested AMN on the synthetic domain.

Interestingly, we found that performance in all categories
(not just conformance to SMT’s one-to-one constraint) be-
came significantly worse. The structural performance of
AMN dropped from 0.948 to 0.750, indicating that system-
aticity was impacted. The fraction of problems that were
equivalent to the gold standard correspondence set (i.e., no
SMT errors and the same structural evaluation score as the
gold standard) dropped from 0.671 to 0.278. In terms of er-
rors, the percent of correspondences that violated one-to-one
increased from 0.6% to 1.6% and those violating parallel
connectivity increased from 2.1% to 12.0%. Degenerate er-
rors remained about the same, increasing from 0.9% to 1.2%,
likely reflecting that the dot product of two signature embed-
dings still incorporates their shared descendants.

Value of the Signature Graph: Given that label graph
captures almost all of the graph structure, it is natural to
question whether the signature graph is necessary for pro-
ducing SMT-conforming matchings. To determine the value
of the signature graph, we performed an experiment where
we completely excised the signature embeddings from AMN,
leaving only the label graph for correspondence and candi-
date inference selection. We retrained this ablated version of
AMN with the standard training methodology and tested it
on the synthetic set of analogy problems.

Without the signature graph, AMN’s performance plum-
meted in all categories. The one-to-one error rate increased
from 0.6% to 92.4% and the parallel connectivity error rate
increased from 1.2% to 99.4%. Consequently, the number of
error free matches dropped to 0. This matches our intuitions,
that without a distinction between the labels of objects and

the objects themselves, AMN is incapable of modeling SMT.

7.4 Background
DAG LSTMs: DAG LSTMs extend Tree LSTMs (Tai,
Socher, and Manning 2015) to DAG-structured data. As with
Tree LSTMs, DAG LSTMs compute each node embedding
as the aggregated information of all their immediate prede-
cessors (the equations for the DAG LSTM are identical to
those of the Tree LSTM). The difference between the two
is that DAG LSTMs stage the computation of a node’s em-
bedding based on the order given by a topological sort of the
input graph. Batching of computations is done by grouping
together updates of independent nodes (where two nodes are
independent if they are neither ancestors nor predecessors of
one another). As in (Crouse et al. 2019), for a node, v, its
initial node embedding, sv , is assigned based on its label and
arity. The DAG LSTM then computes the final embedding
hv to be

iv = σ
(
Wisv +

∑
w∈P(v)

U
(evw)
i hw + bi

)
ov = σ

(
Wosv +

∑
w∈P(v)

U (evw)
o hw + bo

)
ĉv = tanh

(
Wcsv +

∑
w∈P(v)

U (evw)
c hw + bc

)
fvw = σ

(
Wfsv + U

(evw)
f hw + bf

)
cv = iv � ĉv +

∑
w∈P(v)

fvw � cw

hv = ov � tanh
(
cv
)

where � is element-wise multiplication, σ is the sigmoid
function, P is the predecessor function that returns the ar-
guments for a node, U (evw)

i , U (evw)
o , U (evw)

c , and U (evw)
f are

learned matrices per edge type. i and o represent input and
output gates, c and ĉ are memory cells, and f is a forget gate.

Multi-Headed Attention: The multi-headed attention
(MHA) mechanism of (Vaswani et al. 2017) is used in our
work to compare correspondences against one another. In this
work, MHA is given two inputs, a query vector q and a list of
key vectors to compare the query vector against

〈
k1, . . . , kn

〉
.

In N -headed attention, N separate attention transformations



are computed. For transformation i we have

q̂i = W
(q)
i q, kij = W

(k)
i kj , vij = W

(v)
i kj

wij =
q̂>i kij√
bq̂

αij =
exp (wij)∑
j′ exp(wij′)

qi =
∑
j

αijvij

where each of W (q)
i , W (k)

i , and W (v)
i are learned matrices

and bq̂ is the dimensionality of q̂i. The final output vector q′
for input q is then given as a combination of its N transfor-
mations

q′ =

N∑
i=1

W
(o)
i qi

where each W (o)
i is a distinct learned matrix for each i. In

implementation, the comparisons of query and key vectors
are batched together and performed as efficient matrix multi-
plications.

Transformer Encoder-Decoder: The Transformer-based
encoder-decoder is given two inputs, a comparison set C and
an output set O. At a high level, C will be encoded into a
new set E , which will inform a selection process that picks
elements of O to return. In the context of pointer networks,
the set O begins as the encoded input set, i.e., O = E .

Encoder: First, the elements of C, i.e. hc ∈ C, are passed
through N layers of an attention-based transformation. For
element hc in the i-th layer (i.e., h(i−1)c ) this is performed as
follows

ĥc = LN
(
h(i−1)c + MHA(i)

C
(
h(i−1)c ,

〈
h
(i−1)
1 , . . . , h

(i−1)
j

〉))
h(i)c = LN

(
ĥc + FFN(i)

(
ĥc
))

where LN denotes the use of layer normalization (Ba, Kiros,
and Hinton 2016), MHA(i)

C (Appendix 7.4) denotes the use
of self multi-headed attention for layer i (i.e., attention be-
tween h(i)c and the other elements of C(i−1)), and FFN(i) is
a two-layer feed-forward neural network with ELU (Clev-
ert, Unterthiner, and Hochreiter 2015) activations. After N
layers of processing, the set of encoded inputs E is given by
E = C(N)

Decoder: With encoded comparison elements E and a set
of potential outputs O, the objective of the decoder is to use
E to inform the selection of some subset of output options
D ⊆ O to return. Decoding happens sequentially; at each
timestep t ∈ {1, . . . , n} the decoder selects an element from
O ∪ {END-TOK} (where END-TOK is a learned triple) to
add to D. If END-TOK is chosen, the decoding procedure
stops and D is returned.

Let Dt be the set of elements that have been selected by
timestep t and Ot be the remaining unselected elements

at timetstep t. First, Dt is processed with an N -layered
attention-based transformation. For an element h(i−1)d this is
given by

h́d = LN
(
h
(i−1)
d + MHA(i)

D
(
h
(i−1)
d ,

〈
h
(i−1)
1 , . . . , h

(i−1)
j

〉))
ĥd = LN

(
h́d + MHA(i)

E
(
h́d,
〈
h
(i−1)
1 , . . . , h

(i−1)
l

〉))
h
(i)
d = LN

(
ĥd + FFN(i)

(
ĥd
))

where MHA(i)
D denotes the use of self multi-headed attention,

MHA(i)
E denotes the use of multi-headed attention against

elements of E , and FFN(i) is a two-layer feed-forward neural
network with ELU activations. We will consider the already
selected outputs to be the transformed selected outputs, i.e.,
Dt = D(N)

t . For a pair,
〈
ho, hd

〉
∈ Ot × Dt, we compute

their compatibility as αod

qod = Wqh
(n)
d , kod = Wkho

αdo =
q>odkod√

bo

where Wq and Wk are learned matrices, bo is the dimension-
ality of ho, and FFN is a two layer feed-forward network
with ELU activations. This defines a matrix H ∈ R|Ot|×|Dt|

of compatibility scores. One can then apply some operation
(e.g., max pooling) to produce a vector of values vt ∈ R|Ot|

which can be fed into a softmax to produce a distribution over
options from Ot. The highest probability element δ∗ from
the distribution is then added to the set of selected outputs,
i.e., D = Dt ∪ {δ∗}.

7.5 AMN Example Outputs
For the outputs from the non-synthetic domains (all but the
first figure), only small subgraphs of the original graphs are
shown (the original graphs were too large to be displayed)



Figure 7: AMN output for an example from the Synthetic domain

Figure 8: AMN output for an example from the Visual Oddity domain

Figure 9: AMN output for an example from the Moral Decision Making domain
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