
Advances in Cognitive Systems (2022) 1–11 Submitted 8/2022; published 11/2022

© 2022 Cognitive Systems Foundation. All rights reserved.

A Framework for Interactive Natural Language Debugging

Constantine Nakos CNAKOS@U.NORTHWESTERN.EDU
Mukundan Kuthalam MUKUNDAN@U.NORTHWESTERN.EDU

Kenneth D. Forbus FORBUS@NORTHWESTERN.EDU

Qualitative Reasoning Group, Northwestern University, 2233 Tech Drive, Evanston, IL 60208 USA

Abstract

Natural language systems that use hand-curated linguistic resources have advantages over Machine

Learning systems in that their behavior can be examined and incrementally corrected. However,

maintaining these systems is a challenge due to the amount of expertise required and the complexity

of the debugging process. To address this challenge, we propose Interactive Natural Language

Debugging (INLD), a framework for locating and correcting errors in a system’s linguistic resources

by interacting with a user in natural language. As part of ongoing research, we present the INLD

pipeline, a taxonomy of error types, and a formulation of INLD as a model-based diagnosis problem.

1. Introduction

Natural language systems that use hand-curated1 linguistic resources have several advantages over

systems that primarily rely on Machine Learning (ML). ML models are opaque and usually can

only be debugged by adding or removing training data. By contrast, hand-curated language systems

employ explicit knowledge that can be inspected and incrementally extended or corrected.

Repairing an error is often just a matter of modifying a grammar rule or adding a new word to the

lexicon, local changes that do not affect other parts of the system. These properties make hand-

curated language systems ideal for lifelong learning scenarios (Chen & Liu, 2018), where the

system must incrementally repair and extend its linguistic capabilities over time, as well as

applications where precision is critical.

However, debugging a hand-curated language system can be daunting. The inner workings of

the system are complex, drawing on a variety of linguistic resources that are encoded in specialized

formats. Exactly what change needs to be made is not always obvious, and even the experts who

maintain the system find debugging time-consuming and mentally taxing. The difficulty of

maintaining hand-curated systems is partly responsible for the shift to ML systems, which can be

trained with much less manual effort.

In this paper, we introduce Interactive Natural Language Debugging (INLD), a method for

debugging hand-curated language systems by interacting with a user in natural language. Given an

1 We use the term “hand-curated” to describe any language system that (a) uses explicit linguistic knowledge (b) that a

human is ultimately responsible for debugging. Neural language models such as BERT (Devlin et al., 2018) fail the

first criterion, while statistically induced grammars (e.g., Berant et al., 2014) fail the second. Hybrid systems such as

the NLU component of OntoAgent (McShane & Nirenburg, 2021) are considered hand-curated because they make use

of explicit linguistic knowledge as well as statistical techniques.

C. NAKOS, M. KUTHALAM, AND K. FORBUS

2

erroneous analysis for a sentence, the system will identify likely points of failure, test them by

asking the user questions in natural language, and iterate until the error has been localized and

corrected. While not every category of linguistic error can be resolved this way, INLD should ease

the burden of maintaining a language system, allow non-experts to debug it, and facilitate lifelong

learning through user interaction.

2. Background

While the techniques we present in this paper should be applicable to any hand-curated language

system (e.g., Clark & Harrison, 2009; Ferguson & Allen, 1998; McCord et al., 2012; McShane &

Nirenburg, 2021; Riesbeck & Martin, 1986), we ground our discussion in CNLU (Companions

Natural Language Understanding; Tomai & Forbus, 2009). CNLU is the language understanding

component of the Companions cognitive architecture (Forbus & Hinrichs, 2017). It produces an

explicit semantic interpretation of a piece of text suitable for planning and reasoning. CNLU has

been applied to a range of tasks, such as extracting qualitative knowledge from text (Crouse, 2021),

question answering in an information kiosk (Wilson et al., 2019), game learning through

multimodal interaction (Hinrichs & Forbus, 2014), and moral decision-making (Tomai & Forbus,

2009).

CNLU is built on James Allen’s TRAINS bottom-up chart parser (Allen, 1994), which uses a

feature-based context-free grammar. Given a sentence as input, the parser builds up a graph of

syntactic constituents, with the goal of finding one or more constituents which cover the whole

sentence. If no complete constituent can be found, the parse is considered fragmented, indicating

that CNLU was not able to construct a valid interpretation of the sentence. CNLU uses a hand-

curated lexicon assembled from a variety of sources to map each token to its canonical form and

encode grammatical features such as tense and number.

While CNLU is parsing a sentence, it also builds up a semantic interpretation of the text. The

output of a successful parse includes both a syntax tree indicating the grammatical structure of the

sentence and a set of predicate calculus statements representing its meaning. Semantic

interpretations are grounded in the NextKB ontology (Forbus & Hinrichs, 2017). This facilitates

further reasoning by the Companion, allows CNLU to rule out semantically incoherent

interpretations based on type constraints, and lets it choose interpretations based on context.

To translate words into their semantic representations, CNLU uses a library of semtranses2

based on FrameNet (Fillmore et al., 2001) and NextKB. Each semtrans maps a word to a piece of

predicate calculus that encodes its meaning in NextKB, along with a set of valence patterns derived

from the corresponding FrameNet frame. Each valence pattern represents a valid configuration of

grammatical and semantic roles for the frame. For example, Table 1 shows a semtrans for the verb

eat. For the starred valence pattern, the subject is the one eating and the direct object is the thing

being eaten. This corresponds to a sentence of the form “Bob ate the wedge.” Valence patterns tell

CNLU how to interpret the grammatical arguments of a verb and allow it to filter out interpretations

that do not correspond to a known configuration of arguments.

CNLU adopts a wait-and-see approach to disambiguation. When there are multiple valid syntax

trees for a sentence or multiple semantic interpretations for a word, CNLU encodes the options as

2 “Semtrans” is short for “semantic translation”.

 A FRAMEWORK FOR INTERACTIVE NATURAL LANGUAGE DEBUGGING

3

Table 1. Partial semtrans for the verb eat. The top row contains the part of speech, FrameNet frame, and

semantics. The subsequent rows are valence patterns: configurations of syntactic and semantic arguments.

 Eat – Verb – FN_Ingestion – (and (isa :ACTION EatingEvent))

 Grammatical Role Phrase Type Role Relation Example

 :SUBJECT NP consumedObject The cheese was eaten.

* :SUBJECT NP performedBy Bob ate the wedge.

 :OBJECT NP consumedObject

 :SUBJECT NP performedBy Joe ate quickly.

 :OBLIQUE-OBJECT AVP mannerOfAction

choice sets, producing a compact representation of the set of possible interpretations for the

sentence. Choices within a choice set are mutually exclusive, assumed to be exhaustive, and may

depend on specific parses (e.g., “does” only denotes a group of deer if it is a noun). Choices are

selected as needed by domain-specific reasoning processes.

Figure 1 shows the choice sets for the sentence “Bob ate the wedge.” The choices for the word

“eat” cover the distinction between having a meal (e.g., eating dinner) and eating in general. CNLU

uses a Neo-Davidsonian event representation (Parsons, 1990), where events are encoded as entities

(e.g., eat4200) and their arguments are linked to them with role relations (e.g., performedBy,

consumedObject). The prefix “FN_” indicates the FrameNet frame, with FN_Shapes denoting

the Shape frame. FN_Misc is a placeholder when FrameNet does not have an existing frame. The

choices for the word “wedge” reflect the two senses of the word that CNLU knows: a wedge shape

and a kind of golf club. Note that the intended sense of “wedge”, a kind of sandwich, is not present.

While CNLU has broad coverage, including over 190,000 word forms, 400 grammar rules, and

69,000 semantic mappings, its performance is far from perfect. This makes it an ideal testbed for

INLD, since INLD can be used to drill down on linguistic errors and gaps in the system’s coverage.

3. Interactive Natural Language Debugging

The core idea of Interactive Natural Language Debugging is to take advantage of the user as a

source of information to debug a hand-curated language system. Normally, experts must crawl

through baroque parser traces to determine why a parse failed and how to fix it. Even noticing a

failure can be difficult, as the system can adopt an incorrect interpretation while ruling out the

correct one. For an end user who has no knowledge of the inner workings of the language system,

debugging an error is extremely difficult.

INLD addresses these issues by presenting the user, whether an expert or a novice, with a series

of diagnostic questions in natural language, then using the answers to iteratively home in on the

error. While identifying a missing valence pattern may be beyond the capabilities of an average

user, they can answer simple questions like “Which sense of owns is correct?” or “Is this an accurate

paraphrase of the sentence?”. Expert debuggers could also benefit from having the system’s

interpretation laid out in a more accessible format and having the system reason through common

patterns of errors.

C. NAKOS, M. KUTHALAM, AND K. FORBUS

4

In the remainder of this section, we discuss the properties of our proposed INLD system. The

INLD pipeline consists of four stages, which are shown in Figure 2. The process begins with an

input sentence and ends with an incremental change to the system’s linguistic resources.

3.1 Identification

The first stage of the debugging pipeline is identification. The system uses a combination of

internal reasoning and queries to the user to determine a set of symptoms which reflect an error in

the system’s linguistic knowledge. For example, the system may determine that the parse is

fragmented, or the user may notice that none of the choices for a word are correct. Symptoms guide

debugging and determine when the process has succeeded. If the user and the system find a fix that

alleviates the symptoms and without introducing any new ones, the error has been resolved.

Some symptoms can be identified automatically, such as a fragmented parse or an unknown

word. Others require human judgment, such as a missing word sense or an incorrect parse tree. The

system identifies such symptoms by presenting pieces of its internal representations to the user in

natural language. The user selects the options that are correct or notes if none of them are. The

system can ask follow-up questions to further characterize the problem or proceed to localization.

The system has several options for revealing symptoms to the user. The simplest is to use

templates to convert its internal representations into natural language. This can be applied to word

senses (“bought is a buying event”), semantic roles (“the book is the object transferred”), and

syntactic structure (“Jack is the subject of the sentence”). More advanced techniques include

presenting the implications of the interpretation or paraphrasing the sentence to highlight errors in

the system’s understanding.

3.2 Localization

Once a symptom has been identified, the system attempts to localize the error that is causing it. The

culprit could be a faulty grammar rule, a missing valence pattern, or something else entirely. Table

Figure 1. Choice sets for the sentence “Bob ate the wedge.” in the CNLU interface.

 A FRAMEWORK FOR INTERACTIVE NATURAL LANGUAGE DEBUGGING

5

2 presents a taxonomy of error types and their symptoms.3 There are several strategies for

localization depending on the nature of the symptom and how amenable it is to introspection. If the

system never considered the correct interpretation of a word, the error must be a missing semtrans.

However, a fragmented parse may be caused by any number of grammatical errors.

For these types of open-ended symptoms, the system can fall back to differential diagnosis,

localizing the error by process of elimination. It modifies the sentence by either substituting a

synonym or simplifying a phrase. Then it checks to see if the symptom has been resolved. If it has,

Table 2. Taxonomy of CNLU Symptoms and Errors

ID Error Category Symptoms

A1 Missing lexicon entry Lexicon Flagged automatically by parser

A2 Incorrect lexicon entry Lexicon Fragmented parse or incorrect parse tree

B1 Missing grammar rule Grammar Fragmented parse or incorrect parse tree

B2 Incorrect grammar rule Grammar Fragmented parse or incorrect parse tree

C1 Restrictive type constraint Semantics Type checking rules out correct interpretation

C2 Missing valence pattern Semantics Valence pattern checking rules out correct interp.

C3 Missing word sense Semantics Flagged by parser or correct interp. missing entirely

C4 Permissive type constraint Semantics Incorrect interp. allowed or generates bad paraphrase

C5 Incorrect valence pattern Semantics Incorrect interp. allowed or generates bad paraphrase

C6 Incorrect semantics Semantics Correct interp. missing or generates bad paraphrase

D1 Missing inheritance info Ontology Type checking rules out correct interpretation

D2 Incorrect inheritance info Ontology Incorrect interp. allowed or generates bad implication

D3 Missing disjointness info Ontology Incorrect interp. allowed or generates bad implication

D4 Incorrect disjointness info Ontology Type checking rules out correct interpretation

3 We omit disambiguation errors, where the system generates the correct interpretation but selects the wrong one.

Disambiguation relies on other types of knowledge which require different corrective mechanisms.

Figure 2. The INLD Pipeline.

C. NAKOS, M. KUTHALAM, AND K. FORBUS

6

the error must be related to the change that was made. For example, if changing a verb to its

synonym results in a complete parse, the original verb could have an incorrect grammar feature

(A2), or it could be missing a valence pattern the synonym has (C2). If the symptom has not been

resolved, the modified words are probably not at fault, and the system can try another modification.

The space of potential modifications is enormous, but a handful of heuristics should be enough

to guide the search for a modification that is diagnostically useful. One approach is to replace

content words, such as nouns or verbs, with their synonyms. Finding a true synonym can be

difficult, as similar words are often used in different syntactic constructions but comparing the way

the parse handles related words can be a valuable source of information about gaps in the system’s

coverage.

Another approach is to simplify the sentence by removing a subordinate clause, dropping a

modifier, or replacing a noun phrase with a pronoun. If this resolves the symptom, the removed

phrase is the source of the error. If not, the system now has a simpler sentence to work with. Even

if the error cannot be fully localized by the system, pursuing a simplification strategy can produce

a minimal test case that will make the error much easier for an expert to diagnose.

3.3 Correction

Once the error has been localized, the system can attempt to fix it with the help of the user. For

some types of errors, the fix is straightforward. A missing word can be added to the lexicon, a faulty

inheritance link can be removed from the ontology, or a new valence pattern can be added to the

system. As long as the system is able to ask the user sufficiently distinguishing questions (e.g., to

correctly place a concept within the type hierarchy), it can propose a fix for the problem.

But for other types of errors, correction can be difficult without manual intervention from an

expert. For example, the fix to an overly restrictive grammar rule might involve changing the value

of a feature, something that cannot easily be done through natural language without user knowledge

of the grammar. Furthermore, a change to a grammar rule could degrade the system’s performance

on other sentences. Balancing these concerns requires expert judgment and a close look at the

internals of the parser, placing it outside the reach of INLD.

3.4 Verification

Just because the system and the user come up with a correction for an error does not mean that it is

the right one to make. The final stage of the debugging process is verification, which attempts to

check the correction before it is incorporated into the system’s linguistic resources. If the correction

fails to solve the problem or introduces a new one, the system should either backtrack and try

another solution or proceed under the assumption that it has uncovered a second error.

There are two levels of verification: local and global. Local verification concerns the sentence

at hand. The system checks whether the symptom has been successfully resolved, whether the parse

contains any other errors, and whether the implications of the change are correct (e.g., “Because a

wedge is a kind of sandwich, it is edible.”). Global verification deals with the overall performance

of the system. Running a regression test with the proposed change can flag whether it breaks other

parses. If so, an expert will have to decide whether to accept it.

 A FRAMEWORK FOR INTERACTIVE NATURAL LANGUAGE DEBUGGING

7

Table 3. Symptom Distribution Across Social IQa Sample

Symptoms Percentage of Sentences

Missing lexicon 5%

Missing semantics 37.5%

Fragmented parse tree 10%

Incorrect parse tree 15%

No correct interpretation 2.5%

Incorrect interpretation allowed 15%

4. Applying the Taxonomy

We evaluated our error taxonomy on a small sample of sentences from Social IQa, a benchmark

dataset created to measure how well ML models demonstrate social commonsense knowledge (Sap,

2019). Social IQa contains over 37,000 social commonsense questions that were generated from

ATOMIC 2019 and annotated with context sentences by crowd workers. We sampled 40 context

sentences from the validation set, ran them through CNLU, and hand-annotated any problems we

found. Table 3 shows the percentage of sentences that demonstrate each symptom. Note that most

of the sentences have multiple symptoms.

For example, consider the sentence “Lee gave Taylor's friend a handshake and sneezed on their

hand.” CNLU does not have a semtrans for this sense of the word “give”, and it has no way to tell

that a sense is missing without outside help. During an INLD session, the system will present the

possible interpretations of “give” to the user. If none of them are correct, the system can restrict the

set of possible errors to C1, C2, C3, C6, D1, or D4, using the taxonomy from Table 2. Internal

checks can confirm that no other senses of “give” were ruled out, so the system can narrow down

the error to a missing (C3) or incorrect (C6) semtrans.

5. INLD as Model-Based Diagnosis

The INLD pipeline presented in Section 3 is our proposed framework for debugging a language

system, but it does not specify how the process should be implemented. This section describes how

the first two steps of the pipeline, identification, and localization, can be formulated as a model-

based diagnosis problem. Model-based diagnosis identifies the discrepancies between the behavior

of an artifact, such as a physical device or a student’s reasoning on a homework problem, and the

predictions of a model. In particular, the General Diagnostic Engine (GDE; de Kleer & Williams,

1987) performs diagnosis by taking a series of measurements of the artifact’s behavior and

comparing them to the model’s predictions, making it a natural fit for INLD.

5.1 Formulating the Problem

The first step of model-based diagnosis is to construct a model. We will use a variation of the

approach pioneered by de Koning et al. (2000), where they used the dependency trace automatically

produced by a qualitative reasoner to serve as a model for the reasoning students should be

performing on a physics problem. Components in the model were laws that the student should know

C. NAKOS, M. KUTHALAM, AND K. FORBUS

8

and mental operations, such as remembering facts, with connections based on the flow of

information during the reasoning process. Model-based reasoning was then used to identify

potential causes for student mistakes, including ascertaining which follow-up questions to ask them

to home in on the underlying misconception for correction.

For INLD, the model would be generated automatically from a trace of the parser’s behavior

on a particular sentence. Each element of the parse—such as a syntactic constituent, a semantic

expression, or a piece of linguistic knowledge, such as a rule or a semtrans—corresponds to a

component in the model. The components are connected according to how the elements were

derived. For example, a constituent’s inputs would be its children and the rule that combined them,

while an expression’s inputs would be a semantic template and the bindings that instantiated it.

This captures the dependencies in the parse, linking high-level choices to their underlying facts.

The input and output values of the components are acceptability judgments, which can either

be provided directly by the user or predicted by the model based on other judgments. For example,

the system might ask the user whether “wedge” refers to a golf club in the current context. If the

answer is no, the output of the component for (isa wedge4237 Wedge-GolfClub) is

marked as unacceptable, and that value is propagated through the model. Parse components behave

like AND gates, in that the output value is acceptable if and only if all the inputs are acceptable.

Because choice components have their semantic expressions as input, any choices containing the

expression (isa wedge4237 Wedge-GolfClub) will also be marked as unacceptable.

The last part of the model is a set of components that encode completeness assumptions. These

are defeasible assumptions that the system’s knowledge is both complete and sufficient to produce

an acceptable interpretation of the sentence. These components behave like OR gates, in that at

least one of the inputs must be acceptable for the output to be acceptable. Completeness

assumptions are used to encode choice sets, reflecting the assumption that one of the choices must

be acceptable for the system’s analysis to be complete. For example, one component would

represent the choice set for “wedge”. If both of its choices are ruled out, making both of its inputs

unacceptable, the system has found a discrepancy that it must attempt to explain.

Completeness assumptions are used to drive prediction and help with diagnosis. If the choice

set for “wedge” is deemed unacceptable, there must be a choice missing, either because it was ruled

out during parsing or because the system was missing the semtrans it needed to construct it in the

first place. The model also contains completeness assumptions for the system’s knowledge, such

as the semtranses for a word. If all of the semtranses for a word have been deemed unacceptable,

the completeness assumption is violated, indicating there must be a semtrans that is missing.

5.2 Solving the Problem

Once the system formulates a model, the next step is diagnosis. GDE takes a series of

measurements, uses them to identify discrepancies, and determines a minimum set of faulty

components that would explain them. In the case of INLD, the measurements are diagnostic

questions that the system asks the user, the discrepancies are mismatched acceptability judgments,

and the faulty components are completeness assumptions that need to be retracted or reexamined.

Three aspects of the problem require special care. First, not all parse elements can be measured

directly. Asking the user about the acceptability of an expression is reasonable, since the expression

can be verbalized, and it corresponds to a simple semantic judgment about the sentence. But asking

 A FRAMEWORK FOR INTERACTIVE NATURAL LANGUAGE DEBUGGING

9

the user to evaluate an entire grammar rule is unreasonable due to the complexity of the rule and

the technical knowledge required to evaluate it. Clever questions can elicit judgments that would

be hard to get otherwise, but GDE will always have components that cannot be measured.

Second, only components that encode completeness assumptions or linguistic knowledge can

have faults. The other components reflect the operation of the parser on the data it is given, a process

that is assumed to be sound.4 Any faults must lie with either an incorrect fact or the assumption that

all relevant facts are known. Treating most of the components in the model as infallible greatly

reduces the space of possible diagnoses and helps productively guide the search.

Third, INLD is best viewed as a hierarchical model-based diagnosis problem. The initial model

ignores alternate incomplete parses, ruled-out semantics, and other details that are not likely to be

relevant. When a completeness assumption fails, it triggers a decomposition step that reformulates

the model to take the elided elements into account. For example, if no choices for a word are

acceptable, the system expands the model to include word senses that were ruled out. If the user

deems one of the senses acceptable, the problem is reduced to figuring out why the sense was

incorrectly ruled out.

Given suitable strategies for selecting diagnostic questions to ask and decomposing the model

when a completeness assumption fails, GDE should be able to localize errors and support INLD.

6. Related Work

The closest existing work to INLD that we are aware of is on debugging natural language systems.

Error mining (de Kok & van Noord, 2017) tracks the broken parses in a corpus to identify the n-

grams a parser has trouble with. Goodman & Bond (2009) uses round-trip parsing and generation

to similar effect, identifying combinations of rules that are linked to parsing or generation failures.

INLD shares the goal of debugging language systems, but it focuses on individual sentences rather

than entire corpora. We plan to explore combining the two approaches in future research.

INLD also has ties to Interactive Task Learning (ITL; Laird et al., 2017), an area of research

on building systems that learn through instruction and demonstration. While the main focus of ITL

is on learning new tasks, systems such as Rosie (Kirk & Laird, 2014) and PUMICE (Li et al., 2019)

allow users to extend the system’s vocabulary through interaction. INLD uses a similar setup, but

it debugs the system’s general linguistic knowledge, rather than extending it for specific tasks.

KRAKEN (Matthews et al., 2004) lets subject-matter experts browse and expand the Cyc

ontology. Its interactive dialogue system (Witbrock et al., 2003) walks the user through adding an

entity to the knowledge base. INLD shares the goal of improving a complicated system through

natural language interaction, but it focuses on linguistic, rather than general, knowledge.

7. Conclusion

In this paper, we have introduced Interactive Natural Language Debugging, a framework for semi-

automatically debugging language systems with the help of a (non-expert) user. We are in the

process of implementing an INLD system in the Companions cognitive architecture (Forbus &

Hinrichs, 2017), using its dialogue capabilities to support user interaction and its reasoning

4 Without this assumption, INLD would have to handle errors in the parsing algorithm, which is beyond its scope.

C. NAKOS, M. KUTHALAM, AND K. FORBUS

10

capabilities to support diagnosis. Once the system is complete, we will evaluate it by having non-

expert users track down errors in CNLU’s linguistic resources, testing the efficiency of the

debugging process and the completeness of our error taxonomy. Areas of future research include

using paraphrase to reveal errors and fleshing out the correction and verification stages of the

pipeline.

Acknowledgements

We thank the anonymous reviewers for their thoughtful comments. This research was supported by

the Machine Learning, Reasoning, and Intelligence Program of the Office of Naval Research and

the Computational Cognition and Machine Intelligence Program of the Air Force Office of

Scientific Research, Grant #FA9550-20-1-0091.

References

Allen, J. F. (1994). Natural Language Understanding. (2nd ed). Redwood City, CA:
Benjamin/Cummings.

Berant, J., & Liang, P. (2014, June). Semantic parsing via paraphrasing. Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp.

1415-1425).

Chen, Z., & Liu, B. (2018). Lifelong Machine Learning. (2nd ed). Morgan & Claypool Publishers.

Clark, P., & Harrison, P. (2009). An inference-based approach to recognizing entailment.
Proceedings of the Second Text Analysis Conference.

Crouse, M. (2021). Question-Answering with Structural Analogy. Doctoral dissertation,
Department of Computer Science, Northwestern University, Evanston, IL.

de Kleer, J., & Williams, B. C. (1987). Diagnosing multiple faults. Artificial Intelligence, 32(1),
97-130.

de Kok, D., & van Noord, G. (2017). Mining for Parsing Failures. In M. Wieling, M. Kroon, G.
van Noord, & G. Bouma (Eds.), From Semantics to Dialectometry: Festschrift in honor of John
Nerbonne. College Publications.

de Koning, K., Bredeweg, B., Breuker, J., & Wielinga, B. (2000). Model-based reasoning about

learner behaviour. Artificial Intelligence, 117(2), 173-229.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ferguson, G., & Allen, J. F. (1998, July). TRIPS: An integrated intelligent problem-solving
assistant. Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98)
(pp. 567-572). Madison, WI: The AAAI Press.

Fillmore, C. J., Wooters, C., and Baker, C. F. (2001). Building a Large Lexical Databank Which
Provides Deep Semantics. Proceedings of the 15th Pacific Asia Conference on Language,
Information and Computation (pp. 3-26).

Forbus, K. D., Hinrichs, T. (2017). Analogy and Qualitative Representations in the Companion
Cognitive Architecture. AI Magazine, 38(4): 34-42.

 A FRAMEWORK FOR INTERACTIVE NATURAL LANGUAGE DEBUGGING

11

Goodman, M. W., & Bond, F. (2009, August). Using generation for grammar analysis and error
detection. Proceedings of the ACL-IJCNLP 2009 Conference Short Papers (pp. 109-112).

Hinrichs, T., & Forbus, K. (2014). X Goes First: Teaching a Simple Game through Multimodal

Interaction. Advances in Cognitive Systems, 3, 31-46.

Kirk, J. R., & Laird, J. E. (2014). Interactive task learning for simple games. Advances in Cognitive
Systems, 3, 13-30.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere, C., Salvucci, D.,
Scheutz, M., Thomaz, A., Trafton, G., Wray, R. E., Mohan, S., & Kirk, J. R. (2017). Interactive
task learning. IEEE Intelligent Systems, 32(4), 6-21.

Li, T. J. J., Radensky, M., Jia, J., Singarajah, K., Mitchell, T. M., & Myers, B. A. (2019, October).
PUMICE: A multi-modal agent that learns concepts and conditionals from natural language and
demonstrations. Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology (pp. 577-589).

Matthews, G., Curtis, J., Hines, K., Kahlert, R. C., & Miraglia, P. (2004). KRAKEN - Knowledge
Rich Acquisition of Knowledge from Experts Who Are Non-Logicians (Technical Report).

Cycorp, Austin, TX.

McCord, M. C., Murdock, J. W., & Boguraev, B. K. (2012). Deep parsing in Watson. IBM Journal
of Research and Development, 56(3/4), 3:1-3:15.

McShane, M., & Nirenburg, S. (2021). Linguistics for the Age of AI. Cambridge, MA: MIT Press.

Parsons, T. (1990). Events in the Semantics of English (Vol. 334). Cambridge, MA: MIT Press.

Riesbeck, C. K., & Martin, C. E. (1986). Direct memory access parsing. In J. L. Kolodner, & C.

Riesbeck (Eds.), Experience, Memory, and Reasoning, 209-225. Lawrence Erlbaum Associates.

Sap, M., Rashkin, H., Chen, D., Le Bras, R., & Choi, Y. (2019, November). Social IQa:
Commonsense Reasoning about Social Interactions. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP) (pp. 4463-4473).

Tomai, E. & Forbus, K. (2009). EA NLU: Practical Language Understanding for Cognitive

Modeling. Proceedings of the 22nd International Florida Artificial Intelligence Research Society
Conference. Sanibel Island, Florida.

Wilson, J., Chen, K., Crouse, M., C. Nakos, C., Ribeiro, D., Rabkina, I., & Forbus, K. D.
(2019). Analogical Question Answering in a Multimodal Information Kiosk. Proceedings of the
Seventh Annual Conference on Advances in Cognitive Systems. Cambridge, MA.

Witbrock, M., Baxter, D., Curtis, J., Schneider, D., Kahlert, R., Miraglia, P., Wagner, P., Panton,

K., Matthews, G., & Vizedom, A. (2003, August). An interactive dialogue system for knowledge
acquisition in Cyc. Proceedings of the 18th International Joint Conference on Artificial
Intelligence (pp. 138-145).

https://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2014/Hinrichs-Forbus-ACS14.pdf
https://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2014/Hinrichs-Forbus-ACS14.pdf
https://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2009/tomaie-flairs09-eanlu.pdf
https://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2009/tomaie-flairs09-eanlu.pdf
https://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2019/ACS_Wilson_et_al_2019.pdf

