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Abstract 

Natural language systems that use hand-curated linguistic resources have advantages over Machine 

Learning systems in that their behavior can be examined and incrementally corrected. However, 

maintaining these systems is a challenge due to the amount of expertise required and the complexity 

of the debugging process. To address this challenge, we propose Interactive Natural Language 

Debugging (INLD), a framework for locating and correcting errors in a system’s linguistic resources 

by interacting with a user in natural language. As part of ongoing research, we present the INLD 

pipeline, a taxonomy of error types, and a formulation of INLD as a model-based diagnosis problem. 

1.  Introduction 

Natural language systems that use hand-curated1 linguistic resources have several advantages over 

systems that primarily rely on Machine Learning (ML). ML models are opaque and usually can 

only be debugged by adding or removing training data. By contrast, hand-curated language systems 

employ explicit knowledge that can be inspected and incrementally extended or corrected. 

Repairing an error is often just a matter of modifying a grammar rule or adding a new word to the 

lexicon, local changes that do not affect other parts of the system. These properties make hand-

curated language systems ideal for lifelong learning scenarios (Chen & Liu, 2018), where the 

system must incrementally repair and extend its linguistic capabilities over time, as well as 

applications where precision is critical. 

However, debugging a hand-curated language system can be daunting. The inner workings of 

the system are complex, drawing on a variety of linguistic resources that are encoded in specialized 

formats. Exactly what change needs to be made is not always obvious, and even the experts who 

maintain the system find debugging time-consuming and mentally taxing. The difficulty of 

maintaining hand-curated systems is partly responsible for the shift to ML systems, which can be 

trained with much less manual effort. 

In this paper, we introduce Interactive Natural Language Debugging (INLD), a method for 

debugging hand-curated language systems by interacting with a user in natural language. Given an 

 
1 We use the term “hand-curated” to describe any language system that (a) uses explicit linguistic knowledge (b) that a 

human is ultimately responsible for debugging. Neural language models such as BERT (Devlin et al., 2018) fail the 

first criterion, while statistically induced grammars (e.g., Berant et al., 2014) fail the second. Hybrid systems such as 

the NLU component of OntoAgent (McShane & Nirenburg, 2021) are considered hand-curated because they make use 

of explicit linguistic knowledge as well as statistical techniques. 
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erroneous analysis for a sentence, the system will identify likely points of failure, test them by 

asking the user questions in natural language, and iterate until the error has been localized and 

corrected. While not every category of linguistic error can be resolved this way, INLD should ease 

the burden of maintaining a language system, allow non-experts to debug it, and facilitate lifelong 

learning through user interaction. 

2.  Background 

While the techniques we present in this paper should be applicable to any hand-curated language 

system (e.g., Clark & Harrison, 2009; Ferguson & Allen, 1998; McCord et al., 2012; McShane & 

Nirenburg, 2021; Riesbeck & Martin, 1986), we ground our discussion in CNLU (Companions 

Natural Language Understanding; Tomai & Forbus, 2009). CNLU is the language understanding 

component of the Companions cognitive architecture (Forbus & Hinrichs, 2017). It produces an 

explicit semantic interpretation of a piece of text suitable for planning and reasoning. CNLU has 

been applied to a range of tasks, such as extracting qualitative knowledge from text (Crouse, 2021), 

question answering in an information kiosk (Wilson et al., 2019), game learning through 

multimodal interaction (Hinrichs & Forbus, 2014), and moral decision-making (Tomai & Forbus, 

2009). 

CNLU is built on James Allen’s TRAINS bottom-up chart parser (Allen, 1994), which uses a 

feature-based context-free grammar. Given a sentence as input, the parser builds up a graph of 

syntactic constituents, with the goal of finding one or more constituents which cover the whole 

sentence. If no complete constituent can be found, the parse is considered fragmented, indicating 

that CNLU was not able to construct a valid interpretation of the sentence. CNLU uses a hand-

curated lexicon assembled from a variety of sources to map each token to its canonical form and 

encode grammatical features such as tense and number. 

While CNLU is parsing a sentence, it also builds up a semantic interpretation of the text. The 

output of a successful parse includes both a syntax tree indicating the grammatical structure of the 

sentence and a set of predicate calculus statements representing its meaning. Semantic 

interpretations are grounded in the NextKB ontology (Forbus & Hinrichs, 2017). This facilitates 

further reasoning by the Companion, allows CNLU to rule out semantically incoherent 

interpretations based on type constraints, and lets it choose interpretations based on context. 

To translate words into their semantic representations, CNLU uses a library of semtranses2 

based on FrameNet (Fillmore et al., 2001) and NextKB. Each semtrans maps a word to a piece of 

predicate calculus that encodes its meaning in NextKB, along with a set of valence patterns derived 

from the corresponding FrameNet frame. Each valence pattern represents a valid configuration of 

grammatical and semantic roles for the frame. For example, Table 1 shows a semtrans for the verb 

eat. For the starred valence pattern, the subject is the one eating and the direct object is the thing 

being eaten. This corresponds to a sentence of the form “Bob ate the wedge.” Valence patterns tell 

CNLU how to interpret the grammatical arguments of a verb and allow it to filter out interpretations 

that do not correspond to a known configuration of arguments. 

CNLU adopts a wait-and-see approach to disambiguation. When there are multiple valid syntax 

trees for a sentence or multiple semantic interpretations for a word, CNLU encodes the options as  

 
2 “Semtrans” is short for “semantic translation”. 
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Table 1. Partial semtrans for the verb eat. The top row contains the part of speech, FrameNet frame, and 

semantics. The subsequent rows are valence patterns: configurations of syntactic and semantic arguments. 

 Eat – Verb – FN_Ingestion – (and (isa :ACTION EatingEvent)) 

 Grammatical Role Phrase Type Role Relation Example 

 :SUBJECT NP consumedObject The cheese was eaten. 

* :SUBJECT NP performedBy Bob ate the wedge. 

 :OBJECT NP consumedObject  

 :SUBJECT NP performedBy Joe ate quickly. 

 :OBLIQUE-OBJECT AVP mannerOfAction  

     

choice sets, producing a compact representation of the set of possible interpretations for the 

sentence. Choices within a choice set are mutually exclusive, assumed to be exhaustive, and may  

depend on specific parses (e.g., “does” only denotes a group of deer if it is a noun). Choices are 

selected as needed by domain-specific reasoning processes. 

Figure 1 shows the choice sets for the sentence “Bob ate the wedge.” The choices for the word 

“eat” cover the distinction between having a meal (e.g., eating dinner) and eating in general. CNLU 

uses a Neo-Davidsonian event representation (Parsons, 1990), where events are encoded as entities 

(e.g., eat4200) and their arguments are linked to them with role relations (e.g., performedBy, 

consumedObject). The prefix “FN_” indicates the FrameNet frame, with FN_Shapes denoting 

the Shape frame. FN_Misc is a placeholder when FrameNet does not have an existing frame. The 

choices for the word “wedge” reflect the two senses of the word that CNLU knows: a wedge shape 

and a kind of golf club. Note that the intended sense of “wedge”, a kind of sandwich, is not present. 

While CNLU has broad coverage, including over 190,000 word forms, 400 grammar rules, and 

69,000 semantic mappings, its performance is far from perfect. This makes it an ideal testbed for 

INLD, since INLD can be used to drill down on linguistic errors and gaps in the system’s coverage. 

3.  Interactive Natural Language Debugging 

The core idea of Interactive Natural Language Debugging is to take advantage of the user as a 

source of information to debug a hand-curated language system. Normally, experts must crawl 

through baroque parser traces to determine why a parse failed and how to fix it. Even noticing a 

failure can be difficult, as the system can adopt an incorrect interpretation while ruling out the 

correct one. For an end user who has no knowledge of the inner workings of the language system, 

debugging an error is extremely difficult. 

INLD addresses these issues by presenting the user, whether an expert or a novice, with a series 

of diagnostic questions in natural language, then using the answers to iteratively home in on the 

error. While identifying a missing valence pattern may be beyond the capabilities of an average 

user, they can answer simple questions like “Which sense of owns is correct?” or “Is this an accurate 

paraphrase of the sentence?”. Expert debuggers could also benefit from having the system’s 

interpretation laid out in a more accessible format and having the system reason through common 

patterns of errors. 
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In the remainder of this section, we discuss the properties of our proposed INLD system. The 

INLD pipeline consists of four stages, which are shown in Figure 2. The process begins with an 

input sentence and ends with an incremental change to the system’s linguistic resources. 

3.1  Identification 

The first stage of the debugging pipeline is identification. The system uses a combination of 

internal reasoning and queries to the user to determine a set of symptoms which reflect an error in 

the system’s linguistic knowledge. For example, the system may determine that the parse is 

fragmented, or the user may notice that none of the choices for a word are correct. Symptoms guide 

debugging and determine when the process has succeeded. If the user and the system find a fix that 

alleviates the symptoms and without introducing any new ones, the error has been resolved. 

Some symptoms can be identified automatically, such as a fragmented parse or an unknown 

word. Others require human judgment, such as a missing word sense or an incorrect parse tree. The 

system identifies such symptoms by presenting pieces of its internal representations to the user in 

natural language. The user selects the options that are correct or notes if none of them are. The 

system can ask follow-up questions to further characterize the problem or proceed to localization. 

The system has several options for revealing symptoms to the user. The simplest is to use 

templates to convert its internal representations into natural language. This can be applied to word 

senses (“bought is a buying event”), semantic roles (“the book is the object transferred”), and 

syntactic structure (“Jack is the subject of the sentence”). More advanced techniques include 

presenting the implications of the interpretation or paraphrasing the sentence to highlight errors in 

the system’s understanding. 

3.2  Localization 

Once a symptom has been identified, the system attempts to localize the error that is causing it. The 

culprit could be a faulty grammar rule, a missing valence pattern, or something else entirely. Table 

Figure 1. Choice sets for the sentence “Bob ate the wedge.” in the CNLU interface. 
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2 presents a taxonomy of error types and their symptoms.3 There are several strategies for 

localization depending on the nature of the symptom and how amenable it is to introspection. If the 

system never considered the correct interpretation of a word, the error must be a missing semtrans. 

However, a fragmented parse may be caused by any number of grammatical errors. 

For these types of open-ended symptoms, the system can fall back to differential diagnosis, 

localizing the error by process of elimination. It modifies the sentence by either substituting a 

synonym or simplifying a phrase. Then it checks to see if the symptom has been resolved. If it has,  

Table 2. Taxonomy of CNLU Symptoms and Errors 

ID Error Category Symptoms 

A1 Missing lexicon entry Lexicon Flagged automatically by parser 

A2 Incorrect lexicon entry Lexicon Fragmented parse or incorrect parse tree 

B1 Missing grammar rule Grammar Fragmented parse or incorrect parse tree 

B2 Incorrect grammar rule Grammar Fragmented parse or incorrect parse tree 

C1 Restrictive type constraint Semantics Type checking rules out correct interpretation 

C2 Missing valence pattern Semantics Valence pattern checking rules out correct interp. 

C3 Missing word sense Semantics Flagged by parser or correct interp. missing entirely 

C4 Permissive type constraint Semantics Incorrect interp. allowed or generates bad paraphrase 

C5 Incorrect valence pattern Semantics Incorrect interp. allowed or generates bad paraphrase 

C6 Incorrect semantics Semantics Correct interp. missing or generates bad paraphrase 

D1 Missing inheritance info Ontology Type checking rules out correct interpretation 

D2 Incorrect inheritance info Ontology Incorrect interp. allowed or generates bad implication 

D3 Missing disjointness info Ontology Incorrect interp. allowed or generates bad implication 

D4 Incorrect disjointness info Ontology Type checking rules out correct interpretation 

 
3 We omit disambiguation errors, where the system generates the correct interpretation but selects the wrong one. 

Disambiguation relies on other types of knowledge which require different corrective mechanisms. 

Figure 2. The INLD Pipeline. 
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the error must be related to the change that was made. For example, if changing a verb to its 

synonym results in a complete parse, the original verb could have an incorrect grammar feature 

(A2), or it could be missing a valence pattern the synonym has (C2). If the symptom has not been 

resolved, the modified words are probably not at fault, and the system can try another modification. 

The space of potential modifications is enormous, but a handful of heuristics should be enough 

to guide the search for a modification that is diagnostically useful. One approach is to replace 

content words, such as nouns or verbs, with their synonyms. Finding a true synonym can be 

difficult, as similar words are often used in different syntactic constructions but comparing the way 

the parse handles related words can be a valuable source of information about gaps in the system’s 

coverage. 

Another approach is to simplify the sentence by removing a subordinate clause, dropping a 

modifier, or replacing a noun phrase with a pronoun. If this resolves the symptom, the removed 

phrase is the source of the error. If not, the system now has a simpler sentence to work with. Even 

if the error cannot be fully localized by the system, pursuing a simplification strategy can produce 

a minimal test case that will make the error much easier for an expert to diagnose. 

3.3  Correction 

Once the error has been localized, the system can attempt to fix it with the help of the user. For 

some types of errors, the fix is straightforward. A missing word can be added to the lexicon, a faulty 

inheritance link can be removed from the ontology, or a new valence pattern can be added to the 

system. As long as the system is able to ask the user sufficiently distinguishing questions (e.g., to 

correctly place a concept within the type hierarchy), it can propose a fix for the problem. 

But for other types of errors, correction can be difficult without manual intervention from an 

expert. For example, the fix to an overly restrictive grammar rule might involve changing the value 

of a feature, something that cannot easily be done through natural language without user knowledge 

of the grammar. Furthermore, a change to a grammar rule could degrade the system’s performance 

on other sentences. Balancing these concerns requires expert judgment and a close look at the 

internals of the parser, placing it outside the reach of INLD. 

3.4  Verification 

Just because the system and the user come up with a correction for an error does not mean that it is 

the right one to make. The final stage of the debugging process is verification, which attempts to 

check the correction before it is incorporated into the system’s linguistic resources. If the correction 

fails to solve the problem or introduces a new one, the system should either backtrack and try 

another solution or proceed under the assumption that it has uncovered a second error. 

There are two levels of verification: local and global. Local verification concerns the sentence 

at hand. The system checks whether the symptom has been successfully resolved, whether the parse 

contains any other errors, and whether the implications of the change are correct (e.g., “Because a 

wedge is a kind of sandwich, it is edible.”). Global verification deals with the overall performance 

of the system. Running a regression test with the proposed change can flag whether it breaks other 

parses. If so, an expert will have to decide whether to accept it. 
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Table 3. Symptom Distribution Across Social IQa Sample 

Symptoms Percentage of Sentences 

Missing lexicon 5% 

Missing semantics 37.5% 

Fragmented parse tree 10% 

Incorrect parse tree 15% 

No correct interpretation 2.5% 

Incorrect interpretation allowed 15% 

4.  Applying the Taxonomy 

We evaluated our error taxonomy on a small sample of sentences from Social IQa, a benchmark 

dataset created to measure how well ML models demonstrate social commonsense knowledge (Sap, 

2019). Social IQa contains over 37,000 social commonsense questions that were generated from 

ATOMIC 2019 and annotated with context sentences by crowd workers. We sampled 40 context 

sentences from the validation set, ran them through CNLU, and hand-annotated any problems we 

found. Table 3 shows the percentage of sentences that demonstrate each symptom. Note that most 

of the sentences have multiple symptoms. 

For example, consider the sentence “Lee gave Taylor's friend a handshake and sneezed on their 

hand.” CNLU does not have a semtrans for this sense of the word “give”, and it has no way to tell 

that a sense is missing without outside help. During an INLD session, the system will present the 

possible interpretations of “give” to the user. If none of them are correct, the system can restrict the 

set of possible errors to C1, C2, C3, C6, D1, or D4, using the taxonomy from Table 2. Internal 

checks can confirm that no other senses of “give” were ruled out, so the system can narrow down 

the error to a missing (C3) or incorrect (C6) semtrans. 

5.  INLD as Model-Based Diagnosis 

The INLD pipeline presented in Section 3 is our proposed framework for debugging a language 

system, but it does not specify how the process should be implemented. This section describes how 

the first two steps of the pipeline, identification, and localization, can be formulated as a model-

based diagnosis problem. Model-based diagnosis identifies the discrepancies between the behavior 

of an artifact, such as a physical device or a student’s reasoning on a homework problem, and the 

predictions of a model. In particular, the General Diagnostic Engine (GDE; de Kleer & Williams, 

1987) performs diagnosis by taking a series of measurements of the artifact’s behavior and 

comparing them to the model’s predictions, making it a natural fit for INLD. 

5.1  Formulating the Problem 

The first step of model-based diagnosis is to construct a model. We will use a variation of the 

approach pioneered by de Koning et al. (2000), where they used the dependency trace automatically 

produced by a qualitative reasoner to serve as a model for the reasoning students should be 

performing on a physics problem. Components in the model were laws that the student should know 
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and mental operations, such as remembering facts, with connections based on the flow of 

information during the reasoning process. Model-based reasoning was then used to identify 

potential causes for student mistakes, including ascertaining which follow-up questions to ask them 

to home in on the underlying misconception for correction. 

For INLD, the model would be generated automatically from a trace of the parser’s behavior 

on a particular sentence. Each element of the parse—such as a syntactic constituent, a semantic 

expression, or a piece of linguistic knowledge, such as a rule or a semtrans—corresponds to a 

component in the model. The components are connected according to how the elements were 

derived. For example, a constituent’s inputs would be its children and the rule that combined them, 

while an expression’s inputs would be a semantic template and the bindings that instantiated it. 

This captures the dependencies in the parse, linking high-level choices to their underlying facts. 

The input and output values of the components are acceptability judgments, which can either 

be provided directly by the user or predicted by the model based on other judgments. For example, 

the system might ask the user whether “wedge” refers to a golf club in the current context. If the 

answer is no, the output of the component for (isa wedge4237 Wedge-GolfClub) is 

marked as unacceptable, and that value is propagated through the model. Parse components behave 

like AND gates, in that the output value is acceptable if and only if all the inputs are acceptable. 

Because choice components have their semantic expressions as input, any choices containing the 

expression (isa wedge4237 Wedge-GolfClub) will also be marked as unacceptable. 

The last part of the model is a set of components that encode completeness assumptions. These 

are defeasible assumptions that the system’s knowledge is both complete and sufficient to produce 

an acceptable interpretation of the sentence. These components behave like OR gates, in that at 

least one of the inputs must be acceptable for the output to be acceptable. Completeness 

assumptions are used to encode choice sets, reflecting the assumption that one of the choices must 

be acceptable for the system’s analysis to be complete. For example, one component would 

represent the choice set for “wedge”. If both of its choices are ruled out, making both of its inputs 

unacceptable, the system has found a discrepancy that it must attempt to explain. 

Completeness assumptions are used to drive prediction and help with diagnosis. If the choice 

set for “wedge” is deemed unacceptable, there must be a choice missing, either because it was ruled 

out during parsing or because the system was missing the semtrans it needed to construct it in the 

first place. The model also contains completeness assumptions for the system’s knowledge, such 

as the semtranses for a word. If all of the semtranses for a word have been deemed unacceptable, 

the completeness assumption is violated, indicating there must be a semtrans that is missing. 

5.2  Solving the Problem 

Once the system formulates a model, the next step is diagnosis. GDE takes a series of 

measurements, uses them to identify discrepancies, and determines a minimum set of faulty 

components that would explain them. In the case of INLD, the measurements are diagnostic 

questions that the system asks the user, the discrepancies are mismatched acceptability judgments, 

and the faulty components are completeness assumptions that need to be retracted or reexamined. 

Three aspects of the problem require special care. First, not all parse elements can be measured 

directly. Asking the user about the acceptability of an expression is reasonable, since the expression 

can be verbalized, and it corresponds to a simple semantic judgment about the sentence. But asking 
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the user to evaluate an entire grammar rule is unreasonable due to the complexity of the rule and 

the technical knowledge required to evaluate it. Clever questions can elicit judgments that would 

be hard to get otherwise, but GDE will always have components that cannot be measured. 

Second, only components that encode completeness assumptions or linguistic knowledge can 

have faults. The other components reflect the operation of the parser on the data it is given, a process 

that is assumed to be sound.4 Any faults must lie with either an incorrect fact or the assumption that 

all relevant facts are known. Treating most of the components in the model as infallible greatly 

reduces the space of possible diagnoses and helps productively guide the search. 

Third, INLD is best viewed as a hierarchical model-based diagnosis problem. The initial model 

ignores alternate incomplete parses, ruled-out semantics, and other details that are not likely to be 

relevant. When a completeness assumption fails, it triggers a decomposition step that reformulates 

the model to take the elided elements into account. For example, if no choices for a word are 

acceptable, the system expands the model to include word senses that were ruled out. If the user 

deems one of the senses acceptable, the problem is reduced to figuring out why the sense was 

incorrectly ruled out. 

Given suitable strategies for selecting diagnostic questions to ask and decomposing the model 

when a completeness assumption fails, GDE should be able to localize errors and support INLD. 

6.  Related Work 

The closest existing work to INLD that we are aware of is on debugging natural language systems. 

Error mining (de Kok & van Noord, 2017) tracks the broken parses in a corpus to identify the n-

grams a parser has trouble with. Goodman & Bond (2009) uses round-trip parsing and generation 

to similar effect, identifying combinations of rules that are linked to parsing or generation failures. 

INLD shares the goal of debugging language systems, but it focuses on individual sentences rather 

than entire corpora. We plan to explore combining the two approaches in future research. 

INLD also has ties to Interactive Task Learning (ITL; Laird et al., 2017), an area of research 

on building systems that learn through instruction and demonstration. While the main focus of ITL 

is on learning new tasks, systems such as Rosie (Kirk & Laird, 2014) and PUMICE (Li et al., 2019) 

allow users to extend the system’s vocabulary through interaction. INLD uses a similar setup, but 

it debugs the system’s general linguistic knowledge, rather than extending it for specific tasks. 

KRAKEN (Matthews et al., 2004) lets subject-matter experts browse and expand the Cyc 

ontology. Its interactive dialogue system (Witbrock et al., 2003) walks the user through adding an 

entity to the knowledge base. INLD shares the goal of improving a complicated system through 

natural language interaction, but it focuses on linguistic, rather than general, knowledge. 

7.  Conclusion 

In this paper, we have introduced Interactive Natural Language Debugging, a framework for semi-

automatically debugging language systems with the help of a (non-expert) user. We are in the 

process of implementing an INLD system in the Companions cognitive architecture (Forbus & 

Hinrichs, 2017), using its dialogue capabilities to support user interaction and its reasoning 

 
4 Without this assumption, INLD would have to handle errors in the parsing algorithm, which is beyond its scope. 
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capabilities to support diagnosis. Once the system is complete, we will evaluate it by having non-

expert users track down errors in CNLU’s linguistic resources, testing the efficiency of the 

debugging process and the completeness of our error taxonomy. Areas of future research include 

using paraphrase to reveal errors and fleshing out the correction and verification stages of the 

pipeline. 
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