
Abstract 

One of the roles of qualitative representations is to 
provide context for numerical information, making 
explicit how it is grounded in the world.  This sup-
ports tasks like quantity estimation, e.g. estimating 
the cost of a used bicycle by comparing it with sim-
ilar items.  The KNACK model (Paritosh & Klenk, 
2006) used analogical retrieval of a fixed number of 
cases to perform such estimates.  This paper de-
scribes a new algorithm, KNACK v2, which uses 
analogical generalization to provide a more robust 
notion of context for quantitative estimation.  We 
describe how KNACK v2 works and test its perfor-
mance on a dataset of country information from 
Wikidata, showing it is competitive with linear re-
gression while providing explanations.   
 

1 Introduction 
Quantity estimation is integral to our everyday lives. We 

may estimate how long it would take to commute home if we 
stop at the grocery store on the way, whether we have enough 
fuel to drive to our destination, or how much we should 
charge for our used bicycle after upgrading to a new one. 
Solving these estimation problems typically requires some 
experience with similar examples as well as domain-
knowledge about the world. 

Before setting the asking price for our old bicycle, we need 
a contextual sense of what bicycles cost in our environment. 
We might browse online listings of used bicycles or stop by 
a used bike shop in our town to get a general idea of the dis-
tribution. These serve as reference points for generating our 
own estimate, or in this scenario, asking price. 

During quantity estimation we also regularly use our do-
main-specific qualitative and quantitative world knowledge. 
For example, we know that bicycles with a sophisticated 
multi-gear system are more costly than those without one. 
The weight of the frame or the thickness of the tires may also 
be factors that influence our estimate. 

The dominant computational model for estimating quanti-
ties is multiple linear regression, but this approach has two 

drawbacks.  First, linear regression does not handle qualita-
tive information adeptly.  The classic workaround solution is 
to create one-hot dummy variables that are active when a case 
has a given feature and inactive when it doesn’t.  In our bicy-
cle example, the presence or absence of a gear-shifting sys-
tem would be represented by a 1 or a 0 in a dedicated dimen-
sion. This approach can lead to sparsity in feature vectors and 
subsequent overfitting.  The second drawback of pure regres-
sion is its lack of explainability. A regression output is simply 
an intercept and a series of coefficients for associated dimen-
sions. There is no dependency, no higher-level cognitive 
mechanism that guarantees a reasonable estimate, and no 
clear explanation for why a given estimate makes sense.  Re-
turning to our used bicycle example, negotiations over price 
often hinge on specific factors (e.g. fancier gear-shifting sys-
tem versus more wear), so an explainable model would likely 
give customers more peace of mind that they are getting a fair 
price. 

This paper describes KNACK v2, a model for quantity es-
timation based on qualitative representations and analogical 
generalization.  We start by discussing relevant background, 
including the anchoring and adjustment psychological model 
of quantitative estimation, our analogical processing models, 
and the construction of qualitative representations of quanti-
ties via CARVE (Paritosh 2004).  Then we describe the 
KNACK v2 algorithm, and an experiment using a dataset ex-
tracted from Wikidata (Vrandecic & Krotzsch 2014).  The 
experiment provides evidence that KNACK v2 is competitive 
with linear regression, but with the ability to provide expla-
nations.  We close with conclusions and future work.   
 

2 Background 
 
2.1 Anchoring and Adjustment 
 
There has been significant psychological evidence for the 
heuristic of anchoring and adjustment (Tversky and Kahne-
man, 1974). This method for quantity estimation involves 
two steps. The first step anchors an estimate by retrieving a 
relevant example from memory and using its value for that 
quantity. This retrieval can be a prototypical class instance 
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(subject to the availability heuristic (Tversky and Kahneman 
1974)) or a similar example. For instance, when estimating 
the rent for an apartment, we may start with the rent for apart-
ments of the same configuration (e.g. one bedroom) in the 
same neighborhood. Using that sample as our estimate would 
be a type of nearest neighbor sampling, but we can often be 
more accurate by utilizing adjustment. This second step in-
corporates our intuitive heuristic knowledge of the world to 
scale up or down our estimate.   
 We use two ideas in developing computational models 
based on anchoring and adjustment.  The first is the structure-
mapping theory of analogy and similarity (Gentner, 1983) to 
both find similar examples and compute how they are aligned 
with the current situation.  In structure-mapping, similarity is 
based on structured representations, including relationships 
between entities as well as attributes (aka features).  There is 
ample evidence that this model is more psychologically plau-
sible than purely feature-based approaches (e.g. Markman & 
Gentner, 1993).  Returning to the rental example, when trying 
to estimate the rent for one apartment, we may retrieve an-
other apartment—whose rent we do know—and map the two 
cases together with their relative parts, comparing configura-
tion with configuration, location with location, price with 
price, etc.  These alignable properties help provide the grist 
for adjustment: If one apartment is larger than the other, then 
that suggests its rent might be higher.  Qualitative represen-
tations provide this kind of causal information needed to 
drive adjustment.  We use qualitative proportionalities 
(Chapter 7, Forbus 2019), which describe how quantities are 
causally connected with one another.  If rent is qualitatively 
proportional to square footage, then an apartment with more 
square footage will have a higher rent, all else being equal.  
Of course, what makes these problems difficult is that all else 
typically is not equal: A small apartment in a great neighbor-
hood may be more expensive than a huge apartment in an un-
safe neighborhood.   
 This approach is broadly compatible with psychological 
evidence about component processes.  Previous studies have 
found that relational retrieval improves with domain exper-
tise (Blanchette & Dunbar 2001; Novick 1988; Gentner, Loe-
wenstein, & Thompson 2004). Similarly, the adjustment 
phase of quantity estimation gets better with expertly tuned 
heuristics and knowledge of qualitative proportionalities and 
other quantity relationships (Paritosh & Klenk 2006). 
 
2.2 Analogical Processing  
 
We draw on computational models for three processes in-
volved in analogical learning and reasoning, matching, re-
trieval, and generalization, discussing each in turn. 
 Matching is performed by the Structure-Mapping Engine 
(SME; Forbus et.al. 2017).  It takes two cases as input, both 
structured representations that include both statements about 
object attributes (e.g. being a bicycle) and relationships (e.g. 
that the basket is connected to the rear wheel of the bicycle). 
It constructs one or more mappings, each of which consists 
of three parts.  (1) A numerical score indicates the overall 
quality of the match.  This depends on properties such as the 

nested overlap in relationships, thereby capturing human 
preferences for arguments and explanations, (2) a set of cor-
respondences, indicating what objects and statements align 
with each other.  Correspondences can be used in supporting 
how an example is relevant to a situation, among other things. 
(3) A set of candidate inferences, indicating how non-aligned 
information in the base or target might be mapped onto the 
other description, based on the correspondences.  These pro-
vide conjectures and highlight salient differences between the 
two descriptions. 
 Retrieval of cases is modeled by MAC/FAC (Forbus, 
Gentner & Law 1995).  The probe is the case for which a 
reminding is sought from a case library consisting of struc-
tured representations.  For scalability, MAC/FAC consists of 
a two-stage process, both of which use map/reduce.  The 
MAC stage computes a coarse estimate of the probe with 
every case in the library, in parallel, based on content vectors.  
Content vectors are automatically constructed from struc-
tured representations, with the strength of a dimension related 
to the number of occurrences of each kind of predicate, at-
tribute, or logical function.  The dot product of two content 
vectors is an estimate of SME’s structurally grounded simi-
larity score.  The best M matches from the MAC stage are 
passed into FAC, which uses SME for its comparisons, pro-
ducing the best N matches as outputs.   

 Generalization, the process by which we naturally group 
similar cases together, is modeled by Sequential Analogical 
Generalization Engine (SAGE) (Kandaswamy & Forbus 
2012).  SAGE builds analogical models of concepts incre-
mentally, using structure-mapping as a clustering metric.  
Each model consists of a generalization pool, which can con-
tain both generalizations and outliers (Figure 1).  Given a new 
example of a concept, MAC/FAC is used to retrieve the most 
similar item, treating the pool as a case library.  If the 

 
Figure 1:  
A Sage Generalization Pool. Generalizations (groups of 
analogically similar cases) are shown in white circles, 
with individual constituent cases shown as black dots. 



similarity score produced by SME is higher than the assimi-
lation threshold for that generalization pool, then the case and 
the item are assimilated.  If the item was an outlier, then a 
new generalization is formed by merging the corresponding 
statements.  

Generalizations also record summative statistics about 
constituent cases. For example, in a generalization composed 
of two countries, facts they share (high population, medium 
GDP, etc.) will have probabilities of 1, while facts that exist 
in only one constituent case have probability 0.5. Non-iden-
tical entities are replaced by skolems constants called gener-
alized entities.  If the item was a generalization, the merge 
process updates the probabilities for the statements based on 
overlap, and introduces new generalized entities as needed.  
At any time, the generalizations and outliers in the pool con-
stitute a disjunctive model of that concept given the data so 
far.  It is analogous to k-means clustering with outliers, ex-
cept that the clustering metric is structure-mapping and the 
number of clusters is determined automatically based on the 
data.  This ability to handle disjunctive concepts provides a 
finer-grained notion of context for reasoning, e.g. racing bi-
cycles will likely end up in different clusters from cargo bi-
cycles. 

Currently, our analogy stack (MAC/FAC, SME, and 
SAGE) is not sensitive to quantity; that is, the analogy stack 
was built primarily for cognitively plausible, qualitative rea-
soning over relational cases, rather than numerical analyses. 
In order to make analogy sensitive to attributes on quantita-
tive dimensions, we employ a model called CARVE. 

 
 
2.3 Qualitative Representation of Quantities 
 
Structure-mapping operations are not sensitive to numerical 
values.  For example, the difference between apartments 
with 700 and 705 square feet is the same to SME as the dif-
ference between apartments with 700 and 1000 square feet. 
We take this as a job for qualitative representations: In 
apartments, 5 square feet is a negligible difference.  In an 
engineering analysis of materials needed for an aircraft, five 
extra square feet can be a considerable difference.  Thus we 
argue that translation to appropriate qualitative values, in a 
task-specific manner, is a sensible and psychologically plau-
sible way to incorporate such information.   
 In Qualitative Process (QP) theory (Forbus, 1984), limit 
points are used to distinguish ranges in numerical values 
based on when the underlying causal laws change.  But what 
about situations where either it isn’t known yet which causal 
laws are relevant yet, or even what they are?  Paritosh 
(2004) proposed using distributional limit points, dividing 
numerical ranges into a discrete set of values via classic k-
means clustering.  For example, population might be ini-
tially divided into three bins, High, Medium, and Low.  
Once distributional limit points have been computed, nu-
merical facts can automatically be converted to qualitative 
statements.  For example,  
(populationOfRegion unitedStatesOfAmerica 
(UnitOfCountFn Person) 331000000) 

becomes 
(isa UnitedStatesOfAmerica (CountryTypeFn  
(MediumAmountFn CountryPopulation))) 

Where the literal value is replaced by the qualitative label 
(medium) within the broader case library context (all coun-
tries). Thus countries that are qualitatively similar in relevant 
dimensions are more likely to be retrieved. Significant differ-
ences in quantities are highlighted via candidate inferences 
generated during the mapping process. 
 CARVE (Paritosh 2004), uses k-means clustering to intro-
duce distributional limit points and then used a precursor to 
SAGE to look for useful partitionings.  At the time, the pau-
city of available data limited experimentation.  With modern 
Semantic Web data sources, that has changed.  The experi-
ments described here use the CARVE algorithm with three 
qualitative values to symbolize quantity. 

3 The KNACK v2 Algorithm 
KNACK v2 is an algorithm for quantitative estimation us-

ing analogical generalization over qualitative representations.  
It takes a stream of examples to learn analogical models via 
SAGE, as described in Section 2.2. Figure 2 describes the al-
gorithm for ingestion of new examples, and Figure 3 de-
scribes how estimations are made, given the current state of 

the generalization pool. We discuss each in turn. 
The example ingestion process (Figure 2) is straightfor-

ward.  All statements involving numerical parameters are re-
placed with qualitative statements, as per the example above.  
This has the effect of flattening the representation to some 
degree, since it is replacing relations (e.g. population-
OfRegion) with attributes (e.g.  
(CountryTypeFn  
(MediumAmountFn CountryPopulation))), which 

has the effect of making analogical retrieval sensitive to dif-
ferences in values, as desired.   
 Quantity estimation can be viewed as a form of anchor and 
adjustment.  Step 1 in Figure 3 retrieves the anchor.  As per 
Step 1(a), if nothing is retrieved, the average of Q across the 
examples in the pool is used as a fallback.  If the closest an-
chor is an outlier, then there isn’t enough information to build 
a linear regression model, so the value of Q in the outlier is 
used instead (Step 2).  Step 3 is the interesting case.  As noted 
above, qualitative proportionalities provide the kind of partial 
causal constraints that can be assembled to form a model for 
a quantity.  We assume the retrieval of relevant qualitative 
proportionalities (Step 3(a)) is done respecting the constraints 
of a QP domain theory.  Steps 3(b-d) does the adjustment, by 
constructing and using a linear regression model based on the 
examples in the retrieved generalization.  One subtlety 

Algorithm: Ingest Example 
Given example E and generalization pool GP, 

1. Convert all quantitative values in E to quali-
tative values 

2. Add E to GP via SAGE 
Figure 2: KNACK v2 Ingestion Algorithm 



concerns missing data in examples: If an example is missing 
data, it is thrown out, and if none of the examples in I have 
relevant data, the marginal average across the pool is used 
instead as a fallback. 

The use of generalization to provide a more focused con-
text is the key innovation of KNACK v2. The original version 
of KNACK used MAC/FAC over a case library of examples, 
looking for a hard-coded number of examples—5— to use in 
model construction.  By using analogical generalization in-
stead, we are assured that the cases are all reasonably similar 
to each other, as opposed to being just the most similar that 

could be found.  Thus this algorithm scales smoothly between 
low-data situations (e.g. two examples) and high-data situa-
tions (e.g. dozens of examples).  This does raise the question 
of what should be done with generalizations that have thou-
sands or even millions of examples.   Such situations have 
never arisen, but if they do, one approach would be incremen-
tally computing more summative statistics rather than keep-
ing everything in the original cases.  

At the time of the original KNACK’s publication in 2006, 
the landscape of open-source datasets was very different. 
Prior to the machine learning boom of the 2010s, datasets for 
learning were more often smaller and experiment-specific. 
The datasets used with the original KNACK algorithm, for 
example, contained 15 cases (each case representing one bas-
ketball player). Datasets have ballooned in size since this 
time, and access is often easy and free (Forbus & Demel, 
2022).  Thus to test the scalability of the KNACK v2 algo-
rithm, we generated a new dataset using Wikidata, one of the 
largest open knowledge graphs available. 

 
1 NextKB is available at qrg.northwestern.edu, and we will 

make the country dataset available on the web as well to support 
replication. 

4 Experiment 
We generated a dataset describing information about 197 

countries, and used KNACK v2 to build models for quantity 
estimation.  We start by summarizing Wikidata and how we 
translated the data into our representations1.  Then we de-
scribe our experimental method and the results.   

 
4.1 Wikidata 

Wikidata is a collaboratively edited knowledge graph 
hosted by the WikiMedia foundation (Wikipedia, Wiktion-
ary, etc.) Utilizing an extensive distributed community of ed-
itors, Wikidata has grown to over 104 billion items at the time 
of writing.2 The open-source nature of Wikidata allows it to 
serve as a downstream aggregate of otherwise siloed data 
from various sources. For example, Wikidata contains data 
from the Google Books initiative as well as the Vatican Li-
brary, linking common entities across domains. We briefly 
describe the structure of Wikidata items. 
 Wikidata items are entities with a unique identifier (QID) 
and a set of statements concerning them. Each statement is a 
key-value pair, with the key being a property (associated with 
a unique property ID, or PID) and the value being some 
value—a quantity, another item, or multimedia like a photo. 
This structure is effectively a series of triples of the form 
<subject, predicate, attribute>. This RDF structure makes all 
of Wikidata queryable from a SPARQL endpoint.3 For exam-
ple, say one wants to find the capital of the United States. The 
United States is an item in Wikidata with the QID Q30. There 
is a capital property with the PID P36. Then all we have to 
do is query for the statement <Q30, P36 ?X> in SPARQL, 
giving us another entity, Washington D.C. (Q61). 

But statements can be more sophisticated than linking mul-
tiple items. Some predicates, like area (P2046), link an item 
to a quantity, margin of error, and a unit. (According to Wik-
idata, the United States (Q30) has an area (P2046) of 
9,826,675±1 square kilometers.) Other facts have qualifiers 
attached—between 1785 and 1790, the capital of the United 
States was New York City. Similarly, the value for a popula-
tion statement is constrained by the year when it holds true. 
Finally, most facts in Wikidata can be traced back to their 
source through citations or provenance information, increas-
ing the trustworthy of the data available. 

We queried Wikidata for 197 countries and their associated 
statements. We gathered both qualitative data, like: 

 Bordering Countries 
 Continent Membership 
 Currency 
 Bordering Bodies of Water 
 International Organization Membership 
 Language Spoken 

Along with quantitative data, such as 
 Area 
 Population 
 Human Development Index (HDI) 

2 For up-to-date statistics on items, edits, and users, visit 
https://www.wikidata.org/wiki/Special:Statistics 
3 query.wikidata.org 

Algorithm: Estimate 
Given: New example E with quantity Q to be esti-
mated, with respect to generalization pool GP 

1. Retrieve closest item I from GP, using 
MAC/FAC 

a. If no retrieval, return marginal av-
erage of Q across all cases in GP 

2. If I is an outlier, use the value of Q in I as 
the estimate. 

3. If I is a generalization, 
a. Let qprops = {qualitative propor-

tionalities constraining Q} 
b. Let a1,…,an be the antecedent 

quantities from qprops. 
c. Construct linear regression model 

from values for a1,…,an using the 
cases used to produce I 

d. Produce estimate from linear 
model, computing Q from data for 
a1,…,an from E. 

Figure 3: KNACK v2 Estimation algorithm 



 Development Index 
 Gross Domestic Product (GDP) 
 GDP Per Capita 
 Literacy Rate 
 Fertility Rate 
 Life Expectancy 
 Median Income 
 Democracy Index. 

Due to the crowdsourced nature of Wikidata4, not all cases 
are complete with every dimension. For example, no literacy 
rate was found for Mexico, and no median income found for 
Mauritius. Wikidata had only 4 of 11 possible quantitative 
facts for Monaco: area, population, GDP, and GDP per cap-
ita. This makes our estimation task more difficult but is inev-
itable in real-world situations. 

To build our dataset, facts retrieved via SPARQL queries 
were automatically translated into the OpenCyc ontology 
used in NextKB, our knowledge base.  For example, a popu-
lation fact in Wikidata looks like 

<U.S. (Q30), Population (P1082), ~331Million> 
This is translated to this CycL sentence: 
(populationOfRegion unitedStatesOfAmerica 
(UnitOfCountFn Person) 331000000) 
Since this dataset will be used for analogical estimation, 

we need to have an understanding of what it means for two 
countries to be analogically similar to one another. There are 
qualitative similarities: if they are a part of the same conti-
nent, in the same international organizations, use the same 
currency, or share cultural similarities like the language spo-
ken. There are also quantitative similarities. They may have 
similar populations or areas, or their Human Development In-
dices may both be between 0.8 and 0.9.  Consequently, we 
used CARVE to generate qualitative representations of quan-
titative dimension facts using three qualitative distinctions to 
generate facts like 
(isa Poland  
(CountryTypeFn (LowAmountFn Area))) 

(isa Spain  
(CountryTypeFn 
(MediumAmountFn CountryGDP))) 

(isa UnitedStatesOfAmerica 
(CountryTypeFn 
(HighAmountFn CountryGDP))) 

 
 
4.4 Experimental Method 
 

The dataset we built contains 197 country cases, each con-
sisting of 2 to 91 facts, with a mean of 38. Each experimental 
fold consisted of holding out 19 or 20 cases for testing while 
the model learned (generalized) the remaining ones. The as-
similation threshold for SAGE during the learning phase of 
KNACK v2 was set at 0.8, requiring strong match strength 
between a test case and a given generalization. The 

 
4 Wikidata editors often have conflicting views of correct rep-

resentations. The label for Czech Republic (Q213) has alternated 
between Czechia and Czech Republic multiple times in 2023.  

dimensions to be estimated were GDP, Human Development 
Index (HDI), and Democracy Index (DI).  The qualitative 
proportionalities involving them are shown in Table 1. 
 

DIMENSION DEPENDS ON 
GDP Population 
HDI Life Expectancy 
DI HDI 

Table 1. World knowledge is built into the model of dimen-
sional dependence. Dimensions in the right column were 
used as independent variables when regressing on a general-
ization. 
 

Measuring accuracy is subtle given the varying nature of 
these quantities.  Gross Domestic Product is an unbounded 
quantity that ranged from 39,000 to 19 trillion US Dollars. 
Accuracy for GDP was measured by distance away from 
ground-truth values, scaled by the magnitude of the ground 
truth itself. 

|truth – estimate| / truth 
where truth is the ground-truth fact, and estimate is the output 
generated by KNACK v2. This was done according to We-
ber’s law (Fechner 1966), which states that perceived simi-
larity of quantities is measured by a ratio between them, i.e. 
although 1,000 and 1,001 are the same distance apart as 1 and 
2, the former pair is judged to be closer together because the 
ratio of the two is closer to 1 than the ratio of the latter pair. 
 Accuracy for Human Development Index and Democracy 
Index were measured in mean squared error since they are 
bounded quantities. Since HDI is measured on a 0 to 1 scale, 
a 0.2 estimate for 0.3 would be considered less accurate than 
a 0.7 estimate for 0.8. 
 For all three test dimensions, 10 folds were generated that 
contained 19 or 20 held-out test cases. Accuracy was aver-
aged across every predicted case in every fold. 
 We also generated a baseline linear regression model 
across all cases. The linear regression estimator is run using 
the implementation in Python’s sklearn module, using default 
parameters. This requires vectorizing structured knowledge 
from the country cases by generating a set of features from 
the structured facts. This was accomplished by manually cre-
ating a mapping, where each quantity type is considered a 
feature, and each unique qualitative attribute (e.g. currency, 
international association membership) is represented by a 
one-hot vector. Missing quantities are imputed using Py-
thon’s impute function in the scipy module. This results in 
883 features across the 197 country cases. 

4.5 Results 
Table 2 shows the results from KNACK v2 against those gen-
erated by pure linear regression. The first run of our experi-
ment recorded accuracy only for those cases suited especially 
well for analogy; they mapped to a generalization and used 
regression to generate an estimate. The second run of our 



experiment included accuracy for cases that mapped outside 
of generalizations—either to an outlier or to nothing—that 
fell back to a baseline of sampling within a generalization or 
using the marginal average. This was necessary for anywhere 
from 0 to 4 (with an average of 0.9 cases per fold) of the 20 
test cases for a cross validation fold. 

Pure KNACK v2 (with thrown away estimations) per-
formed better than Pure Regression for 2 of the 3 testing di-
mensions, but not significantly (P > 0.05). P-values are 
shown in the right-most column of Table 2.  
 

 Pure 
KNACKv2  
Accuracy 

KNACKv2 
+ sampling 
Accuracy 

Pure Regres-
sion  
Accuracy 

p-val 

HDI 0.004003988 0.00459702 0.00708158 0.19 
DI 2.367816143 2.63343881 2.08532303 0.64 
GDP* 15.47324807 15.2617797 60.7963312 0.18 

Table 2. KNACK results compared with KNACK and sam-
pling for a complete set of estimations. 
*GDP accuracy is normalized ( |truth – estimate| / truth ) 
 

4.6 Explainability 
One of the advantages of our methods as opposed to pure 
quantitative regression is the explainability of our models. 
The primary mechanism that provides this capability is the 
summative statistics generated by SAGE. Recall that each 
generalization will yield a unique linear regression during our 
estimation procedure, so overarching information about the 
generalization can help explain unique trend lines. For exam-
ple, when our system predicts the HDI of Belarus, we retrieve 
a generalization made up of Tajikstan, Kyrgyzstan, Armenia, 
Pakistan, Uzbekistan, and Kazakhstan. SAGE tells us these 
are all located on the Asian continent, have low (as labeled 
by CARVE) democracy indices, land area, and GDPs. Five 
of the six have low populations. Four of the six are members 
of the Central Asian Cooperation Organization. Being able to 
identify these trends and patterns is insight that other tools for 
quantitative estimation lack. 
 

5 Discussion & Future Work 
The results show that KNACK v2 is competitive with pure 

linear regression. It’s interesting to note that falling back to 
sampling an anchor country or the marginal average made the 
results slightly less accurate for HDI and DI, but made the 
prediction for GDP more accurate. This could be explained 
by cases that do not get mapped to generalizations tending to 
have GDPs close to the marginal average of all countries. 

The results show that under the right circumstances, 
KNACK v2 might be a more accurate model than pure linear 
regression. And unlike traditional linear regression, the cases 
that were used to form the estimate can be traced back to their 
source, increasing the explainability of, and potentially trust 
in, its results. 

We see four directions for future work.  First, we need to 
test KNACK v2 over more datasets. For example, Wikidata 
provides copious information about movies and their re-
leases, with qualitative and quantitative information that ap-
pears promising for analogical estimation.  Second, we plan 
to experiment with ways that systems using KNACK v2 can 
tune it to produce more relevant results. For example, agri-
cultural models of a country might focus on different aspects 
than models of its overall economy or educational system.  
This could be handled with different case construction strat-
egies and accumulating models in separate generalization 
pools.  Third, we plan to investigate the effects of incremen-
tality on estimation, e.g. how rapidly do estimates improve?  
Fourth, we plan to use KNACK v2 in a number of tasks using 
the Companion cognitive architecture (Forbus & Hinrichs 
2017), such as back of the envelope reasoning (Paritosh & 
Forbus, 2007; Bundy et al. 2013) but also in metacognitive 
reasoning within the architecture itself, e.g. estimating effort 
and utility of tasks. 
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