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Abstract 
One of the signature properties of commonsense reasoning is 
its breadth.  Qualitative domain theories have been success-
fully built both by hand and by learning for small sets of phe-
nomena, but scaling remains an issue.  This paper describes 
an approach to achieving breadth by leveraging a large com-
monsense ontology.  The idea is that a small set of concepts 
in the ontology corresponding to continuous processes and 
event types are identified, called anchor concepts.  The sub-
classes of these anchor concepts form specializations of pro-
cesses and types of events which then provide the desired 
breadth, e.g. that snowboarding is a form of motion.  Pre-ex-
isting role relations for concepts of events and processes pro-
vide information about participants for QP model fragments 
and encapsulated histories.  We show how this approach pro-
duces partial information about a broad range of continuous 
processes and event types.  Rather than the usual carefully 
curated and bounded domain theories used in QR for model-
ing scientific and engineering reasoning, this approach to 
building domain theories is more open-textured.  For exam-
ple, the surface over which snowboarding occurs is usually 
snow and/or ice, something not currently stated in the ontol-
ogy.  The idea is that the rest of the specifications for any 
particular subclass of process will need to be completed by 
other means, e.g. instruction, experimentation, or hand-engi-
neering. 
 

Introduction 

One of the original motivations for qualitative reasoning 
was to support commonsense reasoning.  Even when the 
focus of QR is scientific or engineering reasoning, one of 
the jobs of qualitative models is to help in model formula-
tion.  Model formulation involves mapping from the unruly 
open everyday world to the tightly constrained formalisms 
often used in professional reasoning.  For AI systems to be 
as helpful as a person in model formulation, they must 
have a reasonable understanding of the everyday world.  
Most qualitative domain theories have been generated by 

 
1 By contrast, in the situation calculus, each situation is indeterminant tem-
porally but spatially unbounded, which is a source of the frame problem. 

hand.  Hand generation has been effective for many aspects 
of professional knowledge (e.g. aspects of physics, engi-
neering thermodynamics, chemical engineering), but is 
daunting when considering the range of everyday phenom-
ena.  After all, people – with sensorimotor systems and 
learning abilities that are far more data-efficient than to-
day’s ML – take a decade or two to achieve broad com-
monsense knowledge, gleaned from a combination of di-
rect experience and cultural inputs, including direct in-
struction.  Progress has been made on building out 
knowledge bases using learning by reading, but most ap-
proaches require simplified text.  Large language models 
should be useful in helping to expand the range of texts 
that can be processed.  However, LLMs make poor 
knowledge bases for two reasons.  First, their exposure to 
language is not grounded in the everyday world.  Second, 
their success criterion is generating statistically plausible 
text, not correct reasoning.  As the confabulation problems 
with LLMs show, these are at best only correlated.  Hence 
we, like many others, continue to focus on using 
knowledge graphs as knowledge bases.  Fortunately, there 
are now multiple large knowledge graphs such as Wikidata 
(Vrandecic & Krotzsch, 2014) that can provide broad 
knowledge (Forbus & Demel, 2022).   
 One of our hypotheses is that qualitative process theory 
captures aspects of natural language semantics (Forbus, 
2019).  One consequence of this hypothesis is that the un-
derlying ontology in a commonsense knowledge base 
should in part reflect representational concerns relevant to 
qualitative reasoning.  The everyday world includes many 
patterns of behavior that we can think of in terms of spatio-
temporal units, the idea of histories introduced by Hayes 
(1985).  Histories for objects are temporally extended but 
spatially bounded1.  Histories are often defined in terms of 
the kinds of behavior happening in them.  For example, 
one can think of filling a coffee cup or a swimming pool 
(or a basement).  Filling can be accomplished by pouring 



from a pot in the case of a coffee cup, or pouring from 
buckets or a hose in the case of a swimming pool.  These 
episodes are often delimited by qualitative changes in 
properties, e.g. for filling, the amount of fluid in the con-
tainer being filled should be increasing during that episode.  
Histories can be hierarchical, e.g. filling a swimming pool 
using buckets will involve many filling/emptying of buck-
ets, the emptyings of which all contribute to the filling of 
the swimming pool.  The ability of qualitative representa-
tions to help segment perceptual information suggests that 
an important component of human commonsense 
knowledge is a broad vocabulary of descriptions of such 
types of events.  Such events play a role in professional 
reasoning, since analyses are often couched in terms of 
them.  Determining when to fire retro-rockets in a Mars 
lander, for example, requires conceptualizing the relevant 
part of its motions as a descent involving gravity, and solv-
ing for a firing time that will enable the lander to touch 
down safely.  Event descriptions help provide boundary 
conditions, like the landing site and the desired speed on 
landing.  Encapsulated histories in QP theory have been 
used to provide qualitative and quantitative models for 
such events that can be used in professional reasoning (e.g. 
Klenk & Forbus, 2009).  Encapsulated histories can be 
learned via analogical generalization over descriptions of 
behaviors (Friedman & Forbus, 2008;2009).  However, this 
has only been done for a small number of types of events.   
 Histories describe what is happening, but they do not ex-
plain why it is happening.  QP theory introduced a notion 
of continuous process that provides a model for causal 
mechanisms in continuous domains.  Pouring and filling in 
the examples above, for instance, would be explained in 
terms of a liquid flow process.  The effects of such pro-
cesses are compositional, so that models for specific sys-
tems can be formulated by combining them.  Consider for 
example pouring water into a leaky bucket.  There is a flow 
of water in, and a flow of water out – the intended flow and 
the leak are both explained in terms of the same type of 
continuous process.  But whether or not the bucket is fill-
ing or not depends on the relative rates of the two flows.  
Thus the flows explain the filling episode.  The everyday 
world contains many kinds of phenomena that we think of 
as continuous processes, such as motion, flows, phase 
changes, and so on.  These general processes manifest in 
many ways.  For example, motion can involve projectile 
motion through the air or empty space, moving along a sur-
face, or various forms of water falling from the sky (e.g. 
rain, snow, hail).  Hand-engineering model fragments for 
the full range of processes that manifest in our everyday 
world from scratch is daunting.   

How can we leverage a broad commonsense ontology to 
build a commonsense QR domain theory?  (Or, alternately, 
how to we bring the fruits of QR into efforts to ontologize 
commonsense knowledge?)  Suppose we can identify 

within an ontology a set of high-level event types and pro-
cesses that can serve as anchor concepts for a QP domain 
theory.  That is, an anchor concept inherits from the con-
cept of a type of encapsulated history or continuous pro-
cess expressed in QP theory (e.g. motion), such that all of 
its more specialized concepts are aptly characterized by 
that domain theory construct.  This provides a way of using 
the broad ontology to leverage well-engineered domain 
theory components.  Moreover, if the ontology has map-
pings to natural language, then that ontology can be used in 
communicating with human partners, another requirement 
to achieve human-like model formulation. 
 This paper reports on work in progress exploring the use 
of a broad commonsense ontology to build a QP domain 
theory for commonsense reasoning.  We start by summa-
rizing the relevant background: aspects of QP theory and 
the NextKB knowledge base we are using. Then we dis-
cuss the issues involved in integrating QP theory with a 
broader domain theory, including processes versus events 
and continuous versus discrete levels of representations.  A 
mapping of a small QP domain theory to NextKB is de-
scribed next, demonstrating that this approach enables the 
range of phenomena that can be discussed to be considera-
bly magnified.  Finally, we discuss conclusions and future 
work. 

Background 

Qualitative process theory postulates continuous processes 
as the mechanisms for change in systems governed by con-
tinuous parameters.  This model breaks down in some do-
mains, e.g. analog electronics is better modeled by a com-
ponent-centered ontology (de Kleer, 1984), and does not 
capture many of the spatial properties of motion (Forbus et 
al. 1991).  Nevertheless, it appears applicable to a broad 
range of everyday phenomena.  Recall that a QP domain the-
ory consists of a set of schema, called model fragments, 
which can be instantiated to assemble models for particular 
scenarios and systems.  Model fragments are specified by 
participants which indicate the kinds of entities it can be in-
stantiated on, conditions which indicate when an instance of 
that model fragment is active, and consequences which are 
statements that hold for any time in which the conditions are 
true.  Continuous processes are a subclass of model frag-
ment that have direct influences, i.e. partial specifications of 
the derivative of some quantities of its participants, such that 
making a closed world assumption over the set of instanti-
ated continuous processes specifies (qualitatively) the deriv-
atives of those parameters.   
 As noted above, the consequences of processes hold at 
every instant within an interval over which that process is 
acting.  To describe the cumulative effects of such processes 
requires histories for the objects affected, as per our example 



of filling a bucket earlier.  To provide causal and mathemat-
ical constraints on episodes of histories, QP theory also pro-
vide a formalism for encapsulated histories, which can ref-
erence the temporal and spatial aspects of the episode they 
describe.  These schemas are applied like model fragments, 
in that they have participants, conditions, and consequences.  
The consequences can be qualitative, e.g. the distance trav-
elled in an episode of motion is qualitatively proportional to 
the time travelled.  The consequences can also be quantita-
tive, e.g. an equation describing distance travelled as a func-
tion of initial velocity and constant acceleration.   
 QP theory can be formalized in a variety of ways.  Here 
we use an implementation grounded in the NextKB 
knowledge base, which is summarized below.  This imple-
mentation has been used in several previous experiments 
and its details are not relevant for understanding this paper. 
 The NextKB knowledge base is an open-license resource 
being built at Northwestern University to support research 
in knowledge-rich AI and cognitive science.  It builds on 
Cycorp’s OpenCyc ontology, which provides a massive set 
of formally represented concepts and relationships.  Open-
Cyc is an open-license subset of the Cyc ontology.  Concepts 
are formally represented by collections, which can intui-
tively be considered as sets.  For example, the collection 
Container represents all of the containers that there are, have 
been, will be, or might be.  The relationship isa indicates that 
an individual can be considered an instance of that concept, 
e.g. (isa KenCollegeMug Container).  There are inheritance 
relationships between concepts. The genls relation indicates 
inheritance between collections, e.g. (genls Liq-
uidStorageTank Container) indicates that things which are 
storage tanks for liquids are also containers. There are also 
inheritance relationships among predicates, e.g. (genlPreds 
containerEntered toLocation) indicates that containerEn-
tered implies toLocation holds between its arguments.  The 
OpenCyc ontology is more expressive than most.  For ex-
ample, type-level predicates enable it to express higher-or-
der statements, and modal operators (e.g. knows, beliefs) are 
included.  This makes formalizing many concepts substan-
tially easier than less-expressive ontologies.  For example, 
(behaviorIncapable P1 SolvingAProblem thingAnalyzed) 
indicates that the problem P1 cannot be solved.  There are 
many consistency constraints in the ontology.  For example, 
disjointWith indicates that an instance of one collection can-
not be a member of the other, e.g. (disjointWith Herbivore 
Carnivore).  There are type constraints on arguments, arity, 
and the range of logical functions.   
 Some form of context mechanism is crucial for any rep-
resentation system capable of considering alternative quali-
tative states, alternate perspectives in modeling (e.g. Falken-
hainer & Forbus, 1991), or alternate domain theories.  Open-

 
2 https://www.qrg.northwestern.edu/nextkb/index.html 

Cyc uses microtheories to provide a mechanism for con-
texts.  Every fact holds in one or more microtheories.  Mi-
crotheories inherit from each other via the genlMt relation. 
For example, (genlMt HumanSocialLifeMt HumanActivi-
tiesMt) indicates that every fact believed in HumanActivi-
tiesMt is also believed in HumanSocialLifeMt.  Inheritance 
in all cases is monotonic. There are non-monotonic predi-
cates to express dependence of some conclusions on the ep-
istemic state of the system, e.g. believing something because 
one cannot infer its negation is a strategy that can be ex-
pressed and localized, rather than “wiring in” negation by 
failure as a global policy.   
 We distilled NextKB’s ontology from the four available 
versions of OpenCyc.  NextKB2 includes over 82,000 col-
lections, 26,000 relationships, 5,000 logical functions and 
700,000 facts.  We note that this is a small subset of the Cyc 
ontology, as found in the commercial version of Cyc and in 
ResearchCyc, both of which also have massively more axi-
oms constraining the concepts and relationships in the on-
tology as well as a powerful reasoning engine that supports 
useful commonsense inferences complete with explanations 
based on dependency traces. For example, ResearchCyc can 
conclude that Earth cannot run a marathon, because no in-
animate object can.   We used the ResearchCyc knowledge 
base productively for a long time, but finally switched to 
OpenCyc to support dissemination and replication of our 
work.   
In addition to OpenCyc contents, NextKB contains exten-
sions for qualitative reasoning, including both QP theory 
and qualitative spatial reasoning, as well as visual/spatial ca-
pabilities used in CogSketch, our high-level vision system 
and sketch understanding system (Forbus et al. 2011; Forbus 
& Lovett 2021).  Reasoning in these extensions is often con-
ducted via procedural attachments to predicates, for effi-
ciency.  Analogical reasoning and learning is handled simi-
larly.  NextKB also has substantial natural language re-
sources for English.  It has a large lexicon, derived in part 
from a public-domain version of Webster’s dictionary.  Its 
semantics are organized using FrameNet frames, which 
have been mapped by hand to concepts in the OpenCyc on-
tology.  FrameNet thus serves as a bridge between words 
and OpenCyc concepts.  The lexicon has over 190,000 
words and over 69,000 semantic translations.  As noted 
above, AI assistants that help in model formulation need 
such broad language coverage, in order to communicate 
with their human partners.   



 

Ontological Grounding for Processes 

All commonsense ontologies include some notion of event.  
Figure 1 shows how the general concepts of events and types 
of processes are related in the OpenCyc ontology. Generally 
there is a notion of sub-events, e.g. a wedding ceremony 
might include guests arriving, the exchange of vows, and 
merry-making.  Processes are often represented in a similar 
way, with the difference being that the same properties are 
true of all of the sub-intervals within an occurrence of that 
process.  This is compatible with the QP theory notion of a 
process being active whenever its conditions hold.  Whether 
or not a phenomenon is treated as continuous or discrete de-
pends on the granularity used in its description.  A robust 
commonsense ontology must be able to support multiple 
levels of granularity, and OpenCyc does a reasonable job of 
this.  For example, OpenCyc treats walking as a process, 
which is useful for estimating things like distance covered 
and effort expended.  But it also provides support for de-
scribing the particular movements of legs up and down, dis-
crete events within walking that are useful for purposes of 

physical therapy, for example.  Another example is Open-
Cyc’s concept of PrecipitationProcess, which is viewed as 
continuous, even though at a finer granularity, the move-
ment of each raindrop or piece of hail can be viewed as a 
discrete event.  Prior qualitative reasoning research has in-
termingled continuous and discrete perspectives in a similar 
way.  For example, Rickel & Porter (1994) used time-scales 
in multiple perspective modeling of biological phenomena, 
given a particular time-scale of interest, their domain theory 
treated slower phenomena as exogenous constraints and 
quicker phenomena as functional connections. 

 
Figure 1: Partial view of the OpenCyc upper ontology showing where events and process types are grounded.  It contains over 
82,000 such concepts. 



 Concepts describing processes form natural anchor  
points for QP-style continuous processes.  That is, QP-style 
continuous processes are formalized as collections, and ex-
isting elements in the ontology inherit from them, thereby 
inheriting their schema.  Figure 2 illustrates. However, not 
all commonsense processes are aptly described as continu-
ous processes in the QP theory sense.  For example, the con-
cept of ProcessType in OpenCyc combines Tempo-
ralStuffType (thereby capturing the idea that the subinter-
vals are the same) and DurativeEventType (thereby captur-
ing the idea that occurrences of processes take time) and has 
654 instances.  Some of these are nicely expressed by QP 
theory, such as FluidFlow-Translation and PrecipitationPro-
cess.  Many others are not, including InternetSearching and 
IgnoringSomething.  The difference is whether there are 
continuous parameters that aptly characterize the changes 
within an occurrence of a process. Uniformity in subinter-
vals does not necessarily imply the existence of such param-
eters.  Sometimes there are metaphorical extensions that can 
be applied.  For example, an Internet search might be char-
acterized in terms of progress towards the information-seek-
ing goals for that search, or a decision-maker’s thinking 
reaching a level of certainty about an action they are con-
templating.  We will not consider such metaphorical exam-
ples further here, but return to them in proposed future work 
below. 

 Linking QP continuous processes and encapsulated histo-
ries also requires linking the relationships that specify the 
participants for a model fragment.  In English, for example, 
the subject of a motion verb indicates the object that is mov-
ing.  The NextKB resources provide objectMoving as a re-
lationship which formalizes this notion, enabling NLU sys-
tems to propose it as a possible meaning.  Other spatial prep-
ositions capture properties of an episode of motion.  The 
spatial prepositions “from” and “to” can indicate the start 
and end of a motion, with “along” or “via” indicating its 
path.  For example, From-TheWord has semantic transla-
tions that includes startOfPath (a spatial interpretation), in-
tervalStartedBy (a temporal reading), and from-Generic (a 
more abstract version that includes the other two, but also 
the giver of a gift).   

Analysis: Anchor Concepts in OpenCyc 

To explore these ideas, we used pre-existing model frag-
ments and encapsulated histories from QP domain theories 
for exploring the roles of qualitative reasoning in elementary 
school science tests (Crouse & Forbus, 2016), for learning 
textbook problem solving via cross-domain analogies 
(Klenk & Forbus, 2013), and some classic QP domain theo-
ries (Forbus, 1984).  The goal is to estimate two properties: 
(1) How much leverage does the ontology provide us, in 
terms of additional phenomena covered? (2) Do the anchor 

(in-microtheory PrecipitationQPMt) 
 
(genlMt PrecipitationQPMt ScienceTestCollectorQPMt) 
(genlMt ScienceTestInferenceQPMt PrecipitationQPMt) 
 
;; model fragment definition 
(isa NaivePrecipitationProcess QPProcessType) 
(comment NaivePrecipitationProcess 
  "Precipitation occurs when a liquid is in exposed to the air and its temperature is less than boil-
ing point but greater than its freezing point. The result of the process is that the liquid vaporizes 
into an atmosphere.") 
 
(mfTypeParticipant NaivePrecipitationProcess ?liquid LiquidTangibleThing liquidOf) 
(mfTypeParticipant NaivePrecipitationProcess ?sub ChemicalCompoundTypeByChemicalSpecies substanceOf) 
(mfTypeParticipant NaivePrecipitationProcess ?atmosphere GaseousTangibleThing atmosphereOf) 
(mfTypeParticipantConstraint NaivePrecipitationProcess (substanceOfType ?liquid ?sub)) 
(mfiReverseConsequenceOf NaivePrecipitationProcess (and (isa ?rain RainProcess) 
                                                        (products ?rain ?liquid))) 
(mfTypeCondition NaivePrecipitationProcess (qGreaterThan 
                                            (AmountOfFn ?sub Liquid-StateOfMatter ?atmosphere) 
                                            SaturationPoint)) 
(mfTypeBiconditionalConsequence NaivePrecipitationProcess (hasQuantity ?self 
                                                           (PrecipitationRateFn ?self))) 
(mfTypeConsequence NaivePrecipitationProcess (qprop (PrecipitationRateFn ?self) 
                                                    ((QPQuantityFn Temperature) ?liquid))) 
(mfTypeConsequence NaivePrecipitationProcess (i+ (AmountOfFn ?sub Liquid-StateOfMatter ?liquid) 
                                                 (PrecipitationRateFn ?self))) 
(mfTypeConsequence NaivePrecipitationProcess (i- (AmountOfFn ?sub Gaseous-StateOfMatter ?atmosphere) 
                                                 (PrecipitationRateFn ?self))) 
 
;;; Anchor process 
(genls PrecipitationProcess NaivePrecipitationProcess) 

Figure 2: Example of a QP-style process anchored to the OpenCyc ontology 



concepts provide connections to language that can be ex-
ploited by cognitive systems?  To estimate leverage, we ex-
amine the subclasses of the anchor concepts.  How many are 
there, and are they all reasonable?  To estimate language 
coverage, we count the number of lexical items connected 
to the conceptual space covered by the anchor concept.   
 Table 1 shows the results for number of subclasses and 
words for reasonable anchor concepts for a set of pre-exist-
ing model fragments3.  The anchor concepts were chosen to 
maximize applicability of the model fragment to the sub-
classes.  This was straightforward for a number of model 
fragments, in particular, the basic processes involving flu-
ids, heat, and phase changes.  For example, the subclasses 
of liquid flow include DrinkingEvent and hence the words 
“drink”, “imbibe”, “quaff”, “slurp” and “swill”, among oth-
ers.  For heat flow, the subclasses include various forms of 
cooking (baking, barbecuing, steaming, roasting, and grill-
ing).  Not everything in the ontology is commonsense, e.g. 
the subclasses here include some ways that heating is used 
in semiconductor manufacturing, as well as global warming. 
This ability to expand to incorporate professional 
knowledge is a major advantage of starting with a broad on-
tology, and should simplify model formulation. 
 There are cases where the model fragments are somewhat 
too specific compared to the anchor process.  Precipitation 
is an example: The model fragment concerns liquid leaving 
the atmosphere (as shown in Figure 2), whereas the Precip-
tationProcess includes HailStormProcess, where what 
comes from the sky is ice. This could be resolved either by 
choosing a more specific subclass (e.g. RainProcess) or by 
slightly generalizing the model fragment.  This issue comes 
up most strongly in motion, where there are general proper-
ties that hold (e.g. an episode in a motion history has a start, 
end, and velocity – motion that returns to its starting point is 
included) but also additional complications due to particular 
conditions, such as friction when sliding or gravity for pro-
jectiles.  This has suggested ways to refactor our QP domain 
theories, i.e. to introduce encapsulated histories using purely 

 
3 We do not describe anchoring encapsulated histories to the OpenCyc on-
tology because our existing encapsulated histories, being developed later, 

qualitative mathematics for very abstract concepts of pro-
cesses, to better capture the commonsense inferences that 
they license.  
 Motion is especially prolific.  The 355 subclasses include 
things like snowboarding, flying by flapping wings, and 
parkour in addition to more traditional concerns of QR like 
projectile motion and sliding.  It should be noted that in the 
ontology, PreciptationProcess entails motion, hence the 
words for that process and its specializations are a (small) 
subset of the words that refer to types of motion.  Some of 
these subclasses have additional entailments over the basic 
QP model of motion, e.g. sliding entails the possibility of 
friction, and flying by flapping wings entails the use of en-
ergy supplied by the organism/artifact locomoting that way, 
as do walking and running.  These additional distinctions 
could be captured by model fragments that elaborate mo-
tion, anchored to those concepts.  For example, Flying-Flap-
pingWings is a subclass of LocomotionProcess-Animal, so 
the common need for energy to accomplish locomotion, by 
whatever means, can be expressed once anchored on Loco-
motionProcess-Animal and also inherited.   
 We note that anchor concepts for some of the categories 
used in the participant constraints for model fragments are 
easily found, but others are not.  An easy case is the general 
concept of container.  The concept as used in these model 
fragments is reasonably captured by the collection Con-
tainer, which has 2,787 subclasses and 1,757 words, alt-
hough it includes many subclasses that someone might not 
usually think of in this way, e.g. dance clubs, airplane cab-
ins, and a gigantic list of types of cars. 
  By contrast, it is difficult to find an anchor concept for the 
general concept of physical object (Physob, in classic QP 
domain theories).  The closest is PartiallyTangible, which 
includes 42,339 subclasses, including things like butterflies 
and stores, but also concepts that are poor fits, such as the 
space under coffee tables.  Similarly, concepts like thermal 
or volumetric objects, regularly used in compositional mod-
eling for engineering domains, are not distinctions that the 

were already integrated with OpenCyc because it is a subset of Re-
searchCyc.   

Phenomena Model Fragment Type Anchor Sub-
classes 

# Words 

Liquid flow LiquidFlowProcess LiquidFlowEvent 26 15 
Heat flow HeatFlowProcess HeatingProcess 44 50 
Boiling BoilingProcess Boiling 5 3 
Evaporation Evaporation Evaporation 0 1 
Precipitation NaivePreciptiationProcess PreciptationProcess 14 21 
Floating ObjectFloatingInFluid FloatingInASubstance 34 14 
Motion Motion Movement-TranslationProcess 355 170 

 
Friction FrictionBetweenSolids FrictionProcess 21 22 

 
Table 1: Anchoring QP model fragments in NextKB 



OpenCyc ontology designers were concerned with.  For 
such cases, it is straightforward to add the desired concepts 
to the ontology and incorporate subclasses of PartiallyTan-
gible as appropriate.  Moreover, such decisions can be in-
crementally learned from examples (Klenk et al. 2008).    
 So far we have looked at how much language coverage is 
added by anchoring QP constructs into the OpenCyc ontol-
ogy.  Are there words that are relevant to QP constructs that 
are not covered by anchor concepts?  Yes.  The exact num-
ber is hard to calculate, since it requires examining all of the 
lexicon.  But, for example, the word “flow” uses FluidFlow-
Translation, which includes both liquid and gas flow as sub-
classes.  The QP models could be re-factored into a general 
fluid flow process with model fragments for liquids and gas-
ses being model fragments specializing that one, or a system 
seeking to construct a qualitative model from a natural lan-
guage description could gather candidate model fragments 
from subclasses of the mapped concept.   

Conclusions and Future Work 

The breadth of commonsense is a daunting challenge for 
qualitative reasoning.  This paper argues that using a large-
scale commonsense ontology (OpenCyc) that is tied to lan-
guage (via NextKB) can help provide such breadth.  The 
ability to find anchor concepts for model fragments and en-
capsulated histories from previous efforts is encouraging.  
The broad convergence in conceptual structure which makes 
FrameNet and OpenCyc mappable in the first place suggests 
that these commonalities are likely to be found in other re-
sources, informed by the same cultural constraints.  How 
this would vary given different cultures is a fascinating 
question.  For example, how information is packaged into 
verbs varies across languages.  In English one might say 
“The bottle floated into the cave” but in Spanish one would 
say the equivalent of “The bottle entered the cave, floating.”  
Will those differences lead to cross-cultural differences in 
qualitative models?   
 We plan three lines of future work.  First, we plan to re-
factor the QP model fragments and encapsulated histories to 
provide some of the intermediate representations that are 
currently missing, as well as use the ontology to help deter-
mine gaps where additional coverage is needed.  Second, we 
plan to use this augmented domain theory to explore the 
construction of high-precision mental models during learn-
ing by reading, in order to learn new domain theory con-
structs and to solve problems expressed via language and 
sketching.  Third, we plan to examine whether extending QP 
domain theories to more metaphorical uses supports infer-
ences consistent with human metaphors (Lakoff & Johnson, 
1981). 
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