
Abstract 

Quantities are ubiquitous in our conceptualization of the 

world, and the ability to learn and reason with them is an 

important aspect of commonsense reasoning. Existing 

cognitive models of similarity and generalization often 

lack sensitivity to quantitative knowledge, and those that 

are often represent it implicitly, meaning that it is not 

available for further learning or reasoning. This paper pre-

sents an extension to analogical reasoning processes that 

enables learning from mixed qualitative and quantitative 

knowledge. This is accomplished by utilizing qualitative 

representations of quantity, and by leveraging structure 

mapping to build schemas incrementally, maintaining 

probability distributions for quantitative knowledge, and 

then using these distributions to generate predicates that 

participate in structured generalization. This extension, 

called AnalogicalQuantityEstimation (AQE) is both in-

cremental and unsupervised, and our results show that 

AQE performs significantly better than a baseline where 

quantitative knowledge is not taken into account. In addi-

tion, we compare AQE to a standard linear regression es-

timator, which, despite being batch and supervised, does 

not perform significantly better than AQE, and in some 

cases, performs worse. 

Introduction 

 
Commonsense knowledge is playing an increasingly im-
portant role in the development of AI systems. Many large-
scale knowledge bases are emerging that encode general facts 
about the world using both structured qualitative and quanti-
tative knowledge. Such knowledge is available in large open-
domain knowledge bases such as OpenCyc, DBpedia and 
WikiData.  

The ability to learn and generalize from these knowledge 
sources is therefore useful to any AI agent. Most existing 
computational models of retrieval and similarity cannot use 
numerical representations (Forbus et al., 2017; Holyoak and 
Thagard, 1989; Hummel and Holyoak, 1997), leading to 
quantitative information being ignored in computation of 
similarity. There are models in case-based reasoning (Ram 
and Santamaria, 1997) that use numeric information, but they 

employ ad hoc similarity metrics that are not psychologically 
grounded. A major motivation of this work is to generate cog-
nitively plausible symbolic representations of quantity and 
show that these representations aid in learning.  

In this paper, we introduce a novel algorithm, AQE, that 
improves an existing analogical learner so that it is sensitive 
to quantity. A similar idea was proposed by Paritosh (2004), 
which introduced a computational model called CARVE. 
AQE extends CARVE in two ways. First, CARVE’s quantity 
symbolization was external to the analogical learner and 
needed to be run manually. Second, this symbolization pro-
cess was batch, meaning that it needed access to an entire da-
taset before learning, and symbolization needed to be com-
plete before any learning took place. AQE addresses these is-
sues by automatically symbolizing quantities incrementally 
as new cases are generalized. Additionally, CARVE did not 
find any regularities in the data it was tested on, whereas our 
model shows significant improvement over a baseline. 

AQE is tested by estimating quantities for two datasets de-
rived from Wikidata; one containing knowledge about coun-
tries, and the other knowledge about universities. Wikidata 
contains vast amounts of knowledge in a wide array of do-
mains, and therefore is a useful resource that contains a 
wealth of ground facts that can be used for commonsense rea-
soning (Forbus and Demel, 2022). 

We begin by introducing the most relevant related work on 
systems that used mixed qualitative and quantitative 
knowledge. Then we present AQE, including the qualitative 
representation scheme and its incorporation into an existing 
analogical learner. Finally, we show results for experiments 
on two Wikidata datasets, ending with conclusions and future 
work. 

Related Work 

We give a brief overview of previous computational models 
that use mixed qualitative and quantitative representations, as 
well as related models of similarity and retrieval. 

Computational Models 

There are many examples of representational schemas that 
combine structured and quantitative knowledge. Hinton's 
(1979) model of mental imagery combines structured 
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knowledge with numerical properties. Both ACT-R (Ander-
son, 2009) and SOAR (Laird, 2012) use numerical compo-
nents in their representations, for example, statistical 
metadata on recency, frequency, and utility for symbolic 
structures. There are currently several theoretical frameworks 
that tightly integrate logic and probability, including Markov 
Logic Networks (Richardon and Domingos, 2006), while 
Rosenbloom's (2013) SIGMA cognitive architecture is ex-
ploring how to use graphical models to build a complete cog-
nitive architecture, including both symbolic and statistical 
reasoning.  
 Many of these models treat quantity implicitly, meaning 
that it is not available at the level of knowledge. On the other 
hand, explicit reification is useful because it allows for grace-
ful extension in learning and reasoning, as well as access to 
the richer semantics of quantity ontologies, such as QP theory 
(Forbus, 2019).  

In addition, these models often require batch learning, 
which is problematic for cognitive agents because all previ-
ous knowledge must be stored. On the other hand, AQE in-
crementally accumulates distributional knowledge over 
quantities, meaning that distributions can be updated online 
as new examples are generalized. 

There is converging psychological evidence for structured 
models of retrieval, similarity, and generalization. One limi-
tation of existing models of analogical processing, e.g., 
ACME (Holyoak and Thagard, 1989), LISA (Hummel and 
Holyoak, 1997), ABSURDIST (Goldstone and Rogosky, 
2002) is that they do not handle numerical properties ade-
quately. In most of these models, numbers are treated like 
symbols, so 99 and 100 are as similar/different as 99 and 
10000. AQE addresses this issue by automatically symboliz-
ing quantity using the qualitative representations proposed by 
CARVE, creating new predicates that contribute to similarity 
in analogical learning. 

Background 

Next, we overview the analogical learning stack (SME, 
MAC/FAC, and SAGE) that we are extending, CARVE, a 
computational model of quantity estimation that we are build-
ing on top of, and Wikidata, the source of our data. 

Analogical Learning 

The generalization mechanism for AQE is built on models 
inspired by Gentner's structure-mapping theory of analogy 
and similarity (Gentner, 1983). AQE uses the Structure Map-
ping Engine (SME; Forbus et. al, 2016) for analogical match-
ing, MAC/FAC for retrieval, and SAGE for analogical gen-
eralization. These analogical processes have been used in a 
wide range of domains, including sketch recognition (Chen 
et al., 2023), learning to play strategy games (Hancock and 
Forbus, 2021), and question answering (Crouse et al., 2019), 
and so we hypothesize that it will be useful for learning with 
representations of quantity. We summarize each component 
in turn. 

The structure mapping engine (SME) is a domain-general 
computational model of analogy and similarity, based on 

Gentner's structure mapping theory. It returns a set of map-
pings between a base and a target, both structured represen-
tations, along with a similarity score for each mapping. Each 
mapping contains (1) correspondences that map entities and 
expressions in the base with entities and expressions in the 
target, (2) a numerical structural evaluation score of the qual-
ity of the mapping, and (3) candidate inferences. Candidate 
inferences are expressions that occur in the base description 
and not in the target but can be hypothesized to hold in the 
target. 

The MAC/FAC algorithm (Forbus, Gentner, and Law, 
1995) is a model of analogical retrieval. MAC/FAC takes as 
input a probe description (a set of facts) and a set of examples, 
and returns the example that is most similar to the probe. 
MAC/FAC stands for many are called, few are chosen. Re-
trieval is a two-stage procedure. In the MAC stage, each case 
is represented by a content vector. Each dimension in a con-
tent vector represents a predicate, and its magnitude corre-
sponds to the number of occurrences of the predicate in that 
case. The dot product of two content vectors provides a rough 
estimate of what SME would compute for a similarity score 
for the corresponding structured representations. This dot 
product is used as a pre-filter to reduce the number of com-
parisons made in the FAC stage, which are computationally 
more expensive. The MAC stage is a map/reduce operation, 
where a dot product for a content vector of the probe is com-
puted in parallel with the vectors for all items in the case li-
brary, with the top three scoring cases passed on to the FAC 
stage. The FAC stage also is map/reduce but using SME on 
the probe and the three retrieved cases, keeping the best. The 
MAC stage provides scalability, since vector dot products are 
quite fast. The FAC stage provides the sensitivity to structure 
that human retrieval demonstrates. 

The Sequential Analogical Generalization Engine (SAGE; 
Kandaswamy & Forbus, 2012) is a model of analogical gen-
eralization. SAGE learns models of concepts, incrementally,  
from examples. In SAGE, generalization pools, or gpools, 
are used to build up models of concepts. The number of 
gpools used for learning is determined by the number of con-
cepts in a domain and the learning goals that arise. A gpool 
is subdivided into clusters of similar examples, or generali-
zations, and outliers that are not similar to any other cases or 
generalizations. Each generalization can be thought of as a 
component of a disjunctive model for the concept. In this 
sense SAGE is like k-means with outliers, except that there 
is no a priori determination of the number of clusters; the al-
gorithm derives that from the data. 

Generalization with SAGE involves assimilating new ex-
amples into gpools, and inference involves finding a general-
ization (or outlier) that is most similar to a probe case. For 
assimilation, an incoming case is used to retrieve existing 
outliers and generalizations within a gpool, using MAC/FAC. 
If the case is sufficiently similar to an existing generalization 
or outlier, as determined by a fixed assimilation threshold, it 
is merged with that item and a mapping is returned. Other-
wise, a new outlier is created. If merging occurs between the 
probe and an outlier, then a new generalization is created. 



In the case where two items are merged, SAGE uses infor-
mation computed in a mapping to store metadata about the 
generalization. Probabilities are updated for aligned facts, re-
flecting the frequency of that fact within the generalization. 
For example, facts about international organization member-
ship are included in each country case. After a number of 
country cases have been assimilated, a generalization will 
have a lifted facts corresponding to these memberships, and 
a probability for each fact. For example,  
((MemberOfInternationalOrgFn  

AllianceofSmallIslandStates) <?country>): 0.96 
 
reflects the fact that a country is a member of the Alliance of 
Small Island States, and has a probability of .96 within the 
context of one generalization, meaning that 96% of the con-
stituents of that generalization exhibit this attribute. 

 The <?country> placeholder is a skolem (new unique 
symbol) that is denoted in knowledge by a non-atomic term 
(GenEntFn). Probabilities for generalizations are updated 
every time a new example is assimilated. Statements whose 
probabilities become too low are eventually deleted, based on 
a fixed probability cutoff threshold.  

Quantity Representation in CARVE 

AQE builds upon representations of quantity and a computa-
tional model, CARVE, developed by Paritosh (2004). 
CARVE used two distinctions for representation of quantity: 
distributional and structural partitions. Distributional parti-
tions map a continuous value to some ordered interval within 
a probability distribution. More than just the norm, ordered 
partitions can be defined within the distribution (e.g. small, 
large) for many quantities, which are construed as a qualita-
tive decomposition of the space. There is psychological evi-
dence that suggests that we can and do accumulate distribu-
tions of quantities (Malmi and Samson, 1983; Fried and Ho-
lyoak, 1984; Kraus et al, 1993). Distributional partitions are 
represented by statements of the form 
 
(isa <?country> (<?amount> <?qtype>)) 
 
For example, the USA has a high literacy rate relative to all 
other countries in the world, represented by:  
 
(isa USA (HighAmountFn LiteracyRate)) 
 

Whereas distributional partitions decompose individual 
quantities, structural partitions highlight how quantities are 
constrained by what values other quantities in the system 
take. For instance, GDP tends to increase as a country’s pop-
ulation increases, and literacy rates tend to increase with 
GDP. These constraints represent the underlying mecha-
nisms, or correlations within the domain. Limit points decom-
pose values into regions where the underlying correlational 
story is different (e.g., rich vs poor nations), which induces 
important and interesting distinctions of quality on the space 
of quantity. 

Wikidata 

The AQE algorithm is domain-independent and ontology in-
dependent. This work focuses on readily available structured 
knowledge derived from the Wikidata dataset. Wikidata is a 
collaborative knowledge graph that serves as a repository of 
structured data for a wide range of information from many 
different domains. Like its sibling Wikipedia, Wikidata uti-
lizes the distributed-community model of editors—as of this 
writing, thousands of editors and bots have made over 1.6 bil-
lion edits to over 97 million items. This model allows Wiki-
data to serve as the downstream aggregate of otherwise inde-
pendent structured data sources.  

Wikidata is organized around items, with each having a 
unique identifier (QID) and a set of statements about it. Each 
statement is an RDF triple of <subject property value>. For 
example, “the United States is a member of the World Health 
Organization” can be expressed as <member of (P463), 
United States (Q30),World Health Organization (Q7817)> 
where the terms in italics are the English rendition of the ob-
jects whose ids are in parentheses. In QR terminology, items 
are entities and values are quantity values. In some cases the 
quantity type is obvious (e.g. Area, Color), while in others it 
is more opaque (Statistical Population). Any property can 
specify constraints on its value. Certain properties specify 
that their values must be a string, number, date, URL, media 
file, or another Wikidata entity. Other properties, like capital 
(P36) enforce no more than one value since most states have 
only one capital. Since Wikidata consists of RDF triples, it 
can be queried via a SPARQL endpoint (query.wikidata.org). 
In Wikidata, predicates like point in time (P585) can be used 
to qualify statements like population (P1082), for which there 
may be several different assertions that hold in different 
years. In the case where a country’s capital (P36) may have 
changed, values can be associated with a start time (P580) 
and end time (P582). 

Analogical Quantity Estimation 

Recall that SAGE computes progressive structural overlap 
over incoming cases, resulting in a set of disjunctive general-
izations for a concept. For example, in this work a generali-
zation might denote the set of wealthy European nations. In 
this sense, generalizations can be viewed as structural parti-
tions that describe some latent concept (i.e. rich countries). 
The goal of structural partitioning is to assign cases to gener-
alizations that correspond to useful distinctions (for instance, 
groups of developed and underdeveloped nations). Learning 
for AQE consists of two steps. In the first, quantitative facts 
are symbolized; that is, continuous quantities are mapped to 
qualitative distributional partitions, and the resulting new 
facts are added to the original case. In the second step, this 
augmented case is added to a separate gpool, which learns 
structural partitions in the data. We outline each of these steps 
next. 

Distributional Partitioning 
The first step for AQE is to encode numeric facts in incoming 
cases. Many quantity estimators, e.g. regression, assume that 



incoming data is unstructured, and that attributes are already 
aligned. Since Wikidata combines structured and unstruc-
tured knowledge, this poses an additional challenge to learn-
ing. That is, entities and attributes must be aligned before 
learning can take place. For learners like regression, this is 
handled outside of the learning mechanism, often manually. 
One benefit of AQE is that this procedure is handled auto-
matically by computing analogical mappings and is tightly 
integrated into the learning mechanism. Thus, the first step in 
symbolizing quantities is to compute attribute alignments 
(Figure 1, qualitative quantity encoding). Once this is com-
plete, distributions for aligned quantities are used to map con-
tinuous quantities to distributional partitions, which we de-
scribe next.  

First, an incoming quantity must be mapped to a set of pre-
viously seen quantities. For example, to symbolize the liter-
acy rate of the USA, which is 99.4 as of 2022, then this quan-
tity should be compared with the distribution for literacy rates 
of all previously seen countries. This is handled with SAGE 
by maintaining a gpool that has an assimilation threshold of 
zero. Recall that the assimilation threshold sets the minimum 
requirement for two cases to be considered similar. An assim-
ilation threshold of zero means that a gpool will have a single 
generalization that contains all assimilated cases. While not 
useful for learning (because it makes no distinctions), this 
model is useful because it provides a global schema. This 
schema provides useful metadata about facts in the dataset. 
For one, the relative frequency of each aligned fact is stored, 
(e.g. 3.4% of countries border Cameroon). Second, it associ-
ates each quantity type with information about the values that 
that quantity type has taken. The goal is to separate each 
quantity type into a predetermined number of qualitative par-
titions. This is achieved with an online k-means algorithm. 
Given an unseen quantity, it is assigned to one of the K dis-
tributions by minimizing the Euclidian distance between the 
quantity and the norms of each distribution. If less than k 

quantities have been seen, a new distribution is created, and 
the new quantity is set as the mean. 

For this paper, the number of distributional partitions is set 
at five, as we have found that this is a good balance between 
expressiveness and relevance. Too expressive (too many par-
titions) and all quantities tend towards dissimilarity. Too few 
distinctions, and all quantities tend towards similarity. Using 
five partitions results in a quantity space that can be inter-
preted as (very small, small, medium, large, very large). The 
number of distributions K can be set at the level of a gpool 
by by asserting a fact 

 
(kMeansForQuantityAnalysis <?gpool> <?K>) 

 
in the knowledge base. 

The next step is to generate qualitative facts based on the 
assignment of a quantity to one of the K distributional parti-
tions. If fewer than K quantities have been seen, then no fact 
is generated. Otherwise, a new fact is created, e.g. 
 

(isa USA (HighAmountFn GDP)) 
 
and added to the existing case in place of the prior quantita-
tive fact. 

Next, the associated distribution is updated to reflect the 
new quantity. SAGE stores with each distribution a set of sta-
tistics: the cardinality, minimum, maximum, mean, and sum 
of squared error of the constituent quantities. This metadata 
is used later on for inference, which is detailed below. 

Structural Partitioning 

Once quantities in a case have been symbolized, the case is 
given as input to a second SAGE gpool, this time with a non-
zero assimilation threshold. The assimilation threshold used 
for these experiments is .6, which is a standard value that has 
been successful for learning across many domains. In this 
step, both existing qualitative as well as the new symbolized 

 

Figure 1: Overview of the AQE encoding, generalization, and inference processes. Stage 1 encodes qualitative facts for 
each numeric quantity found in a case. This is achieved by accumulating statistical information about each quantity type 

in the stage 1 gpool. For example, country GDP will have an associated k means. This distributional knowledge is used to 
encode quantitative knowledge in incoming cases. Stage 2 generalizes the newly symbolized cases, resulting in a set of 
generalizations (structural partitions), each accumulating statistical information about constituent cases. This model is 

then used for inference, to estimate quantities for new cases. 



qualitative facts are taken into account by analogical match-
ing. Figure 2 shows an example gpool with white circles des-
ignating generalizations containing similar countries. Each 
generalization reflects some structural partition in the source 
dataset. Structural partitions are a reflection the system’s un-
derstanding of the correlational structure of a set of cases. 
 The gpool for the second stage accumulates the same sta-
tistical knowledge about quantity distributions as the first 
stage, over quantities of cases within the same generalization. 
In the next section, we describe how, along with analogy, 
these statistics contribute to inference in AQE by allowing 
quantity estimation for quantities in held out cases. 

Quantity Estimation 

For inference, the idea is to estimate an unseen quantity for 
some case. First, knowledge about the target quantity is re-
moved from the case. Then, quantity estimation proceeds by 
first symbolizing all quantities, using the gpool from stage 1. 
First SAGE retrieves a mapping between the probe case and 
a generalization. Since the stage 1 gpool has an assimilation 
threshold of zero, all cases are similar to the single generali-
zation, and a mapping is guaranteed. This mapping aligns 
quantities in the probe to previously seen quantities from 
training. For each aligned quantity, the k-means algorithm as-
signs it to one of K distributions. This assignment is used to 
generate a qualitative fact, as detailed previously. This fact is 
added to the probe case, and once this has been performed for 
all aligned quantities, inference proceeds to stage 2. 
 Next, SAGE retrieves a mapping from the augmented case 
to an object in the stage 2 (structural) gpool. If a mapping to 

 

1 https://www.qrg.northwestern.edu/nextkb/index.html contains 

downloadable files in various formats, browsers, and reasoning sys-

tems. It uses Creative Commons Attribution 4.0 licensing, compati-

ble with OpenCyc, FrameNet, and other resources. 

a generalization is found, the mean of the target quantity type 
for that generalization is used as the estimate. If no mapping 
is found, then the estimate is the marginal average for that 
quantity type across all cases in the gpool. If the case maps to 
an outlier, then the quantity from the outlier is used for pre-
diction, or the marginal over all cases in the gpool if the out-
lier does not have a quantity value for that quantity type. 

Evaluation 

This paper evaluates AQE on a set of cases that were ex-
tracted from Wikidata. Next, we describe this extraction pro-
cedure and then discuss how the resulting dataset is used to 
evaluate AQE. 

Case Construction from Wikidata 

For learning in AQE, we translate from Wikidata to the open-
license knowledge base NextKB1, which is used for AQE ex-
periments. Data from Wikidata was pulled using the public 
SPARQL endpoint at query.wikidata.org. For the country da-
taset, ten quantitative attributes were queried for the year 
2022 (population, GDP, GDP per capita, median income, de-
mocracy index, life expectancy, fertility rate, area, literacy 
rate, and human development index) and 6 qualitative attrib-
utes (continent, bordering countries, bordering bodies of wa-
ter, language(s) spoken, international organization member-
ships, and currency). Overall, 197 cases were generated, hav-
ing an average of 40 facts each. 

For the set of university cases, qualitative attributes are (in-
stanceOf; P31), organizational memberships (P463), and 
Carnegie Membership Classification (P2643). For quantities, 
students count (P2196), total assets (P2403), employees 
(P1128), admission rate (P5822), endowment (P6589), and 
admission yield rate (P10263) were used. For each university, 
the latest available quantity for each quantity type was used. 
All quantities are from 2019 and later, up to the year 2023. 
This dataset was extracted on July 31, 2023. Cases were gen-
erated for universities that were founded prior to 1860, which 
resulted in 231 university examples. Those that did not have 
any associated quantitative knowledge were removed, result-
ing in 194 cases. 

Attributes for cases were chosen based on the hypothesis 
that there is a rich underlying correlational structure that can 
be learned. These facts were translated into OpenCyc’s on-
tology language for use within NextKB. For some predicates 
there was a natural correspondence, such as nominal GDP in 
Wikidata and grossDomesticProduct in OpenCyc. Other 
predicates were missing from OpenCyc and thus hand ontol-
ogized, e.g. human development index as the predicate 
hdiOfCountry and percentage of applicants admitted as per-
centApplicantsAdmitted. 

For example,  
 
<United States (Q30), population (P1082), 331,449,281> 

 

Figure 2: A SAGE Gpool consisting of 15 generaliza-
tions (white circles), each containing individual cases 

(black dots). Generalizations represent groups of similar 
cases (structural partitions of the dataset).   

 

 

 



results in  
 
(populationOfRegion  

UnitedStatesOfAmerica  
((UnitOfCountFn Person) 331449281)).  

Experiment 

For the experiments, AQE is evaluated against two baselines: 
(1): analogical quantity estimation without quantity symboli-
zation and (2): against a standard linear regression estimator. 
Our hypothesis is that AQE will outperform analogical quan-
tity estimation without qualitative representations of quan-
tity. Additionally, results from a standard linear regression 
estimator are included. Recall that AQE is both incremental 
and unsupervised; incremental learners are well known to 
lack statistical guarantees of their batch counterparts due in 
part to the stochastic effects of initialization. The results for 
linear regression are included as a means of comparing learn-
ing performance of AQE vs a technique with better learning 
guarantees. 
 To run the experiments, standard cross validation is used 
to partition each dataset into ten folds, each consisting of a 
train and test set. For countries, there are 197 cases, and 194 
for universities, resulting in a test set for each of the ten folds 
consisting of approximately 20 cases for both datasets. The 
folds are generated by first randomizing the cases, and then 
generating ten partitions based on the ordering from this ran-
domization. AQE and the incremental baseline are imple-
mented in Allegro Common Lisp 10.1. A seed for the random 
state in Allegro Common Lisp is set to 55 for the baseline and 
AQE conditions, as well as generation of the cross validation 
set. The linear regression estimator is run using the imple-
mentation in Python’s ScikitLearn module, using default pa-
rameters, also using the same cross validation set that was 
generated in Allegro Common Lisp. Learning regression 
models requires vectorizing structured knowledge from each 
dataset. This is accomplished by manually creating a map-
ping, where each quantity type is considered a feature, and 
each unique qualitative attribute (e.g. currency, organization 
membership) is represented by a one-hot vector. Missing 
quantities are imputed using Python’s impute function from 
the SciPy module. This results in 883 features across the 197 
country cases for universities, and 181 features across 194 
cases for the university dataset. 
 For the country dataset, each condition is tested on four 
different quantity types: life expectancy (LE), human devel-
opment index (HDI), democracy index (DI), and nominal 
GDP (GDPnom). For universities, average yield percent 
(AYP), percent applicants admitted (PAA), and number of 
emplyees (NOE) are tested. 

Results 

For countries, our results show that AQE performs signifi-
cantly better (p < .05) than the baseline for every quantity that 
was tested. Additionally, the regression condition fails to per-
form significantly better than AQE for any quantity (p > .05), 
and AQE outperforms the regression estimator in one in-
stance (nominal GDP).  

 

 LE HDI DI GDPnom 

baseline 60.84 .023 5.15 5.54e8 

AQE 20.8 .0088 2.63 3.79e8 

regression 19.88 .0062 1.95 4.9e8 

Table 1: mean squared error across 10 folds for four quantity 
types (life expectancy, human development index, democ-
racy index, and nominal GDP) across three experimental con-
ditions. 

For the university dataset, all experiments were run using 
the same parameters that were used for the country cases. We 
tested AQE on average yield percent (AYP) (the percentage 
of students that enroll given acceptance), percent applicants 
accepted (PAA), number of employees (NOE), and endow-
ment value (EV). For this experiment, AQE outperformed the 
incremental baseline as well as regression for all quantities 
tested. Admission yield percent and percent applicants admit-
ted showed significant improvement over the incremental 
baseline (p < .05). The regression condition suffered due to 
overfitting on certain folds, resulting in large out-of-distribu-
tion predictions.  
 

 AYP PAA NOE EV 

baseline .017 .059 1.31e7 3.9e19 

AQE .011 .034 8.46e6 2e19 

regression 39443 7.5 9.43e9 2.95e19 

Table 2: mean squared error across 10 folds for four quantity 
types (admission yield percent, percent applicants admitted, 
number of employees, and endowment value). 

Explainability 

The qualitative representations of quantity used in AQE also 
result in explainable models, because they are compatible 
with natural language. The final learned model (stage 2) rep-
resents a disjunction over structural partitions of the data. 
Figure 3 shows a subset of facts from one of these learned 
structural partitions. In SAGE terms, this corresponds to a 

Fact Prob 

((MemberOfInternationalOrgFn  
   AfricanDevelopmentBank)  
 <?country>) 

1.0 

((MemberOfInternationalOrgFn AfricanUn-
ion)  
 <?country>) 

1.0 

((MemberOfInternationalOrgFn 
   InternationalBankforReconstruction-
andDevelopment)  
 <?country>) 

1.0 

(isa <?country> (CountryTypeFn 
       (VeryLowAmountFn grossDomes-
ticProduct-Nominal))) 

.862 

Figure 3: Example facts from a single generalization 
(structural partition) with 29 member cases 

 

 



generalization, which stores probabilities of individual facts. 
The depicted generalization in Figure 3 shows that every con-
stituent is a member of the African Development Bank. Fur-
thermore, inspection of the model reveals that 86.2% of the 
participants have a very low GDP. The nature of these repre-
sentations means that they are inspectable. In the next section, 
we discuss possible extensions that use these learned models 
for further learning. 

Discussion and Future Work 

This paper introduces AQE, an extension to SAGE that ena-
bles learning with quantitative knowledge by automatically 
symbolizing those quantities into predicate statements that 
denote distributional partitions. Furthermore, the experiment 
shows that these representations can assist in estimating 
quantity by using analogy to learn salient structural partitions 
of the underlying data in two datasets. Specifically, using 
qualitative representations significantly improves over a 
baseline in which these representations are not included. 
AQE is also compared against a linear regression estimator, 
which, despite being supervised and batch, does not perform 
significantly better than AQE in the first experiment, and in 
the second experiment, performs worse for every quantity. 

As Paritosh (2004) points out, relative magnitudes such as 
large are context dependent and thus elude global definition. 
A person might be tall with respect to the general populace, 
but short compared to the set of professional basketball play-
ers. These ecological constraints surrounding judgements of 
this kind mean that the ability to quickly estimate from a few 
examples is especially useful, because new contexts are en-
countered frequently. The relative data efficiency of AQE is 
a boon compared to the data-hungry nature of many current 
statistical learners. This raises the possibility of applying 
AQE to new domains, such as concept acquisition in situated 
learning (e.g. learning near and far by symbolizing quantity).  
 Furthermore, declarative representations like the ones used 
in this paper allow for extensibility, in that they can be used 
as a foundation for other kinds of reasoning. For example, 
further refinement is possible by connecting the learned rep-
resentations with the semantics of a more expressive qualita-
tive reasoning framework, e.g. Qualitative Process theory 
(Forbus, 2019). This opens up the possibility of refining these 
models by incorporating knowledge from other sources, e.g. 
language. One way that this might be accomplished is by lev-
eraging causal relationships parsed from language to high-
light what is salient for a given estimation task. The idea is 
that this causal knowledge could improve model accuracy by 
filtering out noise introduced by non-salient attributes, e.g., 
extending a quantitative anchoring framework such as 
KNACK (Paritosh and Klenk, 2006). 
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