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Abstract
Sketch recognition has been studied for decades,
but it is far from solved. Drawing styles are highly
variable across people and adapting to idiosyncratic
visual expressions requires data-efficient learning.
Explainability also matters, so that users can see
why a system got confused about something. This
paper introduces a novel part-based approach for
sketch recognition, based on hierarchical analog-
ical learning, a new method to apply analogi-
cal learning to qualitative representations. Given
a sketched object, our system automatically seg-
ments it into parts and constructs multi-level qual-
itative representations of them. Our approach per-
forms analogical generalization at multiple levels
of part descriptions and uses coarse-grained results
to guide interpretation at finer levels. Experiments
on the TU Berlin dataset and the Coloring Book
Objects dataset show that the system can learn ex-
plainable models in a data-efficient manner.

1 Introduction
Sketching is an important tool for thinking and communicat-
ing. Supporting people who sketch, such as artists, design-
ers, planners, or teachers is an important potential application
for AI. Sketch recognition has been studied for decades (e.g.
[Negroponte, 1973] and [Hammond and Davis, 2007]) but re-
mains far from being solved. Deep learning approaches have
recently achieved some impressive results [Li et al., 2013;
Seddati et al., 2015; He et al., 2016; Lin et al., 2019;
Lin et al., 2020; Yu et al., 2016] but have several draw-
backs. To achieve reasonable performance, they require mas-
sive amounts of data, and many epochs, for training. In
supporting sketching in real-world situations, data-efficient
learning is crucial. Sketching style varies widely across peo-
ple, so adaptation must not require massive data for retrain-
ing. Moreover, the open-ended nature of creative work puts a
high premium on incremental data-efficient learning. When
a new concept is introduced during a sketching session, sys-
tems need to pick up on it quickly, and not require massive
amounts of new training data and retraining from scratch, as
today’s deep learning systems require. Thus, learning with a
small amount of data is important for sketch understanding.

The second problem is that deep learning produces opaque
models, making it difficult for users to understand them and
their results. To support real-world applications, models of
sketch understanding should provide rapid ways to correct
what the models learn via understandable representations.

Analogical learning via qualitative representations has
been shown as an effective approach to sketch understand-
ing [Chen et al., 2019]. It can achieve reasonable results
with high data-efficiency and strong explainability. However,
the analogy-based model has two problems. First, the per-
formance of the model is still low with a small number of
training samples. For example, [Chen et al., 2019] can only
achieve 29.47% on a sketch recognition dataset with 9 train-
ing examples per category. Second, that system encodes the
whole sketch as one qualitative representation. With more en-
coded details, the number of facts in a sketch representation
increases quickly. With a greater number of facts, analogi-
cal learning requires more computation time for learning and
classification. Also, the qualitative representation of a sketch
becomes more complicated and harder to explore with more
facts.

This paper introduces a novel approach for sketch recog-
nition, PHAL, based on Part-based Hierarchical Analogical
Learning. Given a sketch, PHAL automatically segments
the object into parts and constructs multi-level human-like
qualitative representations. By performing analogical gen-
eralization at multiple levels of part representations and us-
ing coarse-grained results to guide the interpretation at finer
levels, we show that PHAL has better accuracy than tradi-
tional analogical learning while keeping high data-efficiency
and explainability. Figure 1 shows the pipeline of PHAL, as
described in section 3.

This paper makes four contributions. (1) We introduce a
novel approach, hierarchical analogical learning, on hierar-
chical encodings. To our knowledge, this is the first time
that analogical learning is used in a hierarchical way. Ex-
perimental results show that hierarchical analogical learning
outperforms traditional analogical learning. (2) We describe
a novel multi-level part-based encoding scheme to describe
the geometric information of sketched objects. This encod-
ing scheme splits a sketch into multiple qualitative represen-
tations, which improves the scalability over just one large
representation. Specifically, we also introduce a new texture-
detection method to describe sketched textures. (3) Our ap-



Figure 1: The pipeline of PHAL. (a) The system takes a sketched object as the input. (b) The sketch is decomposed into edges and edge-
cycles. (c) Edges and edge-cycles are organized into a hierarchical decomposition tree. (d) The system constructs three-level part-based
qualitative representations. (e) Hierarchical analogical learning is used to perform training and classification.

proach has better data-efficiency than deep learning models
while being competitive in accuracy or outperforming them
(4) Hierarchical analogical generalizations provide intuitively
understandable explanations of what was learned.

We begin by introducing the most relevant related work on
sketch recognition and analogical learning. Then we present
PHAL, including the qualitative encoding scheme and hier-
archical analogical learning. Next, we show results for ex-
periments on the TU Berlin dataset and the Coloring Book
Objects dataset. The explainability of models is examined
next, ending with conclusions and future work.

2 Related Work
Sketch recognition has been studied for decades, making a
detailed review beyond the scope of this paper. Consequently,
we focus only on the most relevant related work. [Eitz et
al., 2012] created the TU Berlin sketch dataset, containing
80 sketches per category from 250 different categories. They
demonstrated that multiclass support vector machines using
a bag-of-features sketch representation could achieve 56%
accuracy. Prior work with analogical generalization on this
dataset [McLure et al., 2015a] achieved similar levels of per-
formance on a subset of this dataset by using automatically
computed qualitative visual relations and by introducing an
Ising model to handle textures over edge-cycles. [Lake et
al., 2015] uses Bayesian program learning (BPL) to develop
a new human-like system to learn visual concepts. PHAL
also uses qualitative visual relations but also computes a geon
representation [Biederman, 1987] for each segmented part to
provide a stable intermediate representation and uses a differ-
ent approach to recognizing textures. The Ising model for tex-
ture detection only works on connected edge cycles, thereby
missing many textures. By contrast, our new texture detec-
tion method can detect texture in connected or nonconnected
edges or edge-cycles.

Deep learning models have achieved impressive results
on sketch recognition [Li et al., 2013; Seddati et al., 2015;
He et al., 2016; Lin et al., 2019; Lin et al., 2020; Yu et al.,
2016]. They designed large-scale deep learning models and
perform data augmentation or pretraining to achieve state-
of-the-art performance. For example, [Lin et al., 2020] de-
signed SketchBERT, using BERT as the backbone, and pre-

trained it with many sketches. Then, they finetuned the model
for downstream sketch recognition/retrieval tasks. However,
this is the opposite of data-efficient learning, and as Section
4.2 shows, with small training datasets, deep learning models
fail to achieve reasonable performance even with pretraining.
Also, PHAL constructs explainable, rather than opaque, mod-
els.

Analogical learning has been used in other tasks. For ex-
ample, [Crouse et al., 2018] applied it to learning to answer
questions via self-supervised learning, demonstrating better
data efficiency and competitive accuracy compared to other
state-of-the-art Geoquery systems. Similarly, [Chen and For-
bus, 2018] applied analogical learning over qualitative repre-
sentations of movements to perform human action recogni-
tion with competitive accuracy. The most similar work com-
pared with our PHAL is [Chen et al., 2019]. This work also
uses analogical learning over qualitative representations for
sketch recognition. However, it used single-level analogical
learning and retrieval, whereas PHAL uses multi-level hier-
archical analogical learning & retrieval, which improves the
scalability of complicated qualitative representations. Also,
our novel part-based encoding scheme enhances the explain-
ability of the previous analogical learning method.

3 Part-based Hierarchical Analogical
Learning

Psychological evidence from infant visual learning suggests
that infants perform recognition by encoding objects from
coarse-grained contours to finer details [Chen et al., 2020].
This inspired us to explore using hierarchical analogical
learning to perform sketch recognition. In Part-based Hierar-
chical Analogical Learning (PHAL), given a sketch, parts are
generated from its digital ink, constructing a multi-level hier-
archical structure from the outside contours inward. It con-
structs qualitative representations on parts in each level and
performs analogical learning at multiple levels, to train mod-
els corresponding to the different levels of detail. In classi-
fication, analogical retrieval starts with using coarse-grained
results to generate a broad range of candidates, which are then
refined by using more fine-grained models.

This section begins by describing the analogical models it
uses. Then it describes CogSketch [Forbus et al., 2011], an



open-domain sketch understanding system used to help gen-
erate representations. The multi-level part-based representa-
tions are presented next, followed by how hierarchical ana-
logical learning works.

3.1 Analogical Learning
Our analogy stack uses three processes. Analogical matching
is handled by the Structure Mapping Engine (SME) [Forbus
et al., 2017], analogical retrieval by MAC/FAC [Forbus et al.,
1995], and analogical generalization is performed by the Se-
quential Analogical Generalization Engine (SAGE) [McLure
et al., 2015b]. We summarize each in turn.

SME is a computational model of analogical matching
and similarity based on Structure Mapping Theory [Gentner,
1983]. Given two cases consisting of structured, relational
representations, called the base and target, SME computes a
mapping between them. A mapping includes a set of corre-
spondences that align entities and relations in the base and
target, a similarity score that indicates how similar the base
and the target are, and candidate inferences, which are projec-
tions of unaligned structure from one case to the other, based
on the correspondences. Here SME is used as a similarity
metric and a means of combining cases into generalizations,
as described below.

The MAC/FAC algorithm models analogical retrieval.
Given a probe (a case) and a library of cases, MAC/FAC re-
trieves cases that are highly similar to the probe from that
library. When cases are added, a content vector is automat-
ically constructed from the case, where each dimension rep-
resents the number of occurrences of a predicate in that case.
The first stage, MAC, is a data-parallel map/reduce operation
accumulating the best N results from the dot product of the
content vectors of each library case and the probe. The cor-
responding structured cases are passed to FAC, which is also
map/reduce, but using SME to compare the MAC outputs to
the probe, returning the most similar case as the reminding.
MAC provides scalability, while FAC provides human-like
sensitivity to the structure. MAC/FAC is used for retrieval
during both training and testing.

SAGE models analogical generalization. Each concept
is represented by a generalization pool (aka gpool), which,
given an incremental stream of examples, constructs a set
of probabilistic generalizations and outliers that constitute an
analogical model of that concept. Each item in a gpool is dis-
junct in the model. There are two basic operations: adding an
example and classifying an example. When adding a training
example to a gpool, MAC/FAC is used to retrieve the most
similar item, treating the gpool as a case library. An assimi-
lation threshold is used to determine when an example is as-
similated into a generalization. If the similarity is too low, the
new example is added to the gpool as an outlier. Otherwise,
if the reminding is another example, then a new generaliza-
tion is formed. This involves replacing nonidentical aligned
entities with new unique symbols (i.e., skolems) and taking
the union of the statements involved. The probability of each
statement is 1 if aligned, or 0.5 otherwise. If the remind-
ing is a generalization, its probabilities are updated based on
what facts from the example align with it, and new skolems
added as needed. Statements whose probability gets too low

are eventually deleted. Since SAGE can accumulate multiple
generalizations and outliers, it is like k-means with outliers,
except that there is no a priori determination of the number of
clusters: SAGE automatically derives that from the data. This
paper describes a novel way to use analogical learning hier-
archically, building SAGE gpools for every concept at each
level.

3.2 CogSketch
CogSketch is an open-domain sketch understanding system
that automatically constructs visual and spatial relational rep-
resentations from digital ink, similar to what people use
in visual problem-solving (e.g., [Lovett and Forbus, 2013;
Lovett and Forbus, 2017]). It decomposes ink into edges and
junctions by separating the ink into segments at its disconti-
nuities and overlaps. It computes a variety of properties for
edges, including their length, curvature, orientation, position,
topological relations, and shape (i.e., type of junctions, such
as T-junction). Edges can be assembled into edge-cycles that
form closed shapes, providing larger units out of which repre-
sentations of surfaces can be constructed. Edge-cycles have
similar properties to edges and polygons, but, unlike poly-
gons, can also have curved edges.

CogSketch operates directly with SVG format inputs.
When the input is a bitmap, a preprocessing step is required
to produce digital ink. Bitmaps are converted to digital ink
in SVG format by a three-step procedure. First, the image is
resized so that its longest dimension is below 300 pixels, to
speed up subsequent processing. Second, the image is blurred
and filtered to black and white using a threshold of 70. Fi-
nally, a combination of Potrace [Krenski and Selinger, 2003],
a software tool for tracing bitmaps, and Zhang-Suen’s thin-
ning algorithm [Zhang and Suen, 1984] are used to generate
an SVG file for input into CogSketch.

3.3 Multi-level Structured Representation
PHAL constructs multi-level structured representations for
sketched objects. Given digital ink for an object, CogSketch
generates a decomposition tree based on the containment of
edges and closed edge cycles, as illustrated in Figure 1. That
is, each edge or edge-cycle is stored in a tree node forming
a hierarchical structure from the outside to the inside of the
object. Thus, the root node contains the contour edge-cycle
of the whole sketched object. Figures 1 (b) and (c) show the
edge-cycles for an airplane and the corresponding decompo-
sition tree. Cycle-8 in the root node is the outer contour edge-
cycle of the airplane. As most sketches tend to only have two
or three layers of encodings, we choose a three-level encoding
scheme, i.e. elements of the first three levels in the decompo-
sition tree.

The three hierarchical levels of sketch representation are
built from this decomposition tree. The first level represen-
tation consists of the information in the first layer of the de-
composition tree. The second level representation consists of
the second level of the tree, and the third level consists of the
rest of the levels of the tree. In Figure 1, Level 1 is the outer
contour (Cycle-8), Level 2 consists of three parts, the fuse-
lage, and the two wings, and Level 3 consists of the wind-
shield. Some sketches have complex textures consisting of



Attribute Description

Curvature Whether all edges of the edge-cycle
are curved or straight, including
concavedCycle or nonConcaved-
Cycle

Symmetry Whether the edge-cycle has symme-
try axes, including symmetryAx-
esCycle or nonSymmetryAxesCy-
cle

Shape Estimation The shape estimation of the
edge-cycle, including el-
lipseSystemShape, trian-
gleSystemShape, rectangleSys-
temShape, spindleSystemShape

Orientation Whether the edge-cycle is horizon-
tal, vertical, or acute, including
horizontallyOriented or vertical-
lyOriented, and acutelyOriented

Size The relative size of the edge-
cycle comparing with the whole
graph, including areaTiny, areaS-
mall, areaMedium, areaLarge

Rectangularity The ratio between the area of the
edge-cycle and the area of its bound-
ing box, including lowRectangu-
larity, middleRectangularity, and
highRectangularity

Table 1: Edge-cycle encoding attributes

many edges or edge-cycles. Detecting and representing such
textures is important for sketch recognition. Thus, we use
a novel texture encoding scheme to detect textures on edges
and edge-cycles. Textures found for each level are included
in each representation. Edges or edge-cycles that are gener-
alized into a texture are removed from the tree. Figure 1 (d)
illustrates what is included in the airplane sketch at each level.
For each level, we utilize a part-based encoding scheme for
representation construction. Texture encoding and part en-
coding are described next.

3.4 Texture Encoding
The decomposition tree is used to guide the process of tex-
ture encoding. All the edges and edge-cycles that have the
same parent node are candidates for inclusion in textures at
that level of the decomposition tree. Thus, textures can be
detected at each level of the decomposition tree. Here, we
introduce a novel texture encoding method using analogical
generalization. We formalize the texture encoding problem
as finding clusters consisting of sets of edges or edge-cycles
that have similar properties. To solve it, we first compute a
set of properties for the items to be clustered, and then add
them to a SAGE generalization pool. Each generalization it
finds is treated as a visual element representing a texture.

We use three features for edges, namely curvature, length,
and direction. Curvature describes whether the edge is curved
or straight, length describes the relative length of the group

of edges, and direction describes whether the edge is vertical,
horizontal, upward, or downward. For edge-cycles, we use
six features: curvature, symmetry, shape estimation, orienta-
tion, size, and rectangularity, as described in Table 1. We use
0.7 for the SAGE assimilation threshold with a cutoff proba-
bility of 0.2 in texture encoding.

3.5 Part Encoding
We generate a set of parts for each hierarchical level based
on the decomposition tree. There are three types of parts de-
fined in the encoding: edge part, edge-cycle part, and convex-
hull part. To generate these parts, we first filter tiny edges
and edge-cycles from all components in each encoding level.
The convex hull of these tiny components is regarded as the
convex-hull part. Each large edge is an edge part. Each large
edge-cycle is divided into qualitatively distinct pieces using
a segmentation algorithm described in [Chen et al., 2019].
The segmentation algorithm is inspired by [Biederman, 1987]
recognition-by-components theory [Blum, 1967]. To seg-
ment an edge-cycle, we first compute the medial-axis trans-
form, an algorithm from computer vision. Each point on the
medial-axis has at least two closest points on the edge-cycle.
The pairs of closest points are iterated over, to find closures
of the edge-cycle, where a closure has at least one concave
point relative to the edge-cycle. After finding all closures, we
add a segmentation line to each closure. Each segment is re-
garded as an edge-cycle part. Once we have all the parts, a
qualitative representation is constructed for each part to rep-
resent the local information of sketched objects. CogSketch
computes geometric properties for each part and spatial re-
lations between nearby parts. (Two parts on the same level
are near to each other if they are connected or the distance
between them is smaller than a threshold) The three features,
curvature, length, and direction in texture encoding are used
to encode edge parts. For edge-cycle parts and convex-hull
parts, the same properties in Table 1 are used to describe
their geometric features. During encoding, the isa predicate
in Cyc is used to express these properties as:

(isa Part1 ⟨Properties⟩) (1)

where the ⟨Properties⟩ is a type of property, such as tri-
angleSystemShape, or CurvedEdge. Between nearby parts,
above and rightOf statements are used to represent the posi-
tional relations, e.g.

(above Part1 Part2) (2)

The structured representation for a part is the union of the
properties of the part, the properties of nearby parts and the
relations between them.

Once the part representations are generated, we also en-
code the spatial relations between parts and textures. RCC8
relations [Randell et al., 1992] are used to describe the con-
taining relations between parts and textures. If a part has a
texture, its representation includes the texture representations
and RCC8 relations.

If the hierarchical level is empty, we add a part called
Empty Part with only one fact:

(emptyEncoding EmptyPart1) (3)

which facilitates the prediction process introduced next.



Algorithm 1 Hierarchical Analogical Retrieval
Input: The set of first-level part representations of a sketch,
P1. The set of second-level part representations of a sketch,
P2. The set of third-level part representations of a sketch, P3.
Concepts: C[1...n]
Parameter: The numbers of categories retrieved in each
level: K, Q, V
Output: Classification Category

1: define function LevelRetrieval(Ci,N,P):
2: Let O = [], G = Gpools(Ci, N).
3: for Gi in G[1...n] do
4: T=[]
5: for pi in P do
6: T.append(MAC/FAC(pi,Gi))
7: end for
8: O.append(average(T))
9: end for

10: return O
11: O1=LevelRetrieval(C,1,P1)
12: C1=sort(O1)[:K]
13: O2=LevelRetrieval(C1,2,P2)
14: C2=sort(O2)[:Q]
15: O3=LevelRetrieval(C2,3,P3)
16: C3=sort(O3)[:V]
17: for ci in C3 do
18: r1=C1[ci]*len(C1[ci])
19: r2=C2[ci]*len(C2[ci])
20: r3=C3[ci]*len(C3[ci])
21: C3[ci]=r1+r2+r3
22: end for
23: result=sort(C3)[0]
24: return result

3.6 Hierarchical Analogical Learning on Parts

This section presents a novel approach to using analogical
learning hierarchically on the representations just described.
Our goal was to improve performance while maintaining the
data-efficiency of traditional analogical learning.

Each sketched object category is modeled with three dif-
ferent generalization pools, one gpool for each level of rep-
resentation. Thus, for example, the concept of Airplane
would be represented by the contents of three gpools, Air-
planeGpoolLevel1, AirplaneGpoolLevel2, and AirplaneG-
poolLevel3. Training consists of constructing part represen-
tations for the three hierarchical levels for each example and
adding them to the appropriate gpool. Ideally, each general-
ization in the gpools represents a common part of that type
of object. Classification of a new example is performed by
first computing the part representations in three levels for it,
and then using the Hierarchical Analogical Retrieval algo-
rithm described in Algorithm 1. It works as follows: each
part representation in the first level is used as a probe for
MAC/FAC, with each of the Level-1 gpools being used as a
case library. The top K categories, i.e., those with the highest
average scores of parts coming out of MAC/FAC, are used
as an initial pool of candidates (lines 11-12). Next, each
part representation of the second level is used as a probe for

MAC/FAC, but with each Level-2 gpool corresponding to the
K categories found in the level-1 retrieval being used as a case
library (lines 13-14). The top Q categories with the high-
est average scores of all parts form the pool of candidates
for the third level retrieval, where each part representation is
used as a probe for MAC/FAC with each Level-3 gpool cor-
responding to the Q candidates retrieved by the previous step
being used as a case library, keeping the top V candidates
for this step (lines 15-16). Particularly discriminative infor-
mation can appear at any level; hence in classification, it is
useful to consider scores from all three levels instead of only
the last level. Also, ideally, each part probe should retrieve
a different item from a same gpool of concepts. Thus, we
compute a final score to decide the final prediction. The final
score for each of the V candidates is found by adding together
the product of the average score and the number of distinct re-
trieved items computed for that category from all three levels
(lines 17-23). This ranked list provides the classification an-
swers.

4 Experiments
We performed experiments on two datasets, the TU Berlin
dataset [Eitz et al., 2012] and Coloring Book Objects dataset
[Chen et al., 2019]. We compare PHAL with several base-
lines. In the experiments, we performed the hyper-parameter
search by using a small subset of training samples from the
training set as the validation set. Results show that our ap-
proach can achieve competitive or new state-of-the-art perfor-
mance while retaining advantages in data/training efficiency
and inspectability.

4.1 TU Berlin Dataset
The TU Berlin dataset is a sketch dataset containing 250 ob-
ject categories. For each category, there are 80 hand-drawn
sketches, for a total of 20,000 sketches. We used the pop-
ular training/testing splits, where each category has 16 test-
ing sketches, and the rest of the sketches are training sam-
ples. The authors of the dataset performed a perceptual study
and found that humans could correctly identify the object cat-
egory of a sketch 73% of the time. We performed hyper-
parameters search, settling on 0.8 as the assimilation thresh-
olds and 0.2 as the cutoff probability for all three encoding
levels. On the full dataset, the numbers of categories we keep
at each level are 20, 10, and 5. TU Berlin dataset provides
both a bitmap version and an SVG version. For convenience,
we used the SVG version so CogSketch can directly load the
images.

We compared PHAL with existing baselines including tra-
ditional machine learning methods and recent deep learning
models. Table 2 presents the results. Our system achieves
69.85% accuracy on the full dataset, which is competitive
compared to the baselines. The performance is only lower
than Sketch-A-Net (SAN) [Yu et al. 2016], TCNet [Lin, et
al. 2019], and SketchBERT[Lin et al. 2020]. However, these
three deep learning approaches either perform data augmen-
tation to generate more training data or leverage models pre-
trained on a large amount of data before fine-tuning on TU
Berlin dataset. PHAL only looks at overall training data once



Approaches Accuracy
[Eitz et al., 2012] 56.00%
[Li et al., 2013] 61.50%
[Hochreiter and Schmidhuber, 1997] 62.35%
[He et al., 2016] 69.35%
[Lin et al., 2019] 73.95%
[Lin et al., 2020] 76.30%
[Yu et al., 2016] 77.95%
PHAL 69.85%

Table 2: Results on TU Berlin dataset

instead of multiple epochs like deep learning models. Also,
our approach only uses up to 10 CPUs to encode sketches
and 1 CPU computer to perform hierarchical analogical learn-
ing. By contrast, deep learning baselines require multiple
computation resources (GPUs/TPUs and CPUs) to support
large model and data training. This provides evidence of the
training-efficiency of our approach. Figure 2 shows some
examples comparing PHAL and SAN. In the left two exam-
ples, our method generates correct labels, but SAN does not.
In the right two examples, our method does not predict cor-
rect labels, but SAN does. We find that the training set does
not have front view of an airplane nor a sketch of a bear face
per se. Thus, data augmentation might be why SAN makes
correct predictions in these cases. We argue that hierarchi-
cal analogical learning can achieve reasonable accuracy with
good training-efficiency. Moreover, our method is incremen-
tal, an advantage that is not tested by batch-oriented datasets,
but is crucial for integrating models into applications requir-
ing adaptability.

Figure 2: Our system predicts correct labels on the left two exam-
ples, but Sketch-A-Net (SAN) does not. Our system predicts incor-
rect labels on the right two examples, but Sketch-a-Net gets correct
answers.

4.2 The Coloring Book Objects Dataset
The Coloring Book Objects dataset (CBO) [Chen et al., 2019]
consists of images from open-license coloring books. This
dataset contains 10 bitmap examples for each of 19 different
categories of animals and everyday objects. The images in
each category vary widely in style (e.g., realistic vs. cartoon)
and in view (e.g., profile vs. frontal). The small number of
samples and high variety in contents makes this dataset a use-
ful challenge for evaluating data-efficiency in sketch recog-
nition. If a model has a higher performance, it has better
data-efficiency on the sketch recognition task.

We use the same cross-validation method described in
[Chen et al., 2019] for evaluation. At each round out of ten

Approaches Accuracy
CNN 5.26%
ResNet50 10.53%
ResNet50 (pretrained) 21.05%
[Chen et al., 2019] 29.47%
PHAL 37.37%

Table 3: Results on CBO dataset

rounds, a random image in each category is used as the testing
samples and the other nine images in each category are used
as training samples. Then, we compute the average accuracy
on the ten rounds. After a hyper-parameter search, we use 0.7
as the assimilation threshold and 0.2 as the cutoff probability
for all three levels. During hierarchical analogical retrieval,
we keep the top 10, 5, and 3 categories in Levels 1, 2, and 3
respectively.

Given the small number of examples, PHAL outperforms
the deep learning models. We tested two different CNN-
based deep learning models as baselines. First, models with
fewer parameters seem more likely to converge, given the
small number of training examples in this dataset. Conse-
quently, we first evaluated a vanilla convolutional neural net-
work (CNN) trained on it from scratch. We choose the same
architecture as the LeNet [LeCun et al., 1998]. The second
model tests the ResNet50 baseline which is the same as in
the TU Berlin experiment. We evaluated both the pretrained
ResNet50 and the raw model trained from scratch. After
hyper-parameter searching, vanilla CNN only achieved ac-
curacy about chance. ResNet50 achieved 10.53% accuracy
if we trained it from scratch. Pretrained ResNet50 could
achieve 21.05% accuracy, which is still lower than our ap-
proach. We also compare our approach with the traditional
analogical learning method described in [Chen et al., 2019].
Table 3 shows the overall results for each model. These re-
sults demonstrate that our novel hierarchical analogical learn-
ing outperforms deep learning models and the traditional
analogical method, providing a new SOTA for this dataset.
This provides additional evidence that PHAL is good at data-
efficient learning and can capture hierarchical structured in-
formation of sketched objects

5 Explainability
Analogical generalization provides explainability because the
qualitative relational representations used are very similar to
the human visual structure and are easily tied to language.
Each generalization or outlier in a generalization pool repre-
sents a disjunct of the model and can be explored by users.
For example, Figure 3 shows two generalizations from Air-
plane and Bicycle gpools. In each example, the left is a part
case in the corresponding generalization and the right is the
learned descriptions, with the probability for each statement.

The entities in the descriptions are skolems introduced by
SAGE, e.g., ¡type¿-Gen-¡index¿ indicates a generalized en-
tity construct from a part or a texture as ¡type¿, with ¡index¿
being an integer id within that generalization. The top gen-
eralization is from the Airplane level-2 gpool, which has 36
generalizations and 19 outliers. In the top example, the left



Figure 3: Figure 3: The top is a generalization in Airplane-level2
gpool and a possible corresponding part (in red). The bottom is a
generalization in Bicycle-level1 gpool.

is a case of the upper wing of an airplane (the part is in red).
Based on learned statements, the upper wing is a relatively
small, nonsymmetric, and curved edge-cycle, which connects
with two other parts. Similarly, the bottom example is a gen-
eralization from Bicycle level-1 gpool, which has 41 gener-
alizations and 26 outliers. The left figure is a case of a front
wheel of a bicycle. The wheel is usually small and like an el-
lipse. It is acutely oriented and sometimes has textures. These
representations easily map to natural language, providing in-
tuitive explanations. Such explanations are hard to extract
from deep learning models. Being able to inspect the gener-
alizations and outliers could help trainers (or systems using
the models) to guide active learning.

6 Conclusion and Future Work

This paper introduces a novel approach for sketch recogni-
tion. For each sketch, a three-level part-based representation
is constructed and used in analogical learning in a novel hi-
erarchical way. The new state-of-the-art result on the Color-
ing Book Objects dataset shows that our system learns with
high data-efficiency. The experiment on the TU Berlin dataset
shows that our system is competitive in terms of accuracy
with deep learning models, with higher training-efficiency.
The explainability of analogical models is also a considerable
advantage, as in the ability to operate incrementally, a capa-
bility not tested in machine learning datasets, but one that we
believe is very important in practice.

At least two interesting directions should be explored in
future work. First, can the representations be improved to
achieve a new state-of-the-art performance on TU Berlin
dataset? This might involve more sophisticated representa-
tions for better features and/or extending the geon represen-
tation, for example. Second, can this hierarchical analogi-
cal learning method be applied in other domains? Detecting
events and relational patterns in story understanding, for in-
stance, might be enhanced by using this technique since they
already tend to use hierarchical event representations
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