
Abstract 

We believe that qualitative spatial reason-
ing provides a bridge between perception 
and cognition, by using visual computa-
tions to construct structural descriptions 
that have functional significance. We 
provide evidence for this hypothesis by 
describing how qualitative spatial reason-
ing can be used to model aspects of visual 
structure in sketches.  We begin by out-
lining the nuSketch spatial reasoning ar-
chitecture, including the representation of 
glyphs and sketches and the use of quali-
tative topology and Voronoi diagrams to 
construct spatial representations.  We 
then describe our use of spatial analogies 
as a means for exploring the structure of 
visual representations.  Three concepts of 
visual structure in sketches are intro-
duced: connected glyph groups, contained 
glyph groups, and positional relations.  
We show that by using visual reasoning 
techniques to compute these qualitative 
descriptions, spatial analogies involving 
sketches are significantly improved.   
 

1. Introduction 
One of the mysteries of human cognition is how 

we make sense of the world around us.  We have 
powerful visual systems, and it appears that part 
of their job is to compute descriptions of visual 
structure (cf. [22,23,11]) which can be used for 
recognition and understanding.  We have argued 
previously that qualitative spatial reasoning plays 
an important role in medium and high-level visual 
processing [12].  Qualitative spatial representa-
tions provide a bridge between vision and cogni-
tion, since they seem to be computed via visual 
processes, but taking functional constraints into 
account.   We have been exploring this idea by 
research on sketching.  Understanding sketches is 
a useful approach to understanding visual struc-
ture because starting with digital ink lets us focus 
on processes of perceptual organization and ignore 
image processing issues.  This paper describes 
some techniques we have developed for imposing 

human-like visual structure on sketches.   We 
show that these techniques enable our software to 
better model human similarity judgments concern-
ing sketches.   

We start by reviewing our approach to sketch-
ing and the sketching Knowledge Entry Associate 
(sKEA) [15], an open-domain sketching system 
used in these experiments.  Next we provide an 
overview of the spatial representations of sketches 
and glyphs and the processing architecture that 
handles spatial computations.  Then we describe 
the computation of spatial relationships, including 
qualitative topology and Voronoi diagrams.  Three 
kinds of visual structure, based on qualitative spa-
tial representations, are introduced: connected 
glyph groups, contained glyph groups, and posi-
tional relations networks.  We demonstrate that 
introducing these visual structures can improve 
analogies involving sketches.  Finally, we discuss 
plans for future work. 

2. Overview of nuSketch and 
sKEA 

Sketching is a form of multimodal interaction, 
where participants use a combination of interac-
tive drawing and language to provide high-
bandwidth communication.  Sketching is espe-
cially effective in tasks that involve space, e.g., 
physical structures or maps.  While today’s soft-
ware is far being as fluent as sketching with a per-
son, research on multimodal interfaces has pro-
duced interfaces that are significantly more natural 
than standard mice/menu systems (cf. [2]).  

sKEA is designed to enable knowledge entry 
via sketching.  Unlike most sketching systems, 
which are limited to a narrowly constrained do-
main, sKEA is open-ended: Any concept in its 
large knowledge base can be included in a sketch.  
Specifically, we use a subset of Cycorp’s Cyc 
knowledge base contents1, with extensions devel-
oped by our group for qualitative and analogical 
reasoning. 

                                                 
1 We use our own KB and reasoning system instead of 
Cyc that is optimized for our needs.  The subset of Cyc 
we use contains tens of thousands of concepts. 
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The typical approach in multimodal interfaces is 
(a) to provide a more natural interface to a legacy 
software system and (b) to focus on recognition 
[1,2].   While this approach has led to useful sys-
tems, it has some serious limitations.  First, to-
day’s statistical recognizers are not very good (in-
deed, much of the multimodal literature focuses on 
using multiple modalities to overcome the limita-
tions in individual modalities).  Second, speech 
recognition requires that the vocabulary and 
grammar can be fixed in advance, and smaller 
vocabularies and grammars lead to more accurate 
recognition.  This can be reasonable for sketching 
systems designed to operate in a tightly con-
strained domain, but for sKEA, which is designed 
to be general-purpose, such a priori restrictions 
are not possible.  Third, even if recognition im-
proves to human-level or beyond, there is still the 
problem of providing software with a visual and 
conceptual understanding of what is being 
sketched.  Such knowledge is crucial for creating 
knowledge capture and performance-support sys-
tems.   

Our approach in the nuSketch architecture [12] 
is quite different and complements traditional 
multimodal research.  We avoid recognition issues 
by using clever interface design.  We focus instead 
on providing richer visual and conceptual under-
standing of what is sketched.   In addition to 
sKEA, we have created a second system based on 
this architecture, nuSketch Battlespace (nSB) [16], 
specialized for military reasoning.  While nSB 
shares a common code base for spatial reasoning, 
we focus in this paper on sKEA for brevity.   

sKEA’s interface provides ways to enable users 
to specify conceptual information about the enti-
ties being sketched.  (The interface techniques that 
enable us to avoid recognition are described in 
[16].) sKEA uses the knowledge base to draw ad-
ditional inferences about the conceptual relation-
ships depicted in the sketch (e.g., if a nucleus is 
drawn inside the body of a cell, that suggests that 
the nucleus could be part of the cell).  Complex 
ideas, such as sequences or alternate points of 
view, can be conveyed using subsketches that are 
combined on the metalayer to form “the whole 
story”.   sKEA is still a research system, although 
we have carried out internal experiments where 
graduate students from other groups were able to 
use it successfully. 

3. Representing glyphs and sketches  
This section describes the underlying ontology of 
sketches that we use.  The basic unit in a sketch is 
a glyph.  Every glyph has ink and its content.  The 
ink consists of one or more polylines, representing 
what the user drew when specifying that glyph.  
(Each polyline includes width and color informa-
tion in addition to its points.)  The content is a 
conceptual entity, the kind of thing that the glyph 
is representing.   For example, if a user drew a 
ball, there would be an entity created to represent 

the glyph itself and an entity to represent the ball.  
While each subsketch depicting the ball would 
have a distinct glyph, the contents of those glyphs 
would all be the same entity. 

While some basic spatial properties of glyphs 
are computed (described below), we do not per-
form any detailed shape reasoning on the ink 
comprising a glyph, nor do we attempt to visually 
decompose it.  We call this blob semantics be-
cause it focuses on spatial relationships between 
glyphs rather than detailed reasoning about the 
visual structure of glyphs themselves.  While in-
appropriate for recognition based on detailed vis-
ual similarity of specific features, it is an excellent 
approximation for many kinds of spatial reason-
ing, whenever the focus is on configural relation-
ships between glyphs.   Given the crude level of 
most people’s artistic skills, they are unlikely to 
be extremely accurate at reproducing shapes. 

 A sketch consists of one or more subsketches.  
Subsketches represent a coherent aspect of what is 
being sketched, such as a state of a plan, or a more 
detailed depiction or distinct perspective on some-
thing. Logically, subsketches are Cyc-style mi-
crotheories, local descriptions that must be inter-
nally consistent.   In sKEA, every subsketch has 
an associated genre and viewpoint.  The genre 
specifies the overall type of the subsketch, and is 
one of AbstractSketch, PhysicalSketch, Geo-
spatialSketch, or DiscreteGraphSketch.  The 
viewpoint of a sketch describes the relationship 
between the visual frame of reference of the 
glyphs and the spatial frame of reference for the 
contents.  Examples of viewpoint include Look-
ingFromTopView, LookingFromSideView, Look-
ingFromBelowView, and LookingFromDirection-
View.  Combinations of genre and view determine 
how visual relationships between the ink of glyphs 
translate into spatial relationships between their 
contents.  For example,  given a PhysicalSketch 
and LookingFromSideView, the same deictic user-
centered vocabulary of spatial relationships 
(above, below, leftOf, rightOf) is assumed to be 
appropriate for both ink and contents.  On the 
other hand, for a GeospatialSketch and Looking-
FromTopView, the vocabulary eastOf, westOf, 
northOf, and southOf is used instead.  No infer-
ences about spatial relations between contents are 
sanctioned by spatial relations between glyphs in 
the AbstractSketch and DiscreteGraphSketch 
genres. 

Visually, the user sees either a single subsketch 
at a time, or the metalayer, a special view where 
each subsketch is viewed as a glyph. Relationships 
between subsketches can be entered by drawing 
labeled arrows between subsketch glyphs.   

4. Spatial processing of glyphs 
Spatial reasoning is carried out when a glyph is 
added, moved, or resized.  sKEA has two visual 
processors, which are threaded to enable computa-
tion while the user is thinking or sketching.  We 



describe each in turn, as a prelude to the detailed 
discussion of the spatial operations. 

The ink processor is responsible for computing 
basic spatial properties of glyphs and responding 
to queries concerning spatial relationships.  
Whenever a glyph is added or changed, basic spa-
tial properties are computed for it, including a 
bounding box, area, overall orientation and round-
ness.  Relative size (comparing bounding box area 
to other glyphs in the subsketch) is also computed, 
classifying a glyph as either tiny, small, medium, 
large, or huge, using a logarithmic scale to deter-
mine size category boundaries.  Qualitative topo-
logical relationships are automatically computed 
between the new glyph and other glyphs on its 
layer.  

The vector processor is responsible for main-
taining a set of Voronoi diagrams describing spa-
tial relationships between types of entities, and for 
the polygon operations used in position-finding 
and path-finding.  Any time a glyph is added or 
changed, once the ink processor has updated its 
properties the Voronoi diagram(s) it is associated 
with are updated appropriately.  When spatial con-
straints involving position-finding or path-finding 
need solving, the vector processor carries out the 
construction of obstacle and cost diagrams, the 
polygon operations needed to combine them, and 
the quad tree representation used in path-finding.  
(Position-finding and path-finding will not be dis-
cussed further in this paper.) 

Conclusions reached by these processors are 
added to the LTMS-based working memory of the 
reasoner for that sketch.  The justifications include 
a “last changed” time-stamped assumption for 
each glyph involved.  These assumptions are re-
tracted whenever glyphs are moved, resized or 
deleted, which causes the conclusions that depend 
on the previous visual properties of the glyph to 
be automatically retracted.   

5. Spatial relationships between 
glyphs 

Spatial relationships are the threads from which 
configural information is woven.  Therefore com-
puting them appropriately is a crucial problem for 
qualitative reasoning about sketches.  We discuss 
four kinds of spatial relationships in turn: Qualita-
tive topological relationships, Voronoi relation-
ships, positional relationships, and relationships 
based on local frames of reference.   

5.1 Qualitative topological relation-
ships 

We use the RCC8 algebra [3] to provide a basic 
set of qualitative relationships between glyphs.  
RCC8 is appropriate because it captures basic dis-
tinctions such as whether or not two glyphs are 
disjoint (DC), touching (EC), or inside one an-
other (TPP, NTPP).  These distinctions are used in 
several ways.  First, they are used in controlling 
when to compute other relationships: computing 

whether or not one entity is east of another is moot 
unless they are DC, for example.  Second, they 
suggest conceptual interpretations of relationships 
between the contents of the glyphs that they relate.  
For instance, an EC relationship between two 
glyphs which represent physical objects suggests 
that their contents might be touching.  Finally, 
domain-specific inference rules can use these rela-
tionships when needed, e.g., containment. 

Much of the work on RCC8 and other qualita-
tive topological algebras has focused on using 
transitivity for efficient inference.  For sketches 
the use of such tables is unnecessary, because we 
can simply calculate for each pair of glyphs what 
RCC8 relationship holds between them, based on 
the visual properties of their ink.  By default, we 
compute RCC8 relationships between a glyph and 
everything else on its subsketch when it is first 
added or changed.       

5.2 Voronoi Relationships 
Following [7], we use Voronoi diagrams to com-
pute a variety of spatial relationships.  Recall that, 
given a set of spatial entities (called sites, typi-
cally points), a Voronoi diagram consists of edges 
that are equidistant from a pair of points.  The 
Delauney triangulation is the dual of the Voronoi, 
consisting of a set of arcs between sites that have 
an edge between them in the Voronoi diagram.  As 
[7] describes, the Delauney triangulation provides 
a reasonable approximation to visual proximity, in 
that two sites are proximal exactly when there is 
an edge connecting them in the Delauney triangu-
lation.  Moreover, a number of approximations to 
spatial prepositions can be computed, including 
between and near.  Again, these are approxima-
tions: It is known that, psychologically, spatial 
prepositions depend on functional and conceptual 
information as well as spatial information [5,10].  
However, we have found them adequate for sketch 
maps. 

Voronoi computations are defined in terms of 
sites being points, but glyphs have significant spa-
tial extent.  Consequently, we add a glyph to a 
Voronoi diagram by using sample points along the 
outer contour of the glyph’s ink, each of which is 
treated as a site.  These sites are marked with the 
glyph they derived from.  While the Voronoi 
computations are done on the sampled sites, the 
results are expressed in terms of relationships be-
tween the glyphs.  For example, two glyphs are 
siteAdjacent exactly when there exists a sample 
site on each glyph that is connected by an edge in 
the sample-level Delauney triangulation.   

A key design feature in any system using Vo-
ronoi computations is what diagrams should be 
computed.  Given sKEA’s general-purpose nature, 
we currently use one Voronoi diagram per sub-
sketch, which can be viewed as capturing the vis-
ual proximity between the ink of its glyphs.  We 
suspect that in some cases multiple Voronoi dia-
grams will be needed for domain-specific reason-
ing (e.g., a Voronoi diagram consisting of only 



glyphs whose contents are physical entities, leav-
ing out glyphs that represent purely conceptual 
entities), but we have not needed this level of 
complexity in sKEA yet. 

5.3 Posit ional relationships 
Positional relationships provide qualitative posi-
tion and orientation information with respect to a 
global coordinate frame.  Positional relationships 
between the ink of glyphs are expressed in a 
viewer-centered coordinate system of 
above/below, left/right in the plane of the sketch.  
As noted earlier, positional relationships for a 
sketch depicting physical entities seen from the 
side are expressed in the same relational system.  
Positional relationships between geospatial con-
tents are expressed in terms of compass directions. 
For example, a playground can be south of a 
school and to the east of a street.     

A key design choice is what positional relation-
ships should be computed.  It might seem at first 
that, like RCC8 relationships, it could be worth 
computing positional relationships between every 
pair of RCC8-DC glyphs.  This turns out to be a 
terrible strategy.  The computational load for 
computing them is not horrible, but the resulting 
network of relationships leads to inaccurate 
matches when doing spatial analogies.  Essen-
tially, computing every possible positional rela-
tionship reduces the distinguishability of different 
aspects of a sketch, since what makes the spatial 
positioning of a glyph unique is more a function of 
its local neighborhood than its global properties in 
the sketch.  Thus the task of spatial analogies im-
poses a strong constraint on what should be com-
puted in terms of spatial relationships.  (The im-
portance of this constraint for cognitive modeling 
is discussed further below.)   

Computationally, positional relationships are 
used to provide concise summaries (if communi-
cating a situation) and to provide a framework for 
describing the layout of a situation (for instance 

when computing spatial analogies).   This framing 
function of positional relations suggests that they 
should respect the visual neighborhood structure 
of the sketch.  Consequently, we use the Voronoi 
diagram for a subsketch to determine what posi-
tional relations to compute.  The positional rela-
tion between a pair of glyphs is computed only 
when they are siteAdjacent in that subsketch’s 
Voronoi diagram.  (This is a necessary condition 
but not sufficient; the final condition relies on the 
grouping techniques described below so we post-
pone discussing it until then.)  This has the desired 
effect of constructing a local network of positional 
relations.   

How psychologically plausible is this design 
decision?  There are, to be sure, cases where peo-
ple construct on demand positional relations be-
tween entities that are quite distant.  For example, 
in communicating the position of a location on a 
map, ignoring local neighborhood structure and 
describing it in terms of relationships to highly 
salient landmarks makes a lot of sense.  Neverthe-
less, we suspect that the local scheme we have 
adopted reflects one of the default encoding tech-
niques that people use in visual understanding. 

6. Visual grouping 
People naturally group visual entities using a variety 
of principles [22,23].  Our current focus on blob se-
mantics places many of these techniques out of 
sKEA’s scope.  However, we can exploit the RCC8 
relationships sKEA computes to detect at least two 
kinds of natural visual structure.  The first, connected 
glyph groups, consist of a set of glyphs that are EC 
(i.e., edge connected) or PO (i.e., partially overlap-
ping) with each other.  We include PO because 
sketches can be inaccurate.  An example of a con-
nected glyph group is the head, ears, and body of the 
cat shown in Figure 1.  The second, contained glyph 
groups, consist of glyphs that are directly inside an-
other glyph (as indicated by TPPi and NTPPi – tan-
gential proper part and non-tangential proper part 
inverse relationships).  An example of a contained 
glyph group is the eyes, nose, and mouth within the 
head of the cat.  Both rely on the Gestalt principle of 
contiguity: Connected glyph groups consist of a set 
of things that are touching, whereas contained glyph 
groups consist of a set of things bounded by another.   
sKEA maintains two intermediate graphs to compute 
these glyph groups.  The connection graph for a sub-
sketch consists of a graph whose nodes are glyphs 
and whose arcs are between pairs of glyphs that are 
currently EC or PO.  The containment graph for a 
subsketch consists of a graph whose nodes are 
glyphs and whose arcs are between pairs of glyphs 
that are TPPi or NTPPi.  The statement for each node 
of what links connect it to other elements of the 
graph is justified in terms of a closed-world assump-
tion, in addition to the current ink assumptions for 
each of the glyphs involved.  These closed-world 
assumptions are tested every time a glyph is added, 

Figure 1: Example of a sketch with glyph 
groups 



moved, resized, or deleted from the subsketch, and 
the graphs are recomputed as necessary.  Recomput-
ing a subset of either graph causes the appropriate 
glyph group detection algorithm to be run on the 
changed subset. 

Given the connection and containment graphs, 
finding glyph groups is straightforward.  Every con-
nected subset of the connection graph forms a con-
nected glyph group.  Contained glyph groups are 
found by the following algorithm: 
1. For each glyph G such that 

|arcs(ContainmentGraph(G))| > 2, 
2. Initialize insiders = arcs(ContainmentGraph(G)) 
3. For each i ∈ insiders, let internal = 

arcs(ContainmentGraph(i)). 
3.1 Let insiders = insiders – internal 

4. If |insiders| > 1, then create new contained glyph 
group C with container(C,G) and insider(C, 
i) for each i in insiders. 

This algorithm ensures that only glyphs that are di-
rectly contained, as opposed to those nested inside 
yet some other container, are considered as part of a 
glyph group.  This reflects our assumption that such 
perceptual organizations are applied recursively, at 
multiple scales. 

Contained glyph groups are used to constrain the 
construction of positional relations.  Recall that posi-
tional relations are only computed between pairs of 
glyphs that are DC and are siteAdjacent in the 
Voronoi diagram.   One drawback to defining the 
Voronoi for glyphs in terms of the Voronoi deter-
mined by sample points along its contour is that 
there can be errors introduced by sampling, which 
produces “leaks” that can corrupt the neighborhood 
structure.  People’s inaccuracy when sketching can 
also cause errors in neighborhood structure, as de-
termined by simple numerical calculations.  For in-
stance, a glyph G1 that is PO to a glyph G2 that con-
tains a number of other glyphs can appear to be a 
neighbor to the glyphs inside G2. Visually, however, 
we would not consider them to be neighbors because 
G2 “blocks” them.  We avoid both kinds of errors by 
an additional filtering constraint: If a glyph is in a 
contained glyph group, positional relations can only 
be computed with other members of the same glyph 
group.  Thus we use the more robust qualitative 
topological computations to help avoid errors due to 
sampling and human inaccuracies. 

Another use of glyph groups is to provide a con-
text for relative size judgments.  Just as  the relative 
size of a glyph is characterized based on the other 
glyphs of the subsketch, additional relative size in-
formation is added based on the other glyphs in the 
group as the basis for comparison.  Also, articulation 
points are computed for connected glyph groups, i.e., 
any glyph whose removal would completely discon-

nect the glyph.  Visually such glyphs often represent 
a central piece that other things are connected to, 
e.g., the head of the cat which serves as an articula-
tion point for the connected glyph group consisting 
of its ears and whiskers and torso.   

7.  Visual analogies 
A key aspect of our approach is the use of hu-

man-like analogical processing for comparisons.  
Our goal is to ensure that, within the limitations of 
our representations, things which look alike to 
human users will look alike to the software.  This 
shared similarity constraint enables the software’s 
conclusions to be more trusted by users. We 
achieve a shared sense of similarity by using cog-
nitive simulations of human analogical processing, 
over representations that approximate human vis-
ual representations.  The cognitive simulation of 
analogical matching we use is the Structure-
Mapping Engine (SME) [9], which is backed by 
considerable psychological evidence [17].   There 
is evidence that the structural alignment processes 
SME models are operating in human visual proc-
essing [11], which makes using it a reasonable 
choice.   

The shared similarity constraint has proven to 
be a valuable constraint on representation and rea-
soning choices.   For many pairs of sketches, the 
question “what goes with what” has clear and un-
ambiguous answers for people viewing them.  
Suppose sKEA computes different correspon-
dences.  There are only three reasons this can oc-
cur (1) people are relying on visual properties that 
lie outside blob semantics, (2) sKEA’s match 
process is operating differently than what people 
are doing, or (3) sKEA’s representations differ in 
significant ways from the representations that 
people are using.  We can rule out the first expla-
nation by careful choice of sketches.  The second 
explanation is ruled out by the existence of inde-
pendent evidence for the use of structural align-
ment in high-level vision and SME’s accuracy in 
modeling such structural alignment processing.  
Thus the explanation must lie in the representa-
tions that sKEA is computing being different in 
some significant way from what people are using.  
Thus the shared similarity constraint provides a 
kind of X-ray for exploring visual structure.  We 
have used this technique to guide many of the 
representation and processing choices described in 
this paper.  Next we will use it to demonstrate that 
our neighborhood method of computing positional 
relationships and our glyph grouping techniques 
help sKEA to perceive visual similarity in a more 
human-like way. 

 



8. Experimental results 
We have tested our techniques on a corpus of 

over a dozen pairs sketches to date.  The contents 
of the sketches range from drawings of animals to 
maps to simple physical situations.  Our hypothe-
ses are that the neighborhood method of comput-
ing positional relations and our glyph grouping 
techniques are part of the high-level visual struc-
ture that people compute when looking at 
sketches, and consequently, they should improve 
spatial analogies when they are used.  While our 
experiments are still in progress, we have at least 
some initial evidence to support these hypotheses.  
Here we summarize our results so far. 

Positional relations can indeed help model psy-
chological phenomena.  In Figure 2, sKEA with-
out positional relations behaves much as human 

subjects do when given very short times to make 
similarity judgments: They select object matches.  
Figure 3 shows that when positional relations are 
introduced, sKEA, like human subjects, prefers 
correspondences that are consistent with a larger 
relational system.   

We have been running a variety of examples 
with different combinations of spatial relations to 
better understand what each contributes.  For ex-
ample, in Figure 4, grouping and positional rela-
tions are sufficient to cause the “end” objects to 
match (the person and the block).  Adding articu-
lation points enables the cord/plank comparison to 
be found, and adding in sizes for layers and con-
nected groups provides a complete match. 

In the case of glyph groups, the extra constraint 
they impose helps keep glyphs within the group 
matching to other glyphs within the group.  Con-
sider for example the cat head/person head 
comparison shown in Figure 5.  Without glyph 
groups, the qualitative descriptions computed 
purely on the basis of individual blobs cause a 
variety of unintuitive matches.  With glyph 
groups, most of the parts of the heads correspond 
as one would expect, as Figure 6 illustrates. 

We have also found that these techniques can 
sometimes interact in negative ways.  For exam-
ple, using positional relations with some sketch 
pairs can lead to mismatches, as Figure 7 illus-

trates.  Such negative competitions suggest that 
we have to either introduce yet more visual struc-
ture, or institute more fine-grained control over 
what gets computed when.  For example, one 
technique that seems appropriate both from a vis-
ual psychology perspective and from improving 
matches is to treat glyph groups as new individu-
als, over which properties such as orientation and 
positional relations are computed.   

9. Other Related work 
Qualitative spatial reasoning has often focused on 
mechanical systems (cf. [14,25]), but some have 

Figure 2: Similarity sans positional relations 

Figure 3: Similarity with positional relations 

Figure 6: Grouping improves visual analogy 

Figure 5: A poor analogy without grouping 

Figure 4: Multiple types of visual relationships 
can be needed for successful matching 



focused on navigation and locations (cf. [20]).  
Sketching research (e.g., [1,2,19]) tends to focus 
on tightly constrained domains, in order to keep 
recognition tractable.  Several researchers have 
explored visual analogies, but typically have used 
ad hoc special-purpose matching algorithms, 
rather than a general-purpose model of analogical 
matching (cf. [6]).  The hypothesis that qualitative 
spatial reasoning is involved in visual perception 
is also being explored by Cohn’s group (cf. [4]), 
whose focus is on extracting qualitative descrip-
tions of dynamic behaviors from camera data. 

10. Discussion and Future work 
We have argued that qualitative spatial representa-
tions serve as a bridge between perception and cog-
nition.  As evidence for this claim, we have shown 
that adding positional relationships computed on 
local (in the Voronoi sense) neighborhoods and two 
grouping techniques for glyphs (connected and con-
tained) often improve the similarity of pairs of 
sketches, bringing them more in line with human 
judgments of the same sketches.    

While these results are encouraging, much re-
search remains.  First, even under the simplifying 
assumption of blob semantics, we have not ex-
hausted the perceptual organizations that people 
appear to compute.  For example, some kinds of 
visual structure such as symmetry impose new 
frames of reference which are used to compute 
additional relationships.  Moreover, it appears 
likely that some visual structuring is imposed 
based on the content, not just the ink of a glyph – 
consider for example entities with clear orienta-
tions, e.g., houses.  We plan to explore a broader 
range of sketches to identify such possibilities, 
and follow-up experiments to hone our representa-
tions to capture them.  Second, we plan on ex-
perimenting with sketch retrieval (cf. [19]), both 
to explore the nature of human encoding of 
sketches into long-term memory and to enable 
sKEA to have a shared history of sketches with its 
users.  We plan to use our MAC/FAC model of 
similarity-based reminding [13] for this.  Finally, 
we will ultimately need to move beyond the as-
sumption of blob semantics, to tackle finer-
grained shape descriptions and automatically de-
compose glyphs accordingly.  This will take care-

ful study of the vision science literature to con-
strain the process as tightly as possible (cf. [11]). 
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