
Towards Construction Kits for Virtual World Artifacts

Kenneth D. Forbus
Institute for the Learning Sciences
1890 Maple Avenue
Evanston, IL, 60201, USA
Email: forbus@ils.nwu.edu

Fax: 847-491-5258

Abstract: Playing with physical construction kits (Legos, Erector sets, Fischer-Technik, etc.) is a good way
to build physical intuitions and spark interest in technical fields. Construction kits for virtual artifacts could
have similar benefits, with complementary advantages and disadvantages. Yet we currently do not have
construction kits for virtual analogs of physical artifacts that provide the same engagement as physical kits.
This essay examines why, and some of the technical barriers that must be overcome to create such systems.

Introduction
Construction kits, such as Erector sets, Legos, Fischer-Technik, and many others, provide children (and
adults) with many hours of enjoyment. Such kits are also valuable tools for learning and teaching.
Building, modifying, and interacting with their own creations enables students to experience, in a safe and
constrained environment, how a broad variety of physical things work. Construction kits in virtual worlds
could serve similar goals. Like physical construction kits, construction kits for virtual artifacts could
enable students to build, operate, and experiment with systems that operate according to complex physical
principles. Virtual artifacts can be cheaper, safer, and less time consuming to deal with than physical
artifacts: No one would suggest that students learn thermodynamics by building and testing jet aircraft
engines. On the other hand, while creating a “virtual blocks set” might be a good way to learn certain
programming ideas, a set of physical blocks is likely to be better for learning how to build elementary
structures. The educational power of construction kits for virtual artifacts is likely to be highest in
situations where the real thing is too dangerous, too expensive, too intricate, unobtainable, or at the wrong
time scale for the learner’s situation. Many of today’s scientists and engineers have fond memories of such
construction kits from their childhood; perhaps by creating the right kinds of construction kits for virtual
artifacts we can expand participation in science and engineering to a wider segment of the population.

Despite this potential, there are few successful construction kits for physically inspired1 virtual artifacts
available today. Moreover, none of them seem as successful as physical construction kits. This essay
examines why, and examines some of the technical barriers that must be overcome to make such kits more
compelling for learners.

Limitations of today’s virtual artifact construction kits
Roughly, there are four kinds of virtual artifact construction kits available today:

1. Game customization software. These programs enable players to customize the underlying simulation
engine of a computer game, changing the properties of the objects or characters, thresholds, or even
adding new types of entities. Examples are legion, some commercial (e.g., the SimCity 2000 Urban
Renewal Kit), but most being shareware created by enthusiasts (e.g., editors for Quake, Civilization,
etc.).

1 Arguably, any compiler or interpreter is a construction kit for a crucial kind of virtual artifact: software.
Our focus in this essay is on simulation environments inspired by physical world artifacts.

2

2. Simulation authoring environments. These environments enable students to create new simulations,
rather than just customizing a given simulation/game engine. Examples include Agentsheets [1] Stella
[2], and Star-Logo [3].

3. Special-purpose programming environments. These environments enable students to create new
instances of specific types of software, typically games. Examples include Klick ‘n Play [4], and the
(now unavailable) Pinball Construction Kit

4. Articulate Virtual Laboratories. These educational environments provide students with the ability to
design and analyze complex systems, focusing on the ability to provide explanations coaching [5,6].
Examples include CyclePad [7] and the Feedback Articulate Virtual Laboratory (FAVL) [8].

Based on our experience with these programs, and discussions with others about them, one can summarize
the limitations on the artifacts one can create with them as follows:

• Can’t play with it anywhere else. Artifacts built in game customization software work only in the
original gaming environment. Simulation authoring environments and special-purpose programming
environments are aimed more at producing self-contained systems rather than virtual artifacts that can
be integrated into larger worlds. Articulate virtual laboratories are intended to provide virtual artifacts
for integration into larger-scale simulations, e.g., power plants for SimCity, or engines for
aircraft/spacecraft simulations, but this capability has not been developed yet for reasons outlined
below.

• Can’t play with it in several ways. With Lincoln Logs one can build a garage for toy cars, and see
what happens when the toy cars run into it, or a dog runs into it, and so on. The range of behaviors
supported in today’s virtual artifacts is far narrower than for physical artifacts. In many ways this can
be an advantage, because it enables world designers to suppress unimportant or unenlightening details.
However, it means that alternate routes for engagement must be found to make the world compelling
for students.

• Can’t figure out what is going on. Even though simulations simplify, their generativity means that
students can easily create situations where they cannot interpret the results, given their limited
expertise. Providing explanations and assistance with the novel artifacts that construction kits can
create presents new challenges for the design of software coaches and tutors.

• Can’t figure out what to do. A blank workspace on screen can be just as intimidating as a blank piece
of paper, or a large pile of unfamiliar parts on the floor. Booklets and posters illustrating what kinds of
things one might build successfully within a given system, while not specifying step-by-step how to
build them, are a common trick used in physical construction kits. Organizing similar libraries of
artifacts, that highlight interesting possibilities while preserving the joy of discovery, is an interesting
challenge for designers.

The rest of this essay explores some technical issues involving virtual artifact construction kits. The first
set of issues, concerning exporting and embedding virtual artifacts, address the first two problems (i.e., how
to play with your artifact in different places and in different ways). The second set of issues, concerning
explanations and coaching, address the second two problems (i.e., how virtual worlds can be designed to
scaffold students in creating and exploring virtual artifacts). We end by discussing some work in progress
towards addressing these issues.

Exporting and embedding virtual artifacts
Here is a homework assignment that has never been seen in an engineering course:

Develop a propulsion system for a single-stage to orbit (SSTO) spacecraft, based on one of
the design families discussed in class. Airframe designs and other subsystem components
can be found at
 http://www.cs.nwu.edu/academics/courses/froshdesign/SSTO/warehouse.html

3

Turn in flight recorder data that demonstrates that your design can reach near-earth orbit and
safely return, the rationale for your design choices, and three suggestions about how your
design might be improved.

It is hard to find an engineering student who would not love to tackle this assignment -- assuming that they
had enough support software to manage the complexity, background materials to explore, and a virtual
testing environment where they could survive their failures. Alas, it will be some time before we can give
out such assignments on a regular basis. There are several reasons for this (some of which are deferred to
the section below). Articulate virtual laboratories can help students produce complex designs, including
rich tools for analyzing their behavior. But giving them virtual environments where they can try out
artifacts based on their designs is difficult. To maximize engagement, such environments much be rich,
ideally as rich as the best hard-wired, hand-coded computer gaming simulations. The test environment
must also support the use of imported simulations as components, so that the student’s artifact(s) can be
accommodated. Such environments need to be off-the-shelf, if the courseware development burden is to
be manageable.

There are simple cases that should yield pedagogical benefits while being tractable with today’s
technology. For example, suppose that there is a single specific type of component to be inserted. Also
suppose that the test environment uses a modular method for specifying that component (e.g., a declarative
specification of the component’s model, or a dynamic link library for the component simulation). Under
these assumptions, the articulate virtual laboratory only needs to produce a piece of software in the
appropriate format to “manufacture” the student’s design. Unfortunately, this solution only allows the
student to create and use a single component at a time. Suppose for instance that a student using CyclePad
wanted to design both a power plant for a city simulation as well as an engine for the car they will tour their
city in. A more flexible architecture that can support distributed simulations will be needed to provide the
same ability to populate an environment with multiple student artifacts that the physical world provides.

Maintaining rich, believable interactive behavior in a simulator composed of a federation of other
simulators is of course a difficult problem. The protocols and datastructures used for communication
between simulators impose the physics (and biology) of the virtual world they define. It is obvious that
richness can trade off against interactivity – a virtual world where the air avatars moved in was simulated
via computational fluid dynamics would run so slowly that few visitors would find it attractive. Another
tradeoff that seems important for virtual worlds for education is richness versus focus. The abstraction of
the virtual worlds enables us to select which aspects of the physical world we want to highlight, to
maximize potential learning. By simply leaving out those aspects of the world that are irrelevant, we
reduce potential distractions for the student (as well as simplify development and optimize runtime
resource usage). Unfortunately, enshrining decisions about focus in the design of the virtual world can
preclude exploring issues outside that focus (i.e., limit the ways to play with the artifact). For example, …
The strategy analogous to what is done in the physical world, i.e., operate in a rich world but filter what the
student attends to, would certainly be useful for detecting unanticipated interactions, but could be wasteful
of computational resources. It may be worth exploring architectures for virtual worlds that provide a lattice
of environments, organized by what aspects of the most complex world they include. Initial explorations
could be carried out in highly simplified environments chosen to stress particular aspects of a student’s
design. Richer environments would then be used to explore integration issues.

Explanation and coaching in virtual artifacts
No matter how immersive the environment one’s virtual artifact is embedded in, the ways one interacts
with it will not provide the same degree of engagement provided by the analogous actions on the equivalent
physical artifact. An engine burnout in a simulated SSTO craft will not crater the physical landscape nor
actually kill the pilot, at least in any responsibly designed virtual world. This reduced driver for
engagement is simply part of the price one pays for the cost and safety advantages of a virtual world. One
of the payoffs of virtual worlds is that they can be manipulated more easily than, and sometimes in ways
impossible in, the physical world. With the right technology, we could provide different drivers that lead
both to deeper engagement and to ways of engagement that better foster learning.

4

Consider again the scenario of (virtually) flying one’s own SSTO design into near-Earth orbit. If the craft
begins to shake uncontrollably, one could pause the simulation and ask why this is happening. An
articulate simulation will be able to help the student explain how the currently observed behavior results
from the interaction of the environment with their actions and design decisions. Rather than continuing a
doomed mission, the student can choose to go back to the (virtual) laboratory to improve their design.

Articulate simulations require two capabilities:
1. The ability to track dependencies. The simulation must be able to identify to some degree why

particular outcomes arise from particular inputs.
2. The ability to communicate with users in conceptually natural terms. The simulator must be able to

generate explanations of the behavior that combine numerical and quantitative information with the
kind of qualitative, conceptual information that people use to organize their thinking about the physical
world.

Simulations can be designed with varying degrees of articulateness, of course. At minimum, the
simulation should track how the physical phenomena it is reproducing is expressed in the simulation
behavior. Richer levels of articulation include deeper understandings of the physical phenomena, and how
it can tie into student’s goals.

Building complex simulations and tuning them for accuracy is already hard enough that the additional
demand for articulateness may seem unreasonable. Fortunately, there is a simulation technology that is
useful for a broad class of systems, which provides a high degree of articulation as a side effect of
automatically compiling simulators from general domain knowledge. Self-explanatory simulators [9, 10,
11] provide the speed and accuracy of traditional numerical state-space simulators, but also provide
qualitative explanations. Self-explanatory simulators are constructed automatically by a compiler that uses
techniques from qualitative physics to (a) identify the relevant physical phenomena in the situation, using
an off-the-shelf domain theory, (b) identify the relevant mathematical models, and (c) write the simulation
code based on these models. The reasoning the compiler performs for steps (a) and (b) is also used to
create an explanation system incorporated with the simulator. By keeping track of a small amount of
additional information during simulation, the simulator can explain the complete causal and mathematical
account that held at any time during a simulated behavior, without any run-time qualitative reasoning.

The explanations provided by self-explanatory simulators relate properties of the observable behavior to the
student’s assumptions and the laws of the phenomena being simulated. While important, there are
additional aspects of explanation that an expert human tutor could provide that could lead to deeper
learning. Creating software tutors and coaches that could provide these services might radically improve
the conceptual engagement with a student’s constructions. First, the ability to recognize higher-order
patterns of behavior (e.g., resonance modes of vibration) would enable coaches to point out qualitatively
interesting outcomes and changes in categories of behavior that occur in response to changes in a student’s
design. Second, the ability to understand the student’s goals for the artifact would enable coaching
software to help the student evaluate how well their design fit their goals, and suggest improvements.
Finally, the ability to link the specific representations for phenomena occurring in the simulated artifact to
rich information sources of background knowledge could enable students to delve more deeply when their
curiosity is aroused.

Discussion and work in progress
The challenge of creating construction kits for virtual artifacts that are as compelling as physical
construction kits in enchanting students, as well as helping them learn, is complex. Progress on a variety
of issues will help, including richer virtual worlds, federated simulation environments, and representation
formalisms for web-based information that make it machine-friendly. Our group is working to make
articulate virtual laboratories and self-explanatory simulators more useful, including

• Embeddable self-explanatory simulators. We are developing APIs for our Common Lisp, C++, and
Java-based self-explanatory simulators, so that others can embed them in their software systems.

5

• Self-explanatory simulators as the “manufacturing facility” of articulate virtual laboratories. We are
extending the thermodynamics domain theory so that we can compile self-explanatory simulators
based on the steady-state designs produced by students using CyclePad.

• Behavior recognizers for coaches. We are creating a library of routines for representing and
recognizing patterns of behavior in controlled systems, to be used by the coach for our feedback
articulate virtual laboratory (FAVL).

• Case-based coaching for design. Using analogical processing techniques [12], we are implementing
an email-based design coach that can make suggestions about a student’s design, based on interesting
examples supplied by domain experts. This coach relies on the automatic recognition of the intended
function of a student’s design [13]

We hope that these improvements will lead to a suite of software that will make learning science and
engineering radically more fun.

Acknowledgments
This research is supported by the Defense Advanced Research Projects Agency, under the Computer Aided
Education and Training Initiative (CAETI), the National Science Foundation under the Applications of
Advanced Technologies Program, and the Office of Naval Research. We thank Will Wright, Julie Baher,
and Joyce Ma for productive discussions.

References

1 http://www.cs.colorado.edu/homes/ambach/public_html/agentsheets_html/agentsheets_page.html
2 http://www.hps-inc.com/
3 http://starlogo.www.media.mit.edu/people/starlogo/
4 http://www.maxis.com/games/klik_n_play/
5 Forbus, K. and Whalley, P. (1994) Using qualitative physics to build articulate software for
thermodynamics education. Proceedings of AAAI-94, Seattle.
6 Forbus, K. Using qualitative physics to create articulate educational software. IEEE Expert, 12(3),
May/June 1997.
7 http://www.qrg.ils.nwu.edu/projects/NSF/Cyclepad/cyclepad.htm
8 http://www.qrg.ils.nwu.edu/projects/NSF/avl.htm
9 Forbus, K. and Falkenhainer, B. “Self-explanatory simulations: An integration of qualitative and
quantitative knowledge”, AAAI-90, August, 1990.
10 Forbus, K. and Falkenhainer, B. 1995. Scaling up Self-Explanatory Simulators: Polynomial-time
Compilation. Proceedings of IJCAI-95, Montreal, Canada.
11 http://www.qrg.ils.nwu.edu/software/software.htm
12 Forbus, K., Gentner, D., Everett, J. and Wu, M. 1997. Towards a computational model of evaluating
and using analogical inferences. Proceedings of CogSci97.
13 Everett, J. A Theory of Mapping from Structure to Function Applied to Engineering Thermodynamics.
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. Montreal, Quebec,
Canada, 1995.

