
[Everett and Forbus, 1996] Scaling up logic-based truth maintenance systems via fact garbage collection. In Proceedings of the 13th Na-
tional Conference on Artificial Intelligence, 1996.

Scaling up Logic-based Truth Maintenance Systems
via Fact Garbage Collection

John O. Everett and Kenneth D. Forbus
Qualitative Reasoning Group

The Institute for the Learning Sciences
Northwestern University

Evanston, IL 60201 USA
everett/forbus@ils.nwu.edu

Abstract
Truth maintenance systems provide caches of beliefs and
inferences that support explanations and search. Tradi-
tionally, the cost of using a TMS is monotonic growth in
the size of this cache. In some applications this cost is too
high; for example, intelligent learning environments may
require students to explore many alternatives, which leads
to unacceptable performance. This paper describes an al-
gorithm for fact garbage collection that retains the expla-
nation-generating capabilities of a TMS while eliminating
the increased storage overhead. We describe the applica-
tion context that motivated this work and the properties of
applications that benefit from this technique. We present
the algorithm, showing how to balance the tradeoff be-
tween maintaining a useful cache and reclaiming storage,
and analyze its complexity. We demonstrate that this algo-
rithm can eliminate monotonic storage growth, thus making
it more practical to field large-scale TMS-based systems.

1. Introduction
Over the past two decades basic research in Artificial I n-
telligence has resulted in an extraordinary wealth of en a-
bling technologies. How these technologies will scale to
address real-world problems has recently become an i m-
portant new frontier for AI research. Truth maintenance
systems (TMSs) [McAllester, 1978;1990], [Doyle, 1979],
[McDermott, 1991] in particular hold out the promise of
enabling the development of articulate and responsive
environments for supporting people in learning, evalua t-
ing information, and making complex decisions.

TMSs provide valuable explanatory services to aut o-
mated reasoners. However, this ability comes at the price
of a monotonic increase in the size of the dependency
network as new assumptions are added. We have found
that this memory demand characteristic can result in pe r-
formance degradation and even software crashes in fielded
applications, when the dependency network expands to fill
available memory. This was obviously possible in princ i-
ple, but we were (unpleasantly) surprised at how quickly it
could happen. In one fielded application (described b e-
low), the time taken to revise an assumption increased
from less than a second for the first change to almost 15
seconds by the thirtieth change, and the application
crashed on the forty-eighth. Such times are unacceptable
for an intelligent learning environment where rapid r e-

sponse to changing assumptions is essential. While TMSs
have been successfully applied to real problems
(particularly in diagnosis), we suspect that this problem is
preventing more widespread use of TMSs in large-scale
applications.

Our solution to this problem is to take the metaphor of a
TMS as a cache of inferences more seriously. Caches have
update strategies that remove information unlikely to be
useful in the future. TMSs already do this partially, by
retracting beliefs in response to retracted assumptions.
We make the stronger claim, that for many practical a p-
plications, it is critical to reduce the size of the depen d-
ency network itself in response to changing information.
The key idea is to identify a class of facts that are (a) u n-
likely to be needed again once retracted and (b) almost as
easy to rederive via running rules as they would via TMS
operations. Deleting such facts and the clauses involving
them will eliminate the storage cost associated with parts
of the dependency network that are likely to be irrelevant.
In essence, the TMS includes a fact garbage collector that
implements an update strategy for the TMS, viewed as a
cache for inferences.

Section 2 begins by describing the motivating applic a-
tion context. Section 3 describes the algorithm in detail.
Section 4 analyzes the algorithm’s complexity and illu s-
trates its performance empirically. Section 5 discusses
related work, and Section 6 summarizes our results and
points out avenues of future investigation.

2. The Problem
Intelligent learning environments (ILEs) are a class of
applications that make extensive use of the explanatory
capabilities of truth maintenance systems. The CyclePad
system [Forbus and Whalley, 1994] is an example of an
ILE for engineering thermodynamics. CyclePad can be
thought of as a conceptual CAD system, handling the m e-
chanics of solving equations so that students can focus on
the thermodynamic behavior of a design. CyclePad uti l-
izes qualitative physics to provide explanations that are
grounded in natural, qualitative terms. To provide these
services, CyclePad uses a customized version of the LTRE,
a forward-chaining, pattern-directed inference system d e-
scribed in [Forbus and de Kleer, 1993], which contains a
Logic-based truth maintenance system (LTMS)
[McAllester, 1978]. All derivations are stored in the

In Proceedings of the 13th National Conference on Artificial Intelligence, 1996 2

LTMS, and the dependency network so formed provides
the grist for a generative hypertext explanation system that
lets students explore the consequences of their assum p-
tions.

CyclePad is designed to shift the focus of the student
from solving equations to developing better intuitions
about thermodynamics. This requires that students e x-
plore the consequences of parametric changes to cycles
they have designed, often via sensitivity analyses. As a
consequence, the underlying LTRE may be called upon to
make dozens or even hundreds of changes to assumptions
involving numerical values during a typical student se s-
sion. Each of these changes can have extensive cons e-
quences; the analysis of a complex cycle might require
between 10 and 30 assumptions, which result in the der i-
vation of hundreds of additional numerical values.

The large number of assume/retract cycles and the p o-
tentially large number of consequences affected by each
cycle means that the cost of this operation dominates C y-
clePad’s performance. Observations of CyclePad in typ i-
cal conditions suggest that the amount of memory co n-
sumed rises linearly with the number of assume/retract
cycles, while the time taken for each cycle rises non-
linearly. There are two sources for the non-linear time
increase: (1) there are more clauses to process on each
iteration, because the dependency network has grown, and
(2) as storage space begins to run out, the Lisp garbage
collector and the virtual memory system require a much
larger fraction of the total time.

3. Fact Garbage Collection
Our solution to this problem is to designate certain classes
of facts as eligible for deletion when they become u n-
known. We preserve the integrity of the dependency ne t-
work for producing explanations of current beliefs at the
cost of greater reliance on the inference engine to rederive
facts. This solution makes sense when one can identify
classes of facts in which (1) it is unlikely that a particular
fact will be believed again once it is retracted and (2) the
cost of rederivation is small. Numerical assumptions in
CyclePad fit both of these criteria. Using a fact garbage
collector and designating statements of numerical values
as collectible results in a significant improvement in C y-
clePad’s performance. Empirically, we have assumed and
retracted 1000 consecutive values at an average time per
assumption/retraction cycle of 3.1 seconds. In contrast,
CyclePad with the conventional LTRE on the same exa m-
ple exhausted a 32MB memory space at 48 changes, at
which point the average retraction was requiring 46 se c-
onds.

The rest of this section describes the fact garbage co l-
lection algorithm, and a particular implementation of it,
GC-LTRE. We begin with a brief overview of some rel e-
vant LTMS and LTRE concepts, and then describe the fact
garbage collection algorithm in detail.

3.1 Overview of LTMS/LTRE
Like all TMSs, the LTMS consists of nodes and clauses,
where nodes correspond to facts and clauses enforce belief
relationships among those facts. The LTMS encodes
clauses in disjunctive normal form. Although this enco d-
ing enables clauses to operate in all directions (i.e., not
just from antecedent to consequent), any particular use of
them in a derivation does identify a set of antecedents and
a particular conclusion. Relationships between beliefs are
maintained via Boolean constraint propagation (BCP).

The LTRE is a forward-chaining, pattern-directed rule
system that uses the LTMS to maintain a database of facts
related to one another via logical dependencies. Facts are
assigned truth values, which may be true, false, or un-
known, according to the label of the corresponding L TMS
node. LTRE rules consist of a list of triggers and a body.
Each trigger consists of a truth condition and a pattern.
The body of a rule is executed for each combination of
facts which both match the trigger patterns and whose
truth values simultaneously satisfy the truth conditions of
the triggers.1 Once their trigger conditions are satisfied,
rules are exhaustively executed in an arbitrary order. The
LTMS caches partially executed rules on the node of the
trigger fact that failed to match its truth condition, and
signals the inference engine to re-queue these rules when
that node’s label changes appropriately.

Rule bodies interact with the LTMS by asserting new
facts and logical relations, which in turn cause the LTMS
to add corresponding nodes and clauses to its database.
Changes in a fact’s label are thus automatically updated by
the LTMS, rather than requiring repeated execution of
rules. Because of this, the conventional LTRE guarantees
that a rule will run exactly once on each set of facts to
which it has matched, to avoid the wasted work and dupl i-
cation of clauses that would result. One subtlety in ma k-
ing a fact garbage collector is ensuring that rules are re-
executed in certain circumstances described below.

3.2 The FACT-GC Algorithm
To garbage-collect facts we must (a) be able to identify
collectible facts, (b) ensure that all relevant structure is
removed, and (c) cache information for restoring clause
structure under certain circumstances (discussed below).
We address the identification of collectible facts by r e-
quiring applications to provide a predicate that
is true exactly when a fact is of a type that should be co l-
lected when it becomes unknown. (We discuss how to
define in Section 3.4.) Ensuring the deletion
of all relevant structure and the caching of clause info r-
mation only requires modifications of the L TMS opera-

1 The simultaneity requirement is a modification to the LTRE
presented in [Forbus & de Kleer, 1993]. As it results in a sub-
stantial performance improvement, all versions of the LTRE
used in experiments described in this paper have this modifica-
tion.

In Proceedings of the 13th National Conference on Artificial Intelligence, 1996 3

tions carried out when retracting an assumption. Here is
the new LTMS retraction algorithm:

1.
2.
3.
4.

The first three steps of are
identical to those of the LTRE described in [Forbus & de
Kleer, 1993], with the exception of retaining the queue
computed in for additional
processing. Fact garbage collection is only attempted after
seeking alternate support so that still-labeled TMS struc-
ture is not removed.

The algorithm simply finds collectible nodes
among those that were retracted and executes

 on them:

1. For each node in ,
If and
then

1. For each clause that participates in,
A.
B.

2. For each rule instance which includes in its
bound triggers,

3.
Step 1 of , the caching of clause infor-
mation, is somewhat subtle, so we describe it last. Step 2
ensures that every unexecuted rule instantiation formed in
part by triggering on is destroyed, both to avoid re-
introducing collected nodes and to save the effort of ex e-
cuting moot rules. Step 3 deletes the node itself.

Steps 2 and 3 require processing at both the TMS and
inference engine levels. In Step 2, partially-bound rules
must be removed from the inference engine and from the
TMS’s cache of partially-executed rules. This step has the
desirable side-effect of a substantial reduction in memory
usage, as the number of rules in a conventional CyclePad
LTRE can be 2,000 at startup, and rises monotonically to
five times that amount during a typical user session. In
Step 3, the node and its corresponding inference engine
fact are deleted from the TMS and inference engine r e-
spectively.

Step 1 caches information necessary to recreate the
clause about to be deleted. This is necessary because the
traditional contract between inference engine and TMS
requires that rules are only run once. Since clauses are the
product of rules, the deletion of a clause can cause perm a-
nent loss of information from the LTRE unless we take
steps to ensure that its creating rule runs again.

An example will clarify this point. Suppose we have
the simple database formed by the sequence of transa c-
tions:

⇒
where both and are collectible, and ⇒ is in-
stalled by a rule that was triggered by becoming true.
Retracting will cause to be retracted, and both will be
collected, along with the clause that linked them. This is
both desirable and safe; if is assumed again in the fu-
ture, the same rule will execute to create another clause,
and the system will again believe as a result. But sup-
pose that were not collectible. Retracting would cause

 to be retracted. If we collected , we would delete the
clause linking and . But since is still in the data-
base, the rule which triggered on will not be re-
executed, and a valid inference is permanently lost.

The subtlety inherent in this step arises from the e x-
pressiveness of LTRE rules. Consider the set of literals
which participate in the clauses that the execution of a
particular rule generates. Generally some subset of these
literals (e.g., the antecedents of an implication) will a p-
pear in the rule's triggers. Call these trigger literals. Our
GC algorithm generally requires all non-collectible literals
of a rule to be trigger literals, in order to ensure the proper
caching of a clause-restoring thunk.

A restoring thunk is needed exactly when a clause is
being deleted because its consequent is being gc’d and
when at least one of its antecedents is both unknown and
not gc-able:

1. Retrieve rule instance used to create
2. Find antecedent in such that ¬

and
3. If antecedent found then schedule to be exe-

cuted when receives the appropriate label.
The LTMS caches the environment of the rule instance in
force with each clause when it is constructed.

 moves this information from the
about-to-be-deleted clause to a cache associated with a
non-gc-able and unknown antecedent. In the above e x-
ample this antecedent would be the node corresponding to

. Should become believed at some future time, the
TMS will check this cache and signal the inference engine
to schedule any rules found there for execution, thus e n-
suring that the clause implying will be re-instantiated.
This is merely an extension of the services that the TMS
already provides in keeping track of partially executed
rules.

For this algorithm to work correctly, any non-collectible
literal which becomes unknown must be a trigger literal.
Otherwise, there is no appropriate place to cache the
thunk, and step 3 above will not execute. The exception to
this is when a rule involves no collectible literals, for this
reduces to the standard LTMS case.

There are also two cases in which it is possible that step
3 will not execute yet the LTRE will not permanently lose
structure: (a) when the application bypasses the rule e n-
gine and installs clauses directly, and (b) when all trigger
literals are either unknown and gc-able or known. In the
first case, the onus for restoring the clause rests with the

In Proceedings of the 13th National Conference on Artificial Intelligence, 1996 4

application. The only responsibility of the TMS in this
instance is to signal the application that a directly-
installed clause is to be deleted and return that clause to
the application. In the second case the clause will be r e-
placed by a new clause when new gc-able facts corr e-
sponding to the trigger literals are inserted into the dat a-
base because these new facts will match and cause the
execution of the rule.

3.3 Applicability to Other Types of TMSs
Although we have implemented the fact-gc algorithm in
an LTMS, all of our concepts and algorithms are directly
applicable to Justification-based TMSs (J TMS) [de Kleer
and Forbus, 1993] as well. It is less clear what the A TMS
equivalent of would be, given that the ATMS
does not retract assumptions. If one added the idea of
particular assumptions (or environments) becoming i r-
relevant, it might be desirable to adapt something like
these algorithms for weeding out irrelevant environments
and justifications.

3.4 How and When to Use Fact-GC
Fact garbage collection requires that the system designer
specify what classes of facts are subject to fact garbage
collection, by supplying the procedure . Candi-
dates for collectible kinds of facts are those which
• Constitute a sizable fraction of the LTMS database
• Are unlikely to become valid again once unknown
• Are cheap to rederive

The first constraint determines how much storage fact
garbage collection will save. The second constraint co n-
cerns the likelihood of needing to re-execute rules, and the
third constraint concerns the cost of re-executing rules.

In the case of CyclePad, the two classes of facts we
elected to garbage collect were
• <parameter> <value> which states that

the continuous parameter <parameter> has as its
(numerical) value <value>, a floating point number.

• <parameter> <value>
which states that <value> has been proposed by some
rule as being an appropriate value for <parameter>.

The statements represent conclu-
sions based on different possible methods for deriving a
value, and the statements represent the particular
proposal chosen. (Conflicting
statements represent a contradiction, since all methods
should lead to the same answer.)

These choices satisfy all three constraints:
1. and statements are

the overwhelming majority of the facts derived by C y-
clePad.

2. While users sometimes revisit assumptions, the whole
point of sensitivity analyses (a critical activity in
building intuition about how thermodynamic cycles
work) is to systematically vary input assumptions.

3. Given the off-line compilation of rules and equations
into code, the cost of re-executing rules is small.

We suspect that many TMS applications have similar
properties.

4. Analysis and Results
We begin by analyzing the complexity of the algorithm,
and then illustrate its performance empirically.

4.1 Algorithmic Analysis
We assume that the cost of is negligible. The
first three steps are the standard LTMS retraction algo-
rithm, which is worst-case linear in the number of nodes
and clauses in the database. The complexity of
is governed by the size of the queue

returns so we can guarantee that the
number of nodes and clauses examined is bounded by the
complexity of the normal retraction algorithm. If the o p-
erations carried out over each node and clause are of low
complexity, then the whole algorithm is worst-case linear.

The operations carried out over each node and clause
can be divided into two types, those operations that i n-
volve only the LTMS, and those operations that involve
both the inference engine and the LTMS. The operations
involving only the LTMS are trivial, involving at worst
linear operations in the size of the term list of a clause,
which is typically very small compared to the number of
clauses in the database (e.g., 5 versus 10,000) and so they
can be ignored. Those involving the inference-engine can
all be implemented as constant-time operations if enough
information is cached, or as linear operations (e.g., our
current code implements the deletion of rules as a single
pass through the entire set of nodes in the LTMS after the
rest of the retraction is complete) quite easily. Therefore
we conclude that the entire algorithm is linear in the size
of the LTMS dependency network.

A more interesting complexity measure is the change in
storage required as a function of the number of a s-
sume/retract cycles. We assume that the assumption being
made is new, in that its statement does not appear in the
TMS database until the assumption is made, and once it is
retracted, it is never reassumed. In a standard TMS, stor-
age requirements for the dependency network will grow
monotonically with the number of such cycles, with the
order of growth being linear if there are no interactions
between consequences of distinct assumptions. In a fact
GC’ing TMS, if the assumptions being made are collect i-
ble, there will in the best case be no growth in the size of
the dependency network, no matter how many a s-
sume/retract cycles occur. However, in many cases there
can still be growth, since a non-collectible fact can be i n-
troduced as a consequence of a collectible assumption, and
such facts are never destroyed. (This growth may a s-
sumed to be modest, else one should consider making the
non-collectible facts introduced collectible.) As the next
section demonstrates, it is possible to approach the best
case quite closely in a realistic application.

In Proceedings of the 13th National Conference on Artificial Intelligence, 1996 5

4.2 Empirical Results
We conducted our tests of the fact-gc algorithm on Pe n-
tium-based microcomputers equipped with 32MB of
RAM. Times reported, therefore, are typical of those a
user of the CyclePad system would experience.

Garbage collection provides little or no benefit to an
LTRE in which there are few known facts, so one would
expect such cases to reveal the additional cost of the GC
operations. This cost turns out to be insignificant; in a
CyclePad with the bare minimum of assumptions installed
to establish the structure of the problem, the assumption
and retraction of different numerical values requires 0.04
seconds at the outset from both the conventional and GC
LTREs. However, by the fortieth retraction the conve n-
tional LTRE requires 0.14 seconds per assum p-
tion/retraction cycle, because it has been steadily adding

nodes and clauses to the TMS, whereas the GC-LTRE still
requires 0.04 seconds, and its LTRE has remained co n-
stant in size.

Worst-case assumption/retraction behavior occurs in
CyclePad when the cycle is one assumption short of being
fully constrained. This is, however, precisely the situation
in which a user would find making and retracting a s-
sumptions most useful—when doing so provides lots of
information. The results we present below therefore focus
on this situation.

To generate the data presented in Table 1, we set up a
simple refrigerator cycle example in CyclePad and iterated
through 48 assume/retract cycles, incrementing the value
of a particular numerical assumption each time. We have
run the GC-LTRE for as many as 1000 iterations on se v-
eral different CyclePad examples with no fundamental
change in the results, but we cannot do more than 48 i t-

TABLE 1: Comparative Results of 48 Retract-Assume Cycles:
Conventional/GC-LTRE

Time (seconds) Facts
Trial Execution GC Total GC-able Total Clauses Rules

1 0.73 / 0.63 0.16 / 0.22 0.89 / 0.85 288 / 288 1,014 / 1,014 1,301 / 1,301 2,547 / 2,547
2 0.88 / 0.66 0.27 / 0.27 1.15 / 0.93 441 / 288 1,167 / 1,014 1,629 / 1,301 2,949 / 2,547
3 0.96 / 0.68 0.38 / 0.27 1.34 / 0.95 594 / 288 1,320 / 1,014 1,957 / 1,301 3,351 / 2,547
4 0.94 / 0.63 1.04 / 0.28 1.98 / 0.91 747 / 288 1,473 / 1,014 2,285 / 1,301 3,753 / 2,547
5 0.99 / 0.64 1.27 / 0.28 2.26 / 0.92 900 / 288 1,626 / 1,014 2,613 / 1,301 4,155 / 2,547
6 1.13 / 0.71 1.16 / 0.22 2.29 / 0.93 1,053 / 288 1,779 / 1,014 2,941 / 1,301 4,557 / 2,547
7 1.24 / 0.65 1.81 / 0.27 3.05 / 0.92 1,206 / 288 1,932 / 1,014 3,269 / 1,301 4,959 / 2,547
8 1.35 / 0.69 1.15 / 0.22 2.50 / 0.91 1,359 / 288 2,085 / 1,014 3,597 / 1,301 5,361 / 2,547
9 1.45 / 0.67 2.63 / 0.22 4.08 / 0.89 1,512 / 288 2,238 / 1,014 3,925 / 1,301 5,763 / 2,547

10 1.56 / 0.67 1.65 / 0.22 3.21 / 0.89 1,665 / 288 2,391 / 1,014 4,253 / 1,301 6,165 / 2,547
: : : : : : :

20 2.73 / 0.66 2.96 / 0.22 5.69 / 0.88 3,195 / 288 3,921 / 1,014 7,533 / 1,301 10,185 / 2,547
: : : : : : :

30 4.01 / 0.65 10.18 / 0.38 14.19 / 1.03 4,725 / 288 5,451 / 1,014 10,813 / 1,301 14,205 / 2,547
: : : : : : :

40 5.53 / 0.66 15.18 / 0.22 20.71 / 0.88 6,255 / 288 6,981 / 1,014 14,093 / 1,301 18,225 / 2,547
: : : : : : :

48(a) 11.12 / 0.65 35.13 / 0.44 46.25 / 1.09 7,479 / 288 8,205 / 1,014 16,717 / 1,301 21,441 / 2,547

(a) Conventional LTRE failed after this trial on a machine with 32 MB of RAM

Comparison of
Data Structures Generated

0

10,000

20,000

30,000

40,000

50,000

1 5 9 13 17 21 25 29 33 37 41 45

Trials

D
at

a
S

tru
ct

ur
es

Figure 1

Comparison of Total Runtimes

0

10

20

30

40

50

1 5 9 13 17 21 25 29 33 37 41 45

Trials

Ti
m

e
(s

ec
)

Figure 2

GC
LTRE

GC-LTRE

Conventional LTRE
Conventional LTRE

In Proceedings of the 13th National Conference on Artificial Intelligence, 1996 6

erations in the standard LTRE on the simple refrigerator
without causing CyclePad to crash due to an out-of-
memory condition.

Table 1 shows the data for both the conventional and
GC LTREs. Note that both execution and gc times for the
conventional LTRE rise steadily. By the time the conve n-
tional LTRE exhausts memory (at 48 assum p-
tion/retraction cycles in this particular experiment), data
structures have grown by an order of magnitude, and total
processing time by two orders of magnitude. Also note
that this growth in data structures is evenly distributed
among nodes, clauses, and rules.

In contrast we find virtually no growth in data stru c-
tures in the GC-LTRE, and total time remains virtually
constant. The graph in Figure 1 compares the growth in
total data structures. In Figure 2, note that the response
times of the conventional LTRE are distinctly non-linear.
These results indicate that one must be careful to consider
the ecological effects of an algorithm as well as its inhe r-
ent complexity, especially when attempting to scale-up a
system.

5. Related Work
We are not aware of any previous paper describing TMS
algorithms that reclaim nodes and clauses, nor do we
know of any unpublished systems that do so. This may
seem surprising at first, but recall that the permanence of
the cache provided by a TMS is considered to be one of its
defining features. We were only driven to this change by a
pressing problem that arose while trying to field software.
The term “fact garbage collector” was used by Stallman
and Sussman [1977] for one of the first truth-maintenance
systems, but their program, like all subsequent TMSs to
our knowledge, maintained nodes and clauses indefinitely.

Making TMSs more efficient was a cottage industry in
the late 1980s, with most of the attention focused on the
Assumption-based TMS (ATMS). The primary advantage
of the ATMS is its ability to rapidly switch among many
different contexts, but this comes at the cost of an exp o-
nential node-label updating process. To address this ine f-
ficiency, Dixon and de Kleer [1988] implemented the
ATMS algorithm in a massively parallel fashion. Forbus
and de Kleer [1988] introduced the implied-by strategy,
which enables the ATMS to explore infinite problem
spaces by ensuring that the inference engine maintains
firm control of the subspace the TMS is searching, al-
though it does not directly address the label-updating
problem. Dressler and Farquhar [1991] introduced a
means of enabling the inference engine to exercise both
local and global control over the consumers of an ATMS.
Collins and DeCoste [1991] introduced a modification to
the ATMS algorithm which compresses labels into single
assumptions, while Koff, Flann, and Dietterich [1988]
implemented a specialized version of the A TMS that effi-
ciently computes equivalence relations in multiple co n-
texts. None of these schemes attempted to reclaim sto r-
age.

LTMS-based research has focused on finding a practical
means of making BCP logically complete for some situ a-
tions. The issue here is that BCP on individual clauses
does not infer all possible implications because logical
formulas may require encoding as multiple clauses, and
there is no explicit connection among these clauses within
the conventional LTMS. Based on the work of Tison
[1969], de Kleer [1990, 1992] has developed an algorithm
for enabling BCP to operate at the formula rather than the
clause level by utilizing prime implicates. In practice we
have found that the relative efficiency of clausal BCP is
essential in large-scale systems, and we rely on the infe r-
ence engine to redress the incompleteness of the L TMS.

Of perhaps more interest in this context is the compar i-
son to OPS5 type production systems [e.g., Brownston et
al, 1985], which as a matter of course delete facts from
working memory. The marriage of such systems with
TMSs has not been particularly successful nor widespread.
Morgue and Chehire [1991] have combined such a rule
engine with an ATMS, and report several problems in
controlling the instantiation of facts which are subs e-
quently discovered to be inconsistent, provoking a costly
label-updating process.

In contrast to the forward-chaining, pattern-directed
inference system we employ, an OPS5 rule system does
not run all queued rules, but instead employs either weak
methods or domain-specific heuristics to select rules for
firing. We believe that, for our task domains, the add i-
tional demands that this imposes on the rule author ou t-
weighs the additional control afforded.

These reservations aside, OPS5 systems have been
shown to scale. Doorenbos has developed an OPS-5 pr o-
duction system that scales to encompass on the order of
100,000 rules [Doorenbos, 1993]. He shows that the Rete
and Treat algorithms do not scale well in the matching
phase. The solution presented is to augment the Rete a l-
gorithm’s shared structure efficiencies (which occur
mostly at the top of the beta memory network) with a
strategy of unlinking elements near the bottom of the tree
from the alpha memory when they contain no beta me m-
ory elements. In lieu of garbage collecting, this approach
emphasizes parsimony in space and allocation of proces s-
ing time.

6. Conclusion
Experience with fielding software in an AI application
forced us to go back and reexamine one of the fundame n-
tals of truth-maintenance systems, namely that depen d-
ency networks should grow monotonically over time. If
we take the often-used metaphor of TMS as an inference
cache seriously, it stands to reason that we must provide
an update strategy for that cache, eliminating elements of
it that are unlikely to be useful. The fact garbage collec-
tion algorithm presented here provides such a strategy. It
is successful enough that we have incorporated it into the
current release of CyclePad, which is in use at three un i-
versities on an experimental basis by engineering students.

In Proceedings of the 13th National Conference on Artificial Intelligence, 1996 7

To be beneficial, fact garbage collection requires that a
TMS application identify a class of facts that are co m-
monly made as assumptions, that comprise a substantial
fraction of the database, and are inexpensive to rederive.
We have demonstrated that fact garbage collection indeed
greatly benefits a specific application, an intelligent
learning environment. We believe that many TMS appli-
cations have similar characteristics.

On the other hand, there may be applications where fact
garbage collection provides minimal benefit or even harm.
An application which creates a large cache of nogoods,
each representing the result of considerable computation
and intended to be heavily used in future computations, is
unlikely to benefit from making the facts involved in such
nogoods collectible. Applications which switch back and
forth between a small number of sets of assumptions many
times may be better off with a traditional TMS—if the
available memory can support it. However, we suspect
that for many applications, and especially those where the
purpose of the TMS is to provide explanations rather than
to guide search, the fact garbage collection algorithms
provided in this paper can be very beneficial. This, ho w-
ever, is an empirical question.

We plan to try the GC-LTRE on other kinds of TMS-
based applications, such as coaches for ILEs and qualit a-
tive simulators. Another research group at Northwestern
University is currently using the LTRE as the basis for an
educational simulator of predator-prey relationships
[Smith, 1996].

Acknowledgments
This research was supported by the Computer Science
Division of the Office of Naval Research and the Applic a-
tions of Advanced Technologies Program of the National
Science Foundation. We thank the anonymous reviewers
for several helpful suggestions.

References
[Brownston et al 1985] L. Brownston, R. Farrell, E. Kant,
and N. Martin. Programming Expert Systems in OPS5;
An Introduction to Rule-Based Programming. Reading,
MA: Addison-Wesley.

[Collins and DeCoste, 1991] J.W. Collins and D.
DeCoste. CATMS: An ATMS Which Avoids Label Ex-
plosions. Proceedings of the 9th National Conference on
Artificial Intelligence, pp. 281-287.

[Dixon and de Kleer, 1988] M. Dixon and J. de Kleer.
Massively Parallel Assumption-based Truth Maintenance.
Proceedings of the 6th National Conference on Artificial
Intelligence, pp. 182-187.

[de Kleer, 1990] J. de Kleer. Exploiting Locality in a
TMS. Proceedings of the 8th National Conference on Ar-
tificial Intelligence, pp. 264-271.

[de Kleer, 1992] J. de Kleer. An Improved Incremental
Algorithm for Generating Prime Implicates. Proceedings
of the 10th National Conference on Artificial Intelligence,
pp. 780-785.

[Doorenbos, 1993] R.B. Doorenbos. Matching 100,000
Learned Rules. Proceedings of the 11th National Confer-
ence on Artificial Intelligence, pp. 290-296.

[Doyle, 1979] J. Doyle. A Truth Maintenance System.
Artificial Intelligence 12, pp. 231-272.

[Dressler and Farquhar, 1991] O. Dressler and A. Farq u-
har, Putting the Problem Solver Back in the Driver's Seat:
Contextual Control Over the ATMS, in Proceedings of the
1990 ECAI Workshop on Truth Maintenance, Springer
Verlag, 1991.

[Forbus and de Kleer, 1988] Proceedings of the 6th Na-
tional Conference on Artificial Intelligence, pp. 182-187.

[Forbus and de Kleer, 1993] K.D. Forbus and J. de Kleer .
Building Problem Solvers. MIT Press, Cambridge Massa-
chusetts.

[Forbus and Whalley, 1994] K.D. Forbus and P. Whalley.
Using Qualitative Physics to Build Articulate Software for
Thermodynamics Education . Proceedings of the 12th Na-
tional Conference on Artificial Intelligence, pp. 1175-
1182.

[Koff, Flann and Dietterich, 1988] C. Koff, N.S. Flann,
T.G. Dietterich. An Efficient ATMS for Equivalence R e-
lations. Proceedings of the 6th National Conference on
Artificial Intelligence, pp. 182-187.

[McAllester 1978] D.A. McAllester. A Three-Valued
Truth Maintenance System, S.B. thesis, Department of
Electrical Engineering, Cambridge: M.I.T.

[McAllester 1990] D.A. McAllester. Truth Maintenance.
Proceedings of the 8th National Conference on Artificial
Intelligence, pp. 1109-1116.

[McDermott, 1991] D. McDermott. A General Fram e-
work for Reason Maintenance. Artificial Intelligence 50
pp. 289-329.

[Morgue and Chehire, 1991] G. Morgue and T. Chehire.
Efficiency of Production Systems when Coupled with an
Assumption-based Truth Maintenance System. Proceed-
ings of the 9th National Conference on Artificial Intelli-
gence, pp. 268-274.

[Smith, 1996] B. K. Smith. Why Dissect a Frog When
You Can Simulate a Lion? Abstract, to appear in the
Proceedings of the 13th National Conference on Artificial
Intelligence.

[Stallman and Sussman, 1977] G.J. Sussman and R.M.
Stallman. Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit
Analysis, Artificial Intelligence 9 pp. 135-196.

[Tison, 1967] P. Tison. Generalized Consensus Theory
and Application to the Minimization of Boolean Fun c-
tions. IEEE Transactions on Electronic Computers 4
(August 1967) pp. 446-456.

