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Abstract

A general problem in qualitative physics is determining the consequences
of assumptions about the behavior of a system. If the space of behaviors is
represented by an envisionment, many such consequences can be represented
by pruning states from the envisionment. This paper provides a formal logzc
of occurrence which justifies the algorithms involved and provides a language
for relating specific histories to envisionments. The concepts and axioms are
general enough to be applicable to any system of qualitative physics. We further
propose the concept of transverse quantities as a general solution to qualitative
versions of Zeno’s paradox. The utility of these ideas is illustrated by a rational
reconstruction of the pruning algorithms used in FROB, a working Al program.
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1 Introduction

A goal of qualitative physics is to predict the behavior of physical systems. One
technique, enwvisioning, generates all possible behaviors of a system, relative to a
particular set of background assumptions. Informally, any specific behavior of a
system (a history) corresponds to a path through the system’s envisionment, and
vice versa. This correspondence is essential to using envisionments. For example,
interpreting measurements can be viewed as constructing a correspondence between a
(usually partial) history and an envisionment. However, the correspondence between
histories and envisionments has never been adequately formalized.

Formalizing this relationship has two benefits. First, it provides additional
grounding for theories of measurement interpretation and diagnosis (such as [7,8,4])
Second, we use the formalization to generalize existing domain-specific algorithms
for inferring the consequences of assumptions about behavior. The problem is this:
Any assumptions we make about a system’s behavior (or any additional information
we obtain concerning it) restricts its possible behavior in the future. For example, in
engineering design we might assume that a boiler’s rupture pressure is never reached
or that the water level inside it never goes above a particular height. Alternately,
if we are observing a moving object then we might be able to calculate its initial
energy, and thus place bounds on its location. In each of these cases a particular
subset of behavior is directly ruled out, but other behaviors are indirectly ruled out
as well. Understanding these indirect consequences is useful for determining if we
have imposed the correct constraints on our design or if our assumptions about an
observed system are correct. Figure 1 shows an example of these conclusions drawn
by an existing AI program, FROB [5], that reasons about moving point-masses in a 2D
world. The formalization presented here explicitly identifies the intuitions embodied
in these algorithms, making them available for general application.

The following section describes the logic of occurrence, introducing registrations
to represent the relationship between envisionments and histories. The axioms for in-
ferring additional consequences of behavioral assumptions are also presented. These
concepts are sufficiently general to apply to any system of qualitative physics. Next,
we describe a form of Zeno’s paradox which plagues qualitative physics, and propose
transverse quantities as a general, domain-independent solution. Section 4 illustrates
the utility of this logic by a rational reconstruction of FROB’s algorithms. Section 5
discusses further implications and plans for extensions.

2 Theory

We begin by introducing formal definitions for certain aspects of envisionments,
qualitative states, and histories. Next, we describe the concept of a registration, a
mapping between an envisionment and a history. We then describe the relationships
between occurrences of states, including axioms which can be used to derive the
consequences of assuming that some states must (or must not) occur.



Figure 1: An example of reasoning about occurrence

Part (a) shows a typical FROB scenario. Given a diagram, FROB computes a qualitative description
of free space. The user places a ball in the position shown and gives it an initial velocity. Part (b)
(left) shows FROB’s initial envisionment, based only on assuming that the ball is in SRO, and on the
right is the result of pruning the envisionment to reflect the consequences of various additional as-
sumptions. Each arrow and circle depicts a potential qualitative state of the ball (see [5] for details).
The additional assumptions are shown in FROB’s answers below. The only quantitative information
used was the initial position and velocity of the ball in using energy constraints to calculate the
maximum height the ball could reach. All other conclusions are based solely on qualitative infor-
mation. A query session with FROB has been hand-translated into an English “dialog” for clarity.

(a)

Why can’t the ball leave the diagram going to the right?

Because you assumed the ball would pass through S31 going left and up.
Why can’t the ball leave the diagram out the top?

Energy.

Why can’t the ball reach 8117

O i S i~

Because you assumed it could not pass through S41.




2.1 Preliminaries

Definition 1 (Envisionment) An envisionment & represents all possible qualita-
tive states a particular system may take on and all legal transitions between them.
The function States : £ — {states} maps from envisionments to the set of states
it contains.

For generality we assume as little as possible about the nature of qualitative
states. We assume that each qualitative state can be described by a finite amount of
information. Ergo, qualitative states may be tested for identity with finite compu-
tational effort!. Furthermore, we assume that all states in an envisionment are fully
defined with respect to whatever physics and domain model was used to generate
them. In other words, the descriptions of states do not contain unbound variables.
Aside from the ability to tell if two states are the same, for our present purposes the
only properties we need to talk about are the transitions between them.

Definition 2 (Transition functions) The functions Befores:s — {states},
Afters : s — {states} describe all transitions involving a state s. State s; € Befores(s)
exactly when the envisionment contains a transition from s; to s. State s; € Afters(s)
exactly when the envisionment contains a transition from s to s;.

Two special cases surface repeatedly when thinking about envisionments. The
first are states whose Befores is empty, what in automata theory are called “Garden
of Eden” states. The second are states whose Afters are empty, which represent
states the system remains in forever.

Definition 3 (Eden states) A state is Eden ezactly when Befores(S;) = {}.
Definition 4 (Final states) A state S; is Final ezactly when Afters(S;) = {}.

An envisionment compactly represents all possible histories (up to some resolu-
tion). If the envisionment is correct, every possible history of the system corresponds
to some path through the envisionment and vice versa. Paths are defined to be a
continuous chain of behaviors through the envisionment:

Definition 5 (Paths) A Path s a sequence of states s1,..., s, such that s;41 €
Afters(s;). Single states are also paths. The functions PathStates, PathStart, and
PathEnd map from a path to the set of qualitative states which comprise it, the first
state, and the final state, respectively. The term paths(&) denotes all the paths in
the envisionment.

That is all we need to say about envisionments. For histories we assume the
notational machinery in [9,6]. Specifically, we assume a history ¥ is composed of
episodes and events which are temporally extended and spatially bounded. Except

!This rules out elements of R as constituents of a qualitative state.



for determining state identity, we will ignore durations and hence usually just speak
of histories as being composed of episodes (we assume the function Episodes maps
from a history to the set of episodes which comprise it). Since our logic is designed
to specify the reasoning of a finite agent, we assume that histories are generated,
either by a physics or by observation, and are finite. The function Final Episode
maps from a history to the temporally last episode generated so far.

Unlike state descriptions in envisionments, we allow partial descriptions of episodes
to model reasoning with incomplete data. We need a way to say that an envision-
ment state (which is generic) is the description of a particular episode of a history.
To maintain generality we must take the matching operation as a primitive, and
introduce a primitive to express its results:

Definition 6 (ConsistentWith) ConsistentWith(e, s) is true whenever episode e
describes behavior of the system that is not inconsistent with state s.

If in some application more information can be gathered about the physical
system, then conclusions of ConsistentWith can be non-monotonic. We relegate
these control issues to programming, where they belong. We further define the set
of Plnterps, the possible interpretation of an episode e, to be the set of states s
such that ConsistentWith(e, s) is true. PInterps are central to the ATMI theory of
measurement interpretation; see [7,8] for details.

2.2 Registrations

Intuitively, a registration is a mapping which relates a history to an envisionment
by identifying episodes in the history with corresponding states in the envisionment.
The concept of a registration has been used informally in most work in qualitative
physics ([3,6,10,13], but has never been adequately formalized. To define registra-
tions we must first be able to say that an episode represents the occurrence of a
state:

Definition 7 (OccursAt) Given s € States(£), e € Episodes(¥), OccursAt(s,e)
1s true exactly when the state s represents what 1s happening during e.

Notice that OccursAt is stronger than ConsistentWith, since a partial specifi-
cation of e will allow it to match several states, even though only one state (or path
of states, see below) is what actually occurs. The next axiom enforces this intuition:

Axiom 1 (OccursAt Consistency)
Vs € States(&)Ve € Episodes(H)[OccursAt(s,e) = ConsistentWith(e, s)]
Collections of OccursAt statements are the building blocks of registrations.

Definition 8 (Registration) A registration R of a history ¥ with envisionment £
consists of a set of OccursAt statements (denoted Occurrences(R)).



The next axioms ensure that registrations correspond to paths through the en-
visionment. Allowing partially specified episodes means that a path of qualitative
states may occur within a given episode, since the properties which distinguish the
individual states may not be apparent from the history. Another complication arises
if we allow the history to have temporal gaps. In the simplest case where two episodes
meet, the accuracy condition is:

Axiom 2 (Neighbor accuracy)
Ve, ey € Episodes(¥) [Meets(er, e2) =
3p1,p2 € paths(€) s.t. [Vs; € PathStates(p1)[OccursAt(s;, e1) € Occurrences(R)]
AVs; € PathStates(pz)[OccursAt(s;, e2) € Occurrences(R)]
AVs; € States(€)[OccursAt(s;,e1) € Occurrences(R) = s; € PathStates(pi)]
AVs; € States(€)[OccursAt(s;, ez) € Occurrences(R) = s; € PathStates(pz)]
APathEnd(p,) € Befores(PathStart(pz))]

Accuracy across gaps simply means that there is some path through the envi-
sionment that serves as a “bridge” between the (possibly singleton) paths which
represent the episodes before and after the gap:

Axiom 3 (Gap accuracy)
Vei, ez € Episodes(¥) [-Jes € Episodes(})s.t. Between(es, e1,€2) =
3p1,p2 € paths(€) s.t. [Vs; € PathStates(p1)[OccursAt(s;, e1) € Occurrences(R)]
AVs; € PathStates(p2)|OccursAt(s;, e2) € Occurrences(R)]
AVs; € States(€)[OccursAt(s;,e1) € Occurrences(R) = s; € PathStates(p1)]
AVs; € States(€)[OccursAt(s;, ez) € Occurrences(R) = s; € PathStates(ps)]
A[3ps € paths(€)[PathEnd(p1) = PathStart(ps) A PathStart(ps) = PathEnd(ps)]]]

The concepts introduced up to this point suffice to provide the grounding for
theories of measurement interpretation and diagnosis which must relate histories to
envisionments. Next we examine how to use registrations to generate expectations
about the future.

2.3 Constraining the future

To an agent observing a system, a registration represents what has gone on so far.
Knowing what has happened constrains the future. Other constraints on the fu-
ture include quantitative information and assumptions, as mentioned above. Since
the envisionment already contains all states and transitions possible without these
assumptions, their only effect will be to exclude other states from occurring. Es-
sentially, the envisionment is “pruned” to reflect the fewer models possible with the
additional information.

First we need a bridge from what we know about the history to the future. The
function InstialStates maps from registrations to the set of envisionment states
which are the end of the known history.



Axiom 4 (Definition of InitialStates)

Vs € States(&) [s € InitialStates(R) & OccursAt(s, Final Episode(})) € Occurrences(R)]

We require at least one starting place, but allow more than one to allow reasoning
with partial information:

Axiom 5 (InitialStates Existence)

| Initial States(R)|> 1.

2.4 Expressing Occurrence assumptions

Now we must provide a vocabulary for expressing the consequences of external con-
straints on states in a form that can be used to constrain envisionments. Several
forms of external constraints have already been explored in qualitative physics, in-
cluding explicit user assumptions, consequences of additional data (e.g. numerical
simulations, energy constraints in [5]), and measurements [7,8]).

No matter what the source of data, a few simple distinctions suffice for our
purposes:

Axiom 6 (Status of states) Consider a registration R involving envisionment &.
For every state s € States(&), exactly one of the following is true:

Possible(s,R), Required(s,R), Ezcluded(s,R)

Intuitively, Possible(s, R) means that s represents a behavior which the system
may undergo during some episode of the history. Ezcluded(s, R) means that the
behavior represented by s will never occur in the history, and Required(s, R) means
that the behavior represented by s must occur.? We now add to each registration a
(possibly empty) set of Ezcluded and Required statements, called its ConstraintSet.
All that remains is to specify the consequences of these occurrence assumptions.

2.5 Consequences of Occurrence assumptions

A central fact of occurrence is that to be in some state, you either have to start there
or get there. We need to refine the notion of paths to include the notion of a legal
path:

Axiom 7 (Path legality) A path p is legal w.r.t. R when no state on it is ex-
cluded, 1. e.

Legal(p, R) & —Exzcluded(s1, R) A ... A —~Ezcluded(sy, R)

2Tt is easy to extend this logic to include Required and Ezcluded for transitions as well.



One state is attainable from another when there is a legal path of non-excluded
states between them.

Axiom 8 (Attainability)
AttainableFrom(sy, sg) &
dp € paths(&) s.t. [PathStart(p) = s APathEnd(p) = s
ALegal(p, R)]

Now we can express the intuition we were aiming at:

Axiom 9 (Reachability)
Vs € states(€) [[-3s; € InitialStates(R)s. t. Attainable From(s, s;)]
= Ezcluded(s, R)]

This axiom expresses what we mean, but a local version is often useful in algo-
rithms. A trivial consequence of this axiom is that a non-Eden state is excluded
unless at least one of its Befores is not excluded (otherwise, it cannot participate
in any legal non-singleton path, much less one from an initial state).

Axiom 10 (NoPast law)
Vs € R [[-Eden(s) A s > InitialStates(R)] =
[Vs; € Befores(s)[Ezcluded(s;, R)]] = Ezcluded(s, R)]

Importantly, if there are cycles in the envisionment — and there usually are —
then the local version is incomplete (see Section 4).

Attainability is a fairly natural concept. Just as important, but less intuitive,
is the idea that behaviors must have consistent continuations into the future. The
slipperiness of this idea comes from two sources. First, while all histories have an
initial state (or states) by declaration, some behaviors can potentially go on forever
(such as oscillations). This means we cannot simply use attainability of final states
as a means of pruning, for we would be ruling out legitimate behaviors. Second, we
must be careful to rule out qualitative versions of Zeno’s Paradox. This issue will be
detailed in the next section. Here we focus on the principle of good continuation.

Good continuation means that, unless the state is a final state, the behavior it
describes will end at some time. When it does, one of the behaviors in its Afters
must represent the behavior which occurs next (since £ is assumed to be complete).
If every state in Afters is already excluded, then that state cannot occur. The next
axiom captures this intuition that, if further episodes are possible, then one of those
possibilities must occur.

Axiom 11 (NoFuture law) Unless s is a final state,

[Vs; € Afters(s)Ezcluded(s, R)] = Ezcluded(s, R)



Consider an agent reasoning about a history ¥ being observed in real time. An
agent with finite capabilities will only know a finite portion of the object’s history. If
the agent had a total envisionment describing the possible behaviors (or constructed
the relevant parts on demand), using the ATMI theory to construct a registration
will provide an explanation of the history. Furthermore, any states which have been
excluded from the envisionment (or fragment thereof) by the axioms above cannot
ever appear in any extension of the current history. This gives the agent a set of
expectations: If any excluded behavior shows up in future observations, then either
the constraints imposed on the behavior, the observations, the domain model, or
some combination of these, are wrong.

Consider the projection £y of & to be the subset of states and transitions of
£ which are not excluded under ¥, (i.e., a transition is included only when the
states before and after are not excluded). Clearly | &y [<|€ |, since as ¥ grows there
are more constraints on £. The possibility of equality arises because some of the
constraints may be redundant.

3 The Qualitative Zeno’s Paradox

A problem lurks in the concept of continuation introduced above. The NoFuture law,
like Axiom 10, is local. It turns out that local laws laws are insufficient to capture
our intuitions about good continuation of action. Essentially, programs using the
logic described so far fall prey to a form of Zeno’s Paradox. Consider the situation
in Figure 2a. A ball is bouncing up and down, heading left. We assume the ball
never reaches the wall, and that the ball is perfectly elastic so that it doesn’t stop.
Any reasoning engine based on the logic of occurrence presented so far will think this
kind of behavior is perfectly reasonable, even though it violates common sense. The
problem is not peculiar to motion: Consider now Figure 2b. Suppose there is friction
between the block and the table. Then the amount of energy each cycle will be less,
and eventually it will stop®. But if we exclude the possiblity of the block stopping
from the envisionment, the NoFuture law will not detect a problem because each
state in the cycle has another element of the cycle in its Afters! Some oscillations
can last forever (at least ideally), so we cannot simply define the problem away. A
non-local technique must be used to avoid the Qualitative Zeno’s Paradox (hereafter
QZP).

To express the pruning conditions we must introduce an abstraction that will
cover both the leftward motion of the ball and the energy of the mass-spring combi-
nation:

Definition 9 (Transverse quantities) A transverse quantity T with respect to a
cycle C in £ s a property of the envisioned physical system such that:

5See [6] for how this can be proven in QP theory. Advocates of classical continuity in qualitative
physics (e.g. [2,13] will claim that the block indeed never stops. We prefer here to model the
common intuition, since classical continuity leads directly to Zeno’s paradox.



Figure 2: The Qualitative Zeno’s Paradox
Reasoning about occurrences is subject to a form of Zeno’s paradox. Consider these
scenarios:

(a) A perfectly elastic ball is bouncing up and down on a horizontal surface, heading
towards the wall on the left. Assume it cannot reach the wall.

(b) Friction is acting between the sliding block and the table. Assume that the
combination never stops.

In both cases the assumption at the end makes the behavior intuitively im-
plausible. Yet the logic presented so far will not see these as problematic.

(a)




1. T exists for every state in C.
2. T has a constant upper (alternately: lower) bound.

8. T is increasing (alternately: decreasing) over the cycle.

If a T can be identified for some cycle C, then we can avoid Zeno’s paradox by
forbidding C whenever all states corresponding to leaving the cycle (some of which
will represent T reaching its limit point) are excluded. Let Ezits(C) be the set of exit
states (i.e., the union of the Afters for all s € C minus the cycle states themselves).

Axiom 12 (Zeno) For all cycles C with a transverse quantity,

[Vs; € Ezits(C) Ezcluded(s;, R)]
= [Vs; € CEzcluded(s;, R)]

Careful application of this law avoids QZP. The next section illustrates.

4 Reconstructing FROB

Here we show how FROB’s ability to reason about occurrences, illustrated in Figure 1,
can be understood in terms of these ideas. Given the history ¥ known so far and a set
of constraints concerning a ball’s possible histories, FROB finds what possibilities are
ruled out by these assumptions. In FROB’s domain there are four types of behavioral
constraints:

Requirements: The user can assume certain states must occur, or a ball must be in
particular places, sometime in its future. As ¥ evolves the set of requirements
may shrink, since some new episode may satisfy a required state.

Exclusions: The user can assume that certain states must not occur, or that a
ball cannot ever be in particular places. Excluding a place causes all states
including that location to be excluded.

Elasticity: If a ball is assumed perfectly elastic then states corresponding to the
ball stopping are excluded. If the ball is assumed perfectly inelastic then
states corresponding to the ball flying away from a surface after a bounce are
excluded.

Energy: Given a quantitative position and velocity, FROB calculates the maximum
height it could reach. If a place is completely above this height, then all states
including that location are excluded.

10



Figure 3: FROB’s algorithm for reasoning about occurrences

Generate new attainable envisionment £ from Final Episode(¥).
For all states s, mark Posstble.

For each s directly excluded by constraints, mark Excluded.
Until no further states are pruned,

4.1 Use local pruning rules (Figure 4).

4.2 Prune unreachable states (Figure 5).

4.3 Prune QZP cycles.

4.4 If initial state is excluded, signal error.

[P JUR O

Figure 3 outlines the algorithm. In FROB’s domain envisioning is cheap, so a
new envisionment is computed which just contains those states attainable from the
end of the current ¥. Initially all states are assumed possible (step 2). The direct
consequences of the behavioral constraints are added, and then pruning algorithms
are applied repeatedly until no more states are excluded.

The algorithms used in pruning are much like those used for “garbage collection”
in computer languages which allow dynamic allocation of memory. Step 4.1 provides
local pruning via the NoFuture and NoPast laws to quickly get rid of states which
are obviously ruled out (see Figure 4). This step is essentially a “reference count”
garbage collector, using the number of possible befores and afters to determine
whether a state is to be excluded. Just as reference count algorithms fail to work
with circular storage structures, this step will fail to detect cycles which are excluded.
Step 4.2 applies reachability (axiom 9) to remove these cycles (see Figure 5). This
algorithm also keeps track of what required states are accessible through each state,
so that states which do not allow all required states to occur can be ruled out. Step
4.4. enforces axiom 5.

To apply the Zeno axiom, FROB identifies places where such oscillations might
occur along with the corresponding transverse quantity. If the oscillation is UP/DOWN
the transverse quantity is motion in the LEFT or RIGHT direction, and if the oscillation
is LEFT/RIGHT the transverse quantity is motion in the UP or DOWN direction. The
cycle in each place involving a transverse quantity* is examined in step 4.3 to see
if either (a) the ball may stop, (b) it can leave the place, or (c) if the transverse
quantity can reverse direction (i.e. bouncing around inside a sealed box. If any of
these are possible the cycle is okay, and otherwise it is pruned to avoid QZP.

“Not every cycle is subject to QZP — a perfectly elastic ball bouncing straight up and down on
a horizontal surface will bounce forever.

11



Figure 4: Using local laws to prune states
This algorithm uses the NoFuture and NoPast laws to prune states without good
continuations and those which cannot be reached from the initial state(s). Cycles
are handled seperately.

1. Let @ = {states(£)}.
2. Until Q empty,
2.1 s = Pop(Q)
2.2 If Ezcluded(s, R) V Final(s), ignore.
Otherwise, if every s; € Afters(s) is Ezcluded,
2.2.1. Mark s as Ezcluded.
2.2.2. For every s; € Befores(s),
If 5, € QV Excluded(s;, R) then ignore.
Otherwise, Push(s;, Q).
2.3 If Excluded(s,R) V s € InitialStates(R), ignore.
Otherwise, if every s; € Befores(s) is Ezcluded,
2.3.1. Mark s Ezcluded.
2.3.2. For every s; € Afters(s),
If 5, € QV Excluded(s;, R) then ignore.
Otherwise, Push(s;, Q).

12



Figure 5: Finding unreachable states and imposing requirements
This algorithm is complicated by the need to exclude those states which do not allow
every required states to be reached. Call the set of required states R. Each state s
will have an associated set R, representing the required states found before or after
it on some path, and a bit mark to indicate whether or not the state was reached
on the search (in case R = {}).

1. For each s € InitialStates(R), MarkRequired(s,{},{})-
2. For each s € states(£),
2.1 If mark(s) = 0 mark s Ezcluded.
2.2 If R; # R, mark Excluded,
with reason being R — R;.

Procedure MarkRequired(s, path,sofar)

1. If s Ezcluded, ignore.

2. mark(s) — 1

3.IfseR,
3.1 For every s; € path, R, + sU Ry,
3.2 sofar «— sUsofar.

4. R, +— sofar U R,

5. For every s; € Afters(s),
MarkRequired(s;, s U path, sofar)
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5 Discussion

This paper has presented a formal logic of occurrence, to capture the relationship
between histories and envisionments and to provide the ability to reason about the
consequences of behavioral assumptions. It should be applicable to any system of
qualitative physics, since it makes very few assumptions about the details of the
underlying physics.

While the specific algorithms described above require the ability to explicitly
construct envisionments, these ideas can be used without explicit envisionments.
One possibility is to generate a subset of the possible behaviors, using these laws to
guide backward chaining. Another is to prove general statements about classes of
physical behavior, in the style of argument used in classical thermodynamics. We
are exploring both styles of reasoning.

We are also applying these algorithms to envisionments involving Qualitative
Process theory. The implementation is taking the form of a post-processor to QPE, our
new QP implementation which generates total envisionments. The major unsolved
problem is automatically detecting transverse quantities. One avenue is to simply
declare them — energy, after all, is the typical choice. Another possibility is to extend
Weld’s aggregation technique [12] to extract transverse quantities as a side-effect of
the cycle summarization procedure.
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