
1 . Introduction

A Logical Framework for Solid Object Physics

Ernest Davis

We have developed a logical framework for qualitative reasoning about solid objects.
This framework specifies a first-order language L in which the physics of solid objects can be
described, and defines the semantics of L in terms of a formal model . We show that
interesting problems can be solved qualitatively by inference from plausible axioms expressed
in L .- The language L is more expressive and supports richer inferences than any previous
representation scheme in this domain.

In concentrating on the representation and formulation of . commonsense knowledge, and
postponing questions of algorithms or control structure, we follow Hayes (1978) . However,
we depart from Hayes' research program in some respects . We do not attempt to model
"naive" physics ; rather, we have made free use of Newtonian mechanics, including concepts
that have no commonsense analogue, such as total mechanical enery . Also, our proofs are
lengthy, violating Hayes' dictum that obvious facts should have short proofs .

The mathematics used here is not "qualitative" in the .restricted sense of representing
quantities purely in terms of order relationships and constants (Bobrow, 85] . Such a
representation is too weak to support the inferences needed in this domain .

We focus on variants of one particular problem : predicting what happens when one or
two small dice are dropped inside a large funnel with steep sides. Different forms of this
problem involve a rich, interconnected body of geometric and physical . know edge for their
solution .

2. Background
Several previous AI researchers, such as Fahlman (1974), de Kleer (1975), Bundy

(1978), Forbus (1979), Funt (1980), Novak (1981), and Shoham (1985) have studied the
qualitative physics of solid objects . Despite the significant contributions made by these
programs, they suffered from a common fundamental limitation ; they were all based almost
entirely on extrapolating differential behavior. To make a prediction, the program first
determined how each state of the system will tend to change, and then extrapolated these
changes to predict a continual trend of change up to the point that the structure of the system
changes . This extrapolation could be done qualitatively, as in FROB and NEWTON, or
symbolically, as in MECHO, or using point-by-point simulation, as in WHISPER . or by
numerical integration, as proposed by :McDermott and Bernecky (personal communication) .

However extrapolation is done, simulation is inadequate for robust prediction . In this
kind of analysis, each different set of boundary conditions is a different system state . Each
such state must be separately detected, categorized, and analyzed, and the system's progress
through these states must be recorded . Often, however, such a categorization is difficult and
pointless . If a die is dropped inside a funnel, it may pass through many different differential
states : free-fall ; colliding or in continuous contact with the top or bottom part of the funnel
on any of eight vertices, twelve sides, or six faces ; spinning, sliding, or rolling, up, down, or
around the funnel . Intuitively, it is much easier to predict that the die comes out the funnel
than to find all these intermediate states . Moreover, the sequence of states traversed
depends delicately on the exact shapes, sizes, and physical properties of the die and the
funnel, while the conclusion that the die comes out the bottom is robust under small
variations in these parameters . Therefore, if the problem is imprecisely specified, simulation



will involve an enormous tree of possibilities . Finally, the complexity of simulation goes up
rapidly with the number of interacting objects. If an automobile is driven over a cliff, the
number of possible intermediate states is enormous, but general predictions are nonetheless
possible .

The programs cited do use some techniques besides simulation . MECHO and
NEWTON use energy conservation to prune possible system behaviors . FROB predicts that
the system ends in a stable state . We believe that effective qualitative reasoning requires
more inferences like these, and less use of simulation .

A knowledge engineering approach would use rules that state the desired prediction,
such as "A small object released inside a steep, large-mouthed funnel will fall out the
bottom ." But rules of this kind are inadequate, and have rightly been rejected by previous
researchers. Any single such rule covers only a small class of problems ; covering large classes
of problems requires many separate disconnected rules .

3. Examples and Analysis
We propose to analyze the "die in the funnel" as follows: (i) Due to the funnel's

topology, if the die goes from inside it to outside it, the die must exit either the top or the
bottom . (ii) Since the die is dropped from rest inside the funnel, it cannot have the energy to
exit the top . (iii) There is no stable resting point for the die inside the funnel, since it is
smaller than the funnel's mouth, and the funnel's sides are steep . (iv) The die cannot stay
forever moving within the funnel, for its kinetic energy will be dissipated . Therefore, the die
exits the bottom of the funnel . We claim that most cases where common sense predicts that
the die will come out the bottom, can be analysed in this way . Different problems will vary
in the justifications of the substeps . The full paper shows how justifications are constructed
and combined for many different kinds of geometrical and physical specifications .

Related problems will share parts of the analysis . For instance, in predicting that a die
in a small-necked funnel will come to rest at the top of the neck, we may use the identical
arguments (i) that the die must either exit the top, exit the bottom, or stay inside ; (ii) that it
cannot exit the top ; and (iv) that, it cannot stay inside in a perpetual state of motion . The
argument (iii) that it cannot rest stably inside the funnel must be modified to an argument
that it can only rest stably at the top of the neck of the funnel ; and the additional argument
must be made that it cannot exit the bottom of the funnel, since the orifice is too small.

This analysis avoids both problems discussed above. We need not determine the states
of motion of the die inside the funnel ; we need only determine that the die cannot rest stably
inside . Different examples are analyzed in similar ways from general principles .

We have studied in detail how an analysis like this can be formulated for various
geometrical specifications . We begin with a simple case . The die is a sphere . The funnel is
the surface of revolution about a vertical axis of a planar figure with a convex inner side . The
radius of the die is less than the radius of revolution of the funnel . The steps of the argument
are easily filled in . (i) The top and bottom of the funnel are the only orifices of free space
connecting the inside of the funnel with its outside. Therefore, if the die is to go from inside
to outside, it must go through the top or the bottom . (ii) Since the die is spherical, its center
of mass is in its interior . Since the top of the funnel is horizontal, and directed upward, if the
die were to exit it, each point in the interior of the die would be above the top of the funnel
at some time . In particular, the center of mass would be above the top at some time . But the
die started out from rest below the top of the funnel, and there is no source of additional
energy for the die . Therefore, the die cannot come out the top. (iii) By a geometrical
argument, the die can only abut the inside of the funnel in a single point. A uniform sphere
can be stably supported at a single point only if the supporting surface is horizontal there.
The inner surface of the funnel is nowhere horizontal . Hence there is no resting place for the
die inside the funnel .



We now consider how this argument can be generalized and modified . (Further
modifications are discussed in [Davis,86] .) Part (i), that the die must either exit the top, exit
the bottom, or stay inside, is valid as long as the funnel is a tube with only two orifices . We
can weaken the condition further, and require only that all orifices other than the top or the
bottom be too small to let the die through . Determining whether a die can go through a hole
is an easy geometric calculation for various special cases.

Part (ii), the argument from energy conservation that the die cannot come out the top,
depends on the die being convex and on the center of mass of the die starting out below any
part of the top.

	

Convexity is only used to establish that the center of mass of the object is in
. its interior . If this can be done otherwise - for example, by exact calculation, or by
establishing that the object shape is a small perturbation of a convex shape, - that is
sufficient .

A still weaker sufficient condition is that the ringedfilling-in of the die contains the
center of mass . The ringed-filling-in of a three-dimensional shape S is defined as follows :
Consider any planar cross section of S . Let C be any simple closed curve that lies entirely in
this cross section . Let p be a point in the plane in the inside of C . Then p is in the ringed-
filling-in of S . It can easily be shown that, if the center of mass of an object is in its ringed-
filling-in, and the object goes through a planar surface, then the center of mass also goes
through the surface . Thus we can establish step (ii) for such shapes as a torus, a wiffle ball,
or a cratered convex shape .

Part (iii), the argument that the die cannot rest inside the funnel, depended in our first
example on the strong assertions that the die was a uniform sphere and that it could contact
the funnel only in a single point . We can easily generalize to nearly uniform, nearly spherical
dice . The following formula holds: let A be the slope of the support; let W be the coefficient
of friction ; let (~ be the maximum angle between the line from the center of mass to a point
on the surface and the normal to the surface at that point The ball can stand still only if
w? tan(@) and 4)>O . Similarly, if one die is a spherical shell containing another die, they rest
stably only if the joint center of mass of the two dice is located directly above the contact
point of the outer die with its support, and the inner die rests stably inside the outer die.

If the die can contact the funnel in several points with different surface normals, the
following rule can be used : Let A be in contact with B . Let @ be the minimum slope of the
surface of B at a contact point. Consider the horizontal components of the surface normals of
B at the contact points, and assume that there is some direction which lies within some small
angle 40 of all these horizontal components . Let the coefficient of friction be W . If
W<cos(otan@, then A will slide down B .

Combining all the different ways in which the 'results (i), (ii), and (iii) may be
established, and all the ways in which their geometrical preconditions may be satisfied, gives
a rich, interconnected body of results, all with the conclusion, "The die falls out the bottom
of the funnel ."

4 . The Block on the Table
The behavior of the block on the table can be analyzed in a similar way . After the block

is released, it will fall to the table, tipple over a bit, and then move along the table in some
combination of sliding, bouncing, and rolling . It can be estimated how long it will take for
the friction involved in sliding and the inelasticity involved in bouncing to consume all the
energy gained in the fall and the tipple, and how far the block can travel during that time . A
similar estimation can be made for rolling in some cases . If the surface of the table is
uniform, and if these motions will not bring the block off the edge of the table, then it can be
predicted that the block will attain a stable state of rest within the estimated time, and within
the estimated distance of the point of release .



5. The Underlying Knowledge
The arguments in sections 3 and 4 require a rich geometric vocabulary, including

topological properties, metric properties, differential properties, special shapes, and
convexity . We must also be able to quantify in various ways over irregularities ; for example,
to say that the funnel has no holes large enough to let the die through . Any adequate
geometric language will be strong enough that these, or most of these, can be either
expressed directly or inferred .

Our temporal logic follows [McDermott, 821 . A scene is an instantaneous snapshot of
the universe . In our domain, a scene specifies the positions and velocities of all objects . A
chronicle is a function from the time line to scenes . Chronicles include all continuous motion
of objects through space, not just those that are physically possible .

The "frame" or "persistence" problem of determining what remains true over time
([McCarthy and Hayes, 691 [McDermott, 821) does not arise. There are two classes of
predicates in the domain . The first class includes predicates that depend on position and
velocity of objects . These are not assumed to remain constant over any interval unless proven
to do so . The second class includes structural predicates, depending only on the shapes and
material properties of the objects. These are always constant over the problem, and so are
defined atemporally. (The closed world assumption is made explicit through the predicate
"isolated(OO,C)", which asserts that, during C, no mobile object in the set of objects 00
ever comes into contact with any object outside 00 .)

The physical deduction needed include determining whether a set of objects can attain a
stable scene while certain geometric conditions hold ; finding constraints on the location of the
center of mass of an object or a set of objects [Bundy and Byrd, 831 ; predicting a collision ;
predicting the result of a _collision ; determining whether a chronicle violates a conservation
law ; and characterizing the -open paths available to an object .

6 . Ontology
The ontology for our language requires a number of sorts of individuals.
Quantities . Instants of time, quantities of mass, quantities of energy .

modelled as real numbers .
Points and vectors . These are modelled as elements of R3 .

Point sets . Subsets of R 3.

Vector fields . These are functions from some point sets to the space of vectors .
example, the surface normals to an object in a fixed position, directed outward, form a vector
field.

Rigid mappings . Mappings from R 3 to R3 which preserve distance and handedness .
These specify a change in position .

General velocities . The derivative of a rigid mapping . A general velocity is
composition of a linear velocity and an angular velocity about a specified axis .

Objects . These are primitive entities . The shape of an object is the point
occupies in some particular standard position . This is
normal .

Scenes . A scene is a snapshot of the
object to a pair of a rigid mapping, giving
The place of an object in a scene is image
with the object in the scene .

These are

For

the

set that it
assumed to be connected, closed, and

world . Formally, it is a function which maps an
the position of the object, and a general velocity .
of the object shape under the mapping associated

Pseudo-objects . These are point sets that "move around" with objects, like the hole of a
doughnut, the opening of a bottle, or the center of mass of any object . Formally, a pseudo-
object is a pair of a source object and a point set, designating the point set occupied by the
pseudo-object when the object is in standard position . The place of a pseudo-object in a scene



is the image of its shape under the mapping associated with its source object in the scene .
Chronicles . A chronicle is a function from an interval of time to scenes .
All chronicles are subject to the following constraints:

i .

	

All scenes in the range of the chronicle have the same objects in their domain .
ii .

	

Objects move continuously in space.
iii .

	

Object velocities are continuous from previous times .
iv .

	

The velocity of an object is the derivative of its position .
Chronicles do not have to be physically possible . We use the predicate "phys-poss(C)"

to distinguish chronicles that obey the laws of physics.

7. Axioms for Physical Reasoning
Based on the above ontology, we have developed a first-order language L and a set of

axioms adequate to solve the first "die in the funnel" example . The complete analysis is
rather lengthy ; the language uses about ninety non-logical terms, not including the standard
arithmetic operators, and the analysis involves about 140 axioms . Most (over two thirds) of
the terms and axioms are purely geometrical ; the rest relate to motion and to physics. We
give below three sample axioms as illustrations .

Geometric Axiom : Smoothness and the value of the surface normal are local properties
of the boundary . Specifically, if two bodies share part of their boundary, then, at any interior
point of the overlap, one is smooth, iff the other is smooth, and their surface normals are
either parallel or anti-parallel .

8. Conclusions

[ body(XX1) n body(XX2) n XXA C boundary(XX1)- n boundary(XX2) n
X E interior(XXA) n smooth(XX1,X) ]

( smooth(XX2,X) n
[surf-norm(XX1 X) = surf-norm(XX2,X) v surf-norm(XX1,X) = -surf-norm(XX2,X)

Axiom of Motion : If an object O has zero velocity in every scene of a chronicle C, then
it stays in the same place throughout C .

[ V S S E scenes(C) => velocity(O,S) = 0 J =:>
( VS1,S2 SlEscenes(C) n S2Escenes(C) => mapping(S1,0) = mapping(S2,0) ] ]

Physics axiom : The energy of an isolated set of objects 00 never increases in a
physically possible chronicle C .

[ phys-poss(C) n isolated(OO,C) n T1<T2 ]=>
energy(00,scene(C,T1)) >_ energy(OO,sceae(C,T2))

The strengths and limitations of this theory are evident . On the positive side : Using
pure first-order logic, we give a formal analysis of a class of problems beyond the scope of
any previous Al theory . Our analysis suggests that a qualitative physics for solid objects
should include the following features, among others :

A rich geometrical theory, including topological, metric, and differential descriptors,
and special shapes .
An account of the behavior of physical systems over extended intervals of time . Such an
account should incorporate constraints placed by one object on another; conservation
laws, especially conservation of energy ; the principle that a physical system tends
towards a stable resting point ; and an account of the net effects of collisions over
extended time periods .
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