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Assembling a device

We proposed in [5] a new way of reasoning on a device, we
called assembling a device . We sum up here what is the nature of this
method .

The qualitative resolution rule

The qualitative resolution rule states under which conditions
it is correct to combine two confluences and produce a more global

repeated variable .

The resolution rule can be understood as a "qualitative
gaussian elimination" :

A variable may be eliminated by adding or subtracting two
confluences, provided that no other variable is eliminated at the
same time .

An examQle

Consider the well-known pressure regulator (Fig . 1) .

set of global

We call such a set of relations an assemblage .

IdP2] [dPi]+[dP5]

	

(Al)

The
relations :

resolution rule provides the following

IdP2] [dP1]+IdP5] (
[dP4] [dPi]+[dP5]
[dQ] [dPi]- [dp5] (A3 )
[dA] -[dP,]-[dPs] (A4)

[dP3] [dPl]+?[dP5]

one :

Qualitative resolution rule : Let x + El a and -x + EZ b be two
confluences, where x is a variable and E1 and E2 have no variable
with opposite coefficients in common. Then E3 a + b is a valid
confluence, where E3 is the same expression as Ej + E2, but with no



For example :

[dP l ]=0, [dP5 ]=0
[dP l ]-+, [dP5 ]=+

[dP~+[CKA]--~:0 [5]

Splitting simulation int o two steps

the

Y

[dP1]- d"L[dQ]~o (1)U [
d P~}jdP~-[dQ]2M 0 [3)
A

1

	

[dP,"dP,F[dQ1+[dA]~ 0

	

[dP4-[d1V-[dQ]::--0 (4)

Fig . 1 : The pressure regulator

The meaning of t he_ qualitative resolution rule

Initial confluences describe the links between the physical
variables involved in the elementary components . The inferred
confluences describe the consequences of connecting these components :
they are specific properties of the composite device . The qualitative
resolution rule discovers global relations starting from local ones .

But the resolution rule has another advantage : performing
simulation is straightforward as soon as an assemblage is known and
requires using only the two basic propagation rules :

PRl : If the value of a variable x is known, then replace x by its
value in all the confluences mentioning x.
PR2 : If an equation mentions exactly one variable, then deduce its
value .

[dP2]=[dp3]=[dea]=[dQ]=+, [dA]=-
[dP2]=[dP4]=+, [dA]=-
[dP3 ] and [dQ] remain ambiguous

What has been written suggests to split simulation into two
steps :

- in the first step the resolution rule assembles the device,
i .e . discovers global relations directly linking internal variables
to the selected ones . We mention that we have proved a completeness
result concerning this step .

- in the second step, the values of the reference variables are
propagated into these global laws using only the basic propagation
rules .

Splitting simulation into these two steps is fundamental . The
first step is N-P complete, but it is done once and for all . It can

For example, the first
resolution rule in four steps :

relation (Al) is deduced using

[dP2] - [dp3l-[dQ]-[dp4l - 0 (6)-(2)-(5)
[dP2]-[dP4]-[dQ] = 0 (7)-(6)+(3)
[dP2]-[dP5]-[dQ] - 0 (8)=(7)+(4)
[dPi] - [dp2l+[dp5l 0 (9)=(1)-(8)



be viewed as compiling the description of the device . The second step
is performed each time one wants to predict the behavior of the
device for some particular values of the reference variables . But it
is known to be polynomial . The initial set of confluences is not re-
interpreted . The second step can be coded as a very simple and
efficient program .

We may eventually expect to perform on-line simulations or
observations on large-scale systems having multiple input variables .

ControllinA the resolution rule

Consolidation

The joining rule

Unfortunately, the number of potential applications of the
resolution rule (probably) exponentially increases as it is being
fired . For example, the resolution rule can be fired in hundreds of
different ways in the pressure regulator example . This behavior is to
be related to the N-P completeness of the problem consisting of
solving confluences . However, as shown in the examples, discovering
an assemblage requires few steps . The resolution rule needs to be
controlled . Some heuristic rules must choose between its potential
applications .

Consider a component-based model of a device, and let C1, C2
and Cg be three mutually interacting components . If we denote C12 the
composed component C12=(Cl,C2), the interactions between Cl and C2
define how C12 works . Indeed, they are of no interest to Cg : from
Cg's point of view, the collection made up of C1 and C2 is equivalent
to C12 . C3 cannot distinguish C1 and C2 from each other . Hence, it
should be possible to draw a model for C12 from models for C1 and C2
such that they are equivalent for C3 . Joining local models together
in order to provide more global ones is what has been called
consolidation [7] . The trouble lays on giving concrete expression to
this idea . In particular, some rules for choosing at any inference
step the couple of components to be consolidated must be stated : it
certainly cannot be randomly selected .

The resolution rule under the microscope

In a confluence-based model, C1 and C2 interact through their
common variables . Hence, building a model for C12 means providing
confluences by eliminating them . Consider a variable involved in both
C1 and C2 models . If it is involved in some other component model as
well, then it must appear in a model for C12 (like variable y in Fig .
2) . But if it is not, then it must be completely eliminated (like
variable z in Fig . 2) . The resolution rule seems to tackle this
problem, but we have to go more precisely into what it accomplishes .

Consider a simple case (but this case happens more often than
not), when both Cl and C2 models are made up of a single confluence,
say respectively El and E2 . Let x be a variable involved in both, and
assume that the resolution rule applies to El and E2 and so
eliminates x . Then we get a new confluence, say E12 , which is global
to C12 . Any other variable involved in El or E2 , or both, will belong
to E12 as well . But it is not true in general that E12 is equivalent
to El and E2 . For instance, if another component Cg is concerned by



x, then E12 is certainly not a proper model for C12 . But if x is
involved exclusively in E1 and E2, then E12 should be one .

Joining two components

Previous remarks provide a heuristic rule for choosing at each
inference step between the potential applications of the resolution
rule :

Joining rule . Let (E) be s set of confluences corresponding to
a component-based description of a device . If the resolution rule
applies to confluences E1 and E2 by eliminating variable x, and if x

is involved exclusively in El and E2, then choose this application . A
model equivalent for the variables different from x is obtained by
substituting confluence E12 produced in this way for confluences E1
and E2 .

If E1 and E2 are the respective models for components C1 and
C2, then E12 is a proper model for C12- C1 and C2 are joined .

This rule can apply recursively . Indeed, a variable y different
from x and involved solely in El, E2 and a third confluence belongs
to exactly two confluences after the resolution rule has been fired .
Therefore, the joining rule might choose to eliminate it at a next
step . This means that a compound component can be joined in turn to
another atomic or itself compound component .

A mathematical justification

Pig . 2. Joining two components

The choice heuristic contained in the joining rule conditions
has been justified by some commonsense arguments . It needs no
mathematical proof . But the conclusion needs one :

A model equivalent for the variables different from x is
obtained by substituting confluence E12 produced in this way for
confluences EI and E2.

We have proved that this is true for square systems, i .e . when
the number of confluences is equal to the number of internal
variables . Indeed, it can be proved in this case that, starting from
task-oriented confluences, all the pieces of task-oriented
assemblages (concerning variables different from x) that can be drawn
from the initial model can be drawn after the joining rule has been
fired as well . We do not give the proof here, because it is too long



and requires mathematical notions which are beyond the scope of this
paper . It can be found in [6] .

We have proved more :

Let (E) be a non decomposable set of confluences, and z a

variable involved in exactly two confluences, say El and EZ . If the

resolution rule does not apply to E1 and EZ by eliminating z, then no

piece of assemblage concerning a variable different from z can be

drawn from (E) .

A set of confluences (E) is said to be decomposable if it
contains a subset (E') involving variables that are not mentioned in
(E)-(E') . In a practical way, if (E) happens to be decomposable, then
one studies first (E') . This is what is called by Iwasaki and Simon
causal ordering [10] . The problem comes down to studying non
decomposable sets of confluences . In concrete terms, a "loop of
components" is not decomposable . Efficient algorithms have been
described for decomposing a set of equations (see for example [11]) .

This second property is important : it states what happens when
two components are about to be joined, but ultimately cannot . The
conclusion looks natural : finding out a piece of assemblage for a
variable different from x requires eliminating x at some step . This
property can be viewed as the "negative part" of the joining rule (it
states when joining is not possible) .

However, it must be pointed out that this second property never
applies when the qualitative model is "good" . What a "good"
qualitative model based on confluences is can formally be defined,
but this is not the topic discussed here . Both examples presented in
this paper are "good" models .

Implementation

We can now build our heuristic machinery for controlling
qualitative resolution :

Let (EO) be the qualitative model to be assembled . Perform step 0 .

Choice,

	

stems_i: Select within the current set of confluences (Ei) a

variable z such that :
- r is involved in exactly two confluences of (Ei),

has not

Joining

EZ the

z has not been yet selected at step i,
there is a variable different from z involved in (Ei) which

yet been assembled.

rule (JR), step i s Let z be the selected variable, and EZ and

confluences involving z. Then, eliminate z by mean of the

resolution rule . This produces confluence E12 . Set (Ei+l) <- (Ei)-

{E1, EZ) U1EZZ) . Perform step i+l .

Backtracking, step i s Make a new choice, step i . If no such choice is

possible, and if i is different from 0, then go back to step i-l .

In addition, as soon as a confluence involving a single
variable is produced, the corresponding piece of assemblage is kept .
The "negative part" of the joining rule may be added, too .

Though the joining heuristic is self-sufficient, some rules can
be added in order to speed up the assembling step . < This part is
present in the extended version of this paper> .



When can thejoining rule fail?

The system presented here has been tried in examples stemming
from different physical areas, from electronic circuits to
thermodynamic systems (e .g ., the pressurizer of a PWR nuclear power
plant) . It never failed to yield an assemblage in a straightforward
way . So, it is justified to wonder whether this method is complete,
i .e . always discovers an assemblage . It is obvious that this would
require any model which can be assembled to involve at least one
variable belonging to exactly two confluences .

Indeed, the joining rule may fail . There exist models which can
be assembled, but having no variable belonging to less than 3
confluences . We cannot go into the underlying mathematics, but
previous work related to this question has to be mentioned .

Similar issues were studied more than twenty five years ago by
mathematical economists . They led to many mistakes . Lancaster [12]
claimed that the matrix of any square system having a determinate
value turns to be deducible from the form :

N1 and

A system having a determinate value is a particular case of a
system which can be assembled . This result would imply that the
joining rule is complete in the square case .

Two years later, Gorman [13] showed that this is wrong by
producing the following counter-examples :

0--0

0-0

00
b

N2 are square matrices . They have a single line in
common . They are themselves supposed to be Lancaster's or Gorman's
matrices .

Gorman claimed in a footnote that he had proved that all the
determinate matrices are deducible from this generic form .
Unfortunately, this is wrong, too, as shown by the counter-example :

It can be shown that Lancaster's and Gorman's forms, plus
last form, are the only generic forms of 4z4 matrices . There are 6
basic forms of Sz5 matrices, and we do not know how many there are
for nzn matrices with n>5 . A generalized control for qualitative
resolution is strongly related to these topics .

Let's go back to the real world . The fact that the joining rule
works without trouble within a physical model can be justified by a
commonsense argument : there must be a variable linking two

this



components, but not involved in the interaction with any other
component .

Conclusion

If not controlled, qualitative resolution leads to
combinatorial explosion . But the fact that qualitative models stem
from real-world devices prevents it from meeting the fate of
resolution in logics . The heuristic control presented here is
strongly related to the structural properties of a sane device .

We have tried our system in examples corresponding to different
physical areas . But they were all small devices . However, we think
that the assembling technique, controlled by the joining heuristic,
could assemble some larger artefacts . The next step will be to get a
model for a large-scale plant .
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