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ABSTRACT
Causal Ordering has been much considered in Qualitative Physics to try and help Constraints
Satisfaction Problems and to provide with an intuitive explanation of a device behavior.
We focus on two approaches (the first defined by Iwasaki&Simon and the second by De
Kleer&Brown) which have been widely debated in [Iwasaki 86] and [deKleer 86].Here we
will consider those two problems from an alogorithmic viewpoint.
In [Iwasaki 86] Iwasaki&Simon define a "Causal Ordering" between variables of a physical
device which can be computed from the set of equations modelling the device . We present a
low order polynomial algorithm which computes this "Causal Ordering" without any algebraic
manipulation and using graph theory, when the system is non-degenerated .
In [deKleer 86], DeKleer and Brown define "mythical causality" "which describes the
trajectory of non-equilibrium states the device goes through before it reachieves a situation
where the quasi-static models are valid" . Using "Causal Heuristics", they trace the
instantiation order of the variables while satisfying the constraints (modelling the device),
which determines "causal orderings" . We consider computational tractability of determining
"mythical causality" . The complexity of the problem is likely to depend on the expressiveness
of the considered qualitative calculus. We show that the determination of "mythical causality"
in a non-linear and general version of qualitative calculus is NP-hard.
Finally we give some plausible directions for dealing with incomplete information in order to
extend Iwasaki & Simon's approach .
We believe this paper will clarify the notion of Causal Ordering at least on a computational
viewpoint.
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Introduction

Causality is an important concept as far as Qualitative Physics and Common Sense
reasoning are concerned. This special relevance is due to the fact that one of the ambitions of
Qualitative Physics is to provide "causal accounts of device behavior" while carrying out
qualitative treatment [De Kleer 84] . In an ordinary language concept, causality is assumed to
qualify the relation between some events . From a mechanistic viewpoint, causality is the origin
of any phenomenon .

In the engineering context that prevails here, phenomena are constituted by the evolution
of some well-described physical devices. The devices are supposed to be characterized by the
value of some variables . The kind of events we are interested in, are variations of the value of
the variables. It is the relation between those kind of events that will be qualified as causal .
Using (abusing) familiar notation, the causal relation between variables variations, will be
considered as a causal relation between the variables themselves .

The whole July 86 issue of the Artificial Intelligence Journal [Iwasaki 86a], [De Kleer 86]
and [Iwasaki 86b] was dedicated to the comparison of two approaches to causality : the Causal
ordering of Iwasaki & Simon, and the mythical causality of De Kleer & Brown.

Both approaches consider steady states of physical devices described by quantitative
equations or qualitative differential equations. They both adhere to the framework of classical
physics . Both consider that a good device description is structural in a certain sense. The
determination of causal relations between variables aims in both cases to give a functional
account of the device and to describe its behavior . Iwasaki & Simon use structural equations,
each standing for a single mechanism describing the system . De Kleer &Brown use equations
related to components and to interactions between topologically related components .

The approaches then diverge, this may not only be due to the fact that Iwasaki & Simon
borrowed concepts from economics while De Kleer & Brown's approach originates from
electrical engineering.

The "Causal ordering" approach of Iwasaki & Simon is stated in a rather algebraic form.
We give in section 2, arguments showing that not only the problem statement is algebraic but
also its solution can be easily but not trivially grasped using algebraic or rather combinatorial
concepts .

On the other hand, De Kleer & Brown's viewpoint about mythical causality is better
stated in a logical or problem-solving perspective . They consider that certain kinds of proofon
the fact that a device can reach an equilibrium state after a perturbation, are causal explanations
of possible behaviors. They claim that causal relations between variables can be determined
from those causal explanations . In section 3, we discuss the computational complexity of
establishing causal relations in this logically-oriented framework. Considering a hard version of
the qualitative calculus of De Kleer & Brown, we show that computing in this framework is
closely related with mythical causality determination. In that context, mythical causality
determination seems as hard as hard constraint satisfaction problems like graph-coloring .

Apart from their quite different statements, the two views at causality differ in several
ways [Iwasaki 86a], [De Kleer 86],[Iwasaki 86b] . Starting from the same structural description
of a device, they give different causal accounts . The causal relations do not have the same
properties. Causal ordering is a quasi-order, mythical causality provides with a partial order.
Some of their divergences (for example treatment of feedback loops) are more physical than
computational. We try here to develop a purely algorithmic comparison of the approaches
considered by Iwasaki & Simon and De Kleer & Brown and have compared the complexity of
the two problems .

Finally, in section 4, we consider another difference between the two views at causality
the eventual inability of causal ordering to cope with underdetermined systems. Our algorithm
for computing causal ordering can operate on an underdetermined system and determinate the
seed of all causal orderings derived from completions of the system.



This algorithmic viewpoint clarifies the debate between the two "generally consistent
analysis" by magnifying the distinctions between the two approaches .
2 .

	

An efficient algorithm to determine causal ordering
2 .1 . Definition of Causal ordering [Iwasaki 86a]

The behavior of physical devices is described through equations systems. Those systems
are supposed to be non-degenerated, involving as many variables as equations. Causal
ordering is a relation between the variables of the system . That relation is a quasi-order : it is
reflexive and transitive. Causal ordering may not be antisymmetrical [Iwasaki 86a] (p.19), that
is why causal ordering is not necessarily an order, but only a quasi-order.

The quasi-order derives from a decomposition of the equation system into Minimal
Complete Subsystems .

Definition 1 : A subsystem of equations is complete or self-contained iff it contains as
many variables as equations

A subsystem Sl i said to be contained in the subsystem S2 iff every equation from S 1
also belongs to S2.

Definition 2 : A complete subsystem is minimal if it does not strictly include an
equation set that is complete too.

A straightforward remark indicates that two distinct Minimal Complete Subsystems
(M.C.S .) deriving from a non-degenerated system are disjoint : no variable appears in both
M.C.S . It is noteworthy to remark that two distincts M.C.S . can be solved independently, if
we are handling equations over some powerful structure like a field. Determining the M.C.S . of
an equation system, can be a preprocessing step in equation solving and be of some help in
applying a "divide and conquer" method . But the goal of Iwasaki & Simon [Iwasaki 86a]
[Iwasaki 86b] is not to solve systems but to use their decomposition to determine causal
ordering . We will see that this process does not require any algebraic manipulation, and so can
deal with non-linear equations .

Using those definitions the system decomposition is carried out in the following way. Let
So denote the initial system and Cp = C1 U C2 U .. . Cp be the union of its minimal complete
subsystems . CO is self-contained . Starting from the rest SO/Co, we build S1, a self-contained
system by removing all variables from CO (as they could be computed from CO alone, they can
be regarded as parameters in Sl). Every M.C.S . determines a class of variables. For every
equation e from Sp/Cp, if e contains a variable occurring in Ci~ e is labelled by i. This
determines a labelling for S1 . The process is iterated . M.C.S .s from' S 1 are computed (CI =
Cp+1 U .. .U Cq). If any equation from Cr (with p+1 <_ r<_ q) is labelled by i, then a causal link
is drawn from every Ci variable to every Cr variable .

The labels from equations in S l/C 1 are augmented in the same manner as during the first
phase. The second rest S2 derives from Sl/Cl by removing variables occurring in Cl . The
process is iterated until the rest is empty.

If some initial or intermediate M.C.S . contains more than one variable (i.e . there is a
feedback loop), causal ordering is a quasi-order.

Determining causal ordering is equivalent to computing the M.C.S. of the successive
rests. The intuitive procedure to compute the M.C.S . requires time exponential in the size of the
largest M.C.S . It cannot be considered as satisfactory . The following exposes an efficient
algorithm for computing causal ordering based on graph theoretical concepts.



2 .2 . A case study
A simplified condenser from a thermal power plant [Gallanti 86] illustrates our approach .

Steam

Sea or River Water

Fig 1 : Condenser from a Thermal Power Plant (Esprit Project P256).
"The role of the condenser in the water-steam cycle of a thermal power plant is to cool the

steam coming from the turbine to bring it back to the liquid state" [Gallanti 86] .
"Condensation is obtained using surface condensers (i.e ., without mixing cooling water

with the steam) in order to keep the chemical characteristics of the cycle water unaffected. The
cooling fluid is open-loop water taken from rivers or from the sea . In order to increase cycle
efficiency, fluid condensation occurs in depressurized conditions, i.e . the pressure inside the
condenser is kept lower than the outside atmospheric pressure. The cooling water is circulated
by a water pump through a tube bundle placed inside the condenser, where steam condensation
takes place . The condensate water is gathered at the basis of the condenser , from which it is
removed by the condenser pumps" [Gallanti 86] .

Two main processes take place in the condenser : heat exchange between the two fluids
and cooling water circulation (hydraulic process) .

The condenser is described by a non-degenerated set of simplified equations given below .
These equations involve

- Process variables (pressure, temperature, mass flow . . .)
- Design parameters (determined during design phase, such as the material, geometric

characteristics of the circuit . . . .) .
Moreover, we can distinguish between dependent and independent variables . Independent

variables have been called "exogenous" variables .They are the cause of the device behavior .
Some process variables are exogenous as their value is imposed from the outside of the system
(the temperature of the cooling water, the quantity of heat flowing) . Some design parameters
have imposed values (because of design decision, because of fault or malfunction) .

Here are the exogenous variables (and their unities) of the simplified condenser
* Design parameters (which can be affected by fault or malfunction)
- n : number of tubes
- delta : average thickness of a tube

	

m



- lambda : thermal conductivity of the tube material
- s : thermal transmission coefficient between external wall and steam.

*External parameters

- tl : temperature of the sea water (upon which we cannot act)

	

C
-P : Power of the pump (upon which we can act)

	

W

Here are some parameters (and their unities)

D : outer diameter of a tube

	

m
1 : length of a tube
f : proportionnality factor depending on the motion type

Here are the remaing variables (process and design variables and their unities)

EQ1 : D = d + delta
EQ2 : A = n H d2
EQ3 : G=vxA
EQ4 : P=GxH
EQ5 : H = Dp + Cte
EQ6 : Dp=fxIxv2/nxd
EQ7 : Q=G (t2-tl)
EQ8 : S=nrlIxD
EQ9 : K x S / G = log [(ts - tl) / (ts - t2)]
EQ 10 : 1 /K= 1 / s +delta /lambda + 1 / w
EQll :w=ctexw
EQ12 : Q = M+(ts)
EQ13 : ps = M+(ts)

m2s-1
ms-1

Jm-4 s2

d : Inner diameter of a tube

	

m
A : Cross section

	

m2
G : Flow rate

	

m3s 1
H : Head provided by the pump

	

Jm3
Dp : Load loss of cooling water through the tube bundle

	

Jm3
v : velocity of the water

	

ms-1
Q : Amount of heat removed by cooling water

	

Cm3s l
S : Exchange heat surface

	

m2
t2 : Output water temperature

	

C
is : Temperature in the condenser

	

C
K : Thermal exchange coefficient

	

ms-1
w : Thermal transmission coefficient between internal tube wall
and the cooling water

	

ms1
ps : pressure inside the condenser

	

Nm2

Here are the simplified equations describing the condenser's behavior (where M+ stands for a
monotonically increasing function)

Equations 1 to 6 are related to the hydraulic process, while equations 7 to 13 are related to
the heat exchange process. The two processes are linked through G (flowrate) and v (water
velocity) . Some equations describe the geometric aspects of the condenser (Equations l, 2, 3)
while the other ones describe a physical process (for example the flow rate G is determined by
the water speed v and the cross section A). In this sense, it seems that these equations can be
called "structural" . Consequently, we can state that this description is consitent w.r .t. Iwasaki
&Simon's approach. Moreover, the "no-function-in-structure" principle of de Kleer &Brown
is respected : the fuctionning of the device is not implicitely given in the equations .



2 .3 . Graphical representation of equation systems
We have chosen to use graph techniques to express our problem. We will assess the link

between M.C.S . we are looking for and Bipartite Elementary Subgraphs being built thanks to a
perfect matching. We reason by induction on the order of M.C.S ., modifying the representation
after each step .

The causal ordering Problem may be stated using graph concepts because causal ordering
depends solely on the occurrences of variables in the equations, neither on coefficients values
nor on the kind of involved expressions. We show that the M.C.S . are associated with a
peculiar kind of graphs. Finally we give an efficient algorithm that partitions the graph
representing an equation set and by this way provides with the causal ordering.
2 .3 .1 .

	

Representation of equation systems through bipartite graphs
The problem is to represent the relations "appears in" between variables and equations

from a system.
Every set of equations is associated with a graph G = (8 U X, E) . Every point from 8

(resp. X) stands for an equation (resp . a variable). (e, x) from 8 x Xbelongs to E (the set of
lines) iff x stands for a variable occurring in the equation represented by e . Every subsystem
(M.C.S ., rest, . . .) induces a subgraph in a natural way. By design choice, G defines a
bipartite graph (or bigraph) .

A graph G = (U, E) is bipartite iff the point set U may be partitioned into two subsets
such as there is no line from E between points from a same subset .

For every subset Y from 8 , FE(Y) denotes the neighborhood of Y : (xl xEX, E ye-Y,
(x, y) EE) .

Following Berge [Berge 70] : "A matching M in G(U, E) is a subset of E such that every
point is incident to at most one line of M". M is perfect iff every point is incident to exactly one
line in M. Konig-Hall's theorem [Berge 70 p128] provides with a necessary and sufficient
condition for the existence of perfect matchings : a bipartite graph G = (rJ U X, E) has a perfect
matching iff for every subset Y from C,

	

IFE(Y)I >_IYI .
Claim : The bipartite graph G = (~ U X, E), associated with a non-degenerated system

has aperfect matching.
Proof : As the system is non-degenerated, 181 = IXI, and any subset Y from 8 is

associated with a set of equations which have more than IYI variables, so II'E(Y)I _IYI .

In figure 2, we give the representation of the equation set of the condenser through a
bipartite graph.



Property : Every M.C.S . induces a maximal bipartite elementary subgraph .

Claim : The bipartite subgraph associated with a first order M.C.S . is elementary .

Eg13

Fig 2

	

Condensor : Bipartite graph associated with the equations set

is

2 .3 .2 .

	

Minimal Complete Subsystems and Bipartite Elementary subgraphs
Definition : A bipartite graph is elementary iff it is connected and every line occurs in

some perfect matching .
[Lovasz 86] states properties, of Bipartite Elementary Graphs of special relevance to our

problem . A bipartite graph G = (C u X, E) is elementary iff 18 IXI and for every non empty
proper subset Y of 8, IFE(Y)I > IYI .

Proof : Let A be a M.C.S . and G a subgraph (8 u X, E) induced by A. A is
complete,so IC I = IXI . For every non-empty proper subset B from A, as A is non-
degenerated,we have II'E(B)I _> IBI, as A is minimal we cannot have II'E(B)I = IBI ; consequently
II'E(B)I > IBI and G is elementary .

Moreover, by induction on the order of the M.C.S ., we can conclude that every M.C.S .
can be associated with a maximal Bipartite Elementary Subgraph .



2 .4 . Decomposition algorithm
Now we give a way to compute maximal Bipartite Elementary Subgraphs (B .E .S .) by

looking for a perfect matching, orienting lines and looking for strongly connected components .
B .E.S .s determine M.C.S .s . Knowing all M.C.S ., it is easy to find the causal ordering .
2 .4 .1 .

	

Perfect matching and Minimal Complete Subsystems
[Lovasz 86] sketches an algorithm to assess that a bipartite graph is elementary by

reducing the problem to the computation of a perfect matching. Following the same kind of
idea, we propose an algorithm that partitions a bipartite graph into bipartite elementary
subgraphs with a one-to-one mapping between Minimal Complete Subsystems and Maximal
Bipartite elementary subgraphs.

Let G = (8 U X, E) be the graph associated with a non-degenerated system and M be a
perfect matching .

Claim : If 8'U Xrepresents a M.C.S . of zero-order, any matching line issued from a
point e from 8' reaches a point in X .

Proof - Let I'

	

(8') be the neighborhood of E' in (8 U X, M).
By definition I-M(~) C I-G(8') and II'M(8')1= I8'1=1I'G(C') 1=1X'1 so I'M(C') =X' and
rM(X') =8 ' .

An induction on the order of the M.C.S . would show that the claim holds for any order
and any perfect matching . From that property, it is possible to derive an efficient decomposition
algorithm .
2 .4 .2 .

	

Causal ordering as a quotient graph
Let G = (CUX, E) be the bipartite graph associated with a non-degenerated system and C

be a perfect matching of G . The directed bipartite graph G' = (C'UX', E') is constructed from
G and C by orienting all lines from E, from X towards 8 and all lines from C, from
towards X .

Property 1 : Every Strongly Connected Component (S.C.C.) in G contains as many
points associated with variables as points associated with equations .

Proof : This is trivial because of the construction of G and G' .
Property 2 : Every maximal bipartite elementary subgraph (associated with a M.C.S.)

in G induces an S .C.C. in G' .
Proof : Let A induce a bipartite element

	

sub~raph in G. A is strongly connected .
There is a directed path from every point e from`7 ns Fo every point x in A

	

X. Let Xj c
X (resp C- C 8) be the set of points reachable from X, by a path of length less than 2j+1
(resp . 2j).~y definition Xp = I`~G'( {x})

	

CO= {e} .

Xj and Cj are growing sequences for every k XI81+k = XIe I and 81C I+ = C181 .
Moreover as 0-+11 = IX-1 by construction of G'(induction on j), we have IX1811 =1 ICII . By
construction of V, CICI J~ A (1 O and X 10,19 A n X and strict inclusions would contradict
the minimality of bipartite elementary subgraph . As every point in A (1 X has a neighbor in
A (1 x every point in A is reachable from every other point from A of G' .

Property 3 : If A induces a S.C.C . in G', A induces a maximal bipartite elementary
subgraph in G (A is associated with a M.C.S.) .

Proof : By property 1, IA (1 O I = IA (1 XI and A induces a Bipartite Elementary
Subgraph (B.E.S .) in G. The restriction of C to A is a perfect matching of A. For every B C
A (1 X, IFG(B) fl AI >_ IBI . If A induced a maximal B.E.S in G or if it was strictly contained in
a B.E.S of G, A would not induce a S.C.C. in G' by property 2 .

Given a digraph G', the quotient graph G" is a directed acyclic graph where the points
represent the S.C.C . from G'. A line joins a point x to a point y in G" iff a line from one point
of the S.C.C . associated with x joins a point from the S .C.C associated with y .



Property 4 : Every line in the quotient graph of G' represents a causal link between the
variables of the associated M.C.S .

Property 5 : Every non-symmetrical causal link is associated with a link of the transitive
closure of the quotient graph.

Proof : Property 4 is trivial. Property 5 is proved by induction on the order of the
M.C.S .

The decomposition of the graph associated with
in figure 3 .

Eql

Eq2

Eq4

Eq5

Eq3

Eq6

Eql l

Eg10

Eq8

Eq9

Eq7

Egl2

Eg13
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Algorithm and Complexity

Let E = (E, X) a non-degenerated system be the Input.

G' : The labelled bipartite directed graph built from G and C.

the description of the condenser is shown

FIG 3 : Left, graphic
representation of the decomposition
into bipartite elementary subgraphs
(boxed). For clarity sake, the lines
have not been oriented, and
exogenous variables are not
indicated . Horizontal lines stand for
lines from the perfect matching .
Bold lines stand for lines which
will appear in the Causal Ordering .

Right, detail of a minimal complete
subsystem of fourth order. Bold
lines join equations with variables
which do not belong to the
M.C.S .(here exogenous variables
have been represented) .

Let CN = (S, CL) the directed acyclic graph standing for the Causal Network be the
Output.

Before describing the algorithm, we define some variables, give some possible data
structure and sketch some procedures .

G : the labelled bipartite graph associated to E. It should be implemented using
adjacency lists, since we deal with sparse graphs.

C : a list of edges from G, representing the perfect matching (C stands for coupling).
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SCC : The strongly conneceted components from G' . The set of strongly connected
components should be represented using an array . This may be computed by simple inspection
of the directed edges from the points labelled with equations to points labelled with variables in
G' .
PROCEDURE Perfect-matching (G ; VAR C)
C := Computation of a perfect matching (using Dinic's algorithm, for example).
PROCEDURE Directed-graph (G C ; VAR G')
G' := Graph built from G whose lines have been oriented from points labelled with equations to
points labelled with variables and the lines from C oriented from points labelled with variables
to points labelled with equations .
PROCEDURE Strongly-Connected-Components (G' ; VAR SCC)
SCC := Strongly Connected Components from G' using depth-first search (during this search,
add a pointer from every point labelled by a variable to the SCC it is connected to ) .
FUNCTION SCC-Label (Point)
Returns the label of the SCC where the point lies .

The general form of the algorithm to compute the causal network CN = (S, CL) when those
auxiliary structures and procedures are available is
GLOBAL ALGORITHM (G , CN)

S:= 0 ;
CL:= 0;

C:= 0;
G':= o;
SCC:= 0;
BEGIN
Perfect-matching (G C) ;
Directed-Graph (G C G') ;
Strongly-Connected-Components (G' SCC) ;

/*Creation of the points S from CN*/

FOR s in SCC DO
CREATE a point s labelled by s-label ;
S :=Su{s} ;

ENDDO;
/*Creation of lines CL for CN*/

FOR (u,v) in EDGES ofG DO
IF (NOT (SCC-Label (v) = SCC-Label (u))

AND
(NOT (SCC-Label (v), SCC-Label (u)) in CL)

ENDDO ;

END

THEN
CL: = CL u {(SCC-Label (v) , S CC-Label (u)) 1 ;



Here is the complexity of each step of the previously described algorithm:
The problem size IEj is the number of variable occurrences in the equation system, it

equals the graph size, i.e . the number of lines in the graph. The graph order is twice the number
of variables : n.

- Building the bipartite graph associated with the system. This step has a O (III + n)
complexity.

- Determining a perfect matching in the bipartite graph b

	

sing network flow techniques
like the Dinic algorithm [Even 1979 p97]. This step has a 0 (nc''x III) complexity .

-Building the bipartite directed graph with appropriate data structures, the representation
of the bipartite graph may be used, so the complexity may be O (n). The digraph size is O(III +
n) .

- Computation of the digraph strongly connected components . Using depth-first-search
[Even 1979 p53], the complexity is O (III + n) .

- Computation of quotient graph which requires an examination of lines from C to X. The
time complexity of that step is O (III).

Consequently, as we may assume that III >_ n, the total time-complexity is O (n0.5x
III) . (If the transitive closure of the digraph is requested, it becomes O (n ) ).

The following graph is the output of the previously described algorithm when the input
is the set of equations describing the condenser .

ca Point standing for an
Exogenous variable

Point standing for
a M.C.S . labelled
by its variables

ps
FIG 4 : Diagram of the Causal Ordering for the variables from the condenser.
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Complexity of "mythical causality" computation

Determining Causal ordering is easy, what can be said about the determination of
mythical causality ?

	

a

	

r
3 .1 . "Mythical causality" : qualitative issues .

On the one hand, the causal ordering approach described by Iwasaki & Simon derives a
quasi-order on the variables by using combinatorial properties of equation systems. The use of
those properties is allowed by the properties of the domain of variables : it is a field . On the
other hand De Kleer and Brown have focused attention on qualitative aspects of reasoning in
physical engineering.

Physical systems are modelled using a quite different background . As well as in the
classical approach of Iwasaki and Simon, a good description has to be structural . But here the
emphasis is not on the association between equations with basic mechanisms, but on the
association between qualitative variables with components of the system, relations between
those variables in a component and relations between two components . The distinction between
those two kinds of structural descriptions does not seem computational in essence.

What is certainly of great computational relevance are properties of the domain of values
of qualitative variables, the meaning of qualitative constraints, and the computations that are
used to determine mythical causality .

3 .2 . Formalization of solving confluences, relation with mythical causality
determination

The qualitative variables take values in a qualitative domain, this domain is finite and
linearly ordered. It is often the three-valued domain [[+I, [-], [0] 1, where each value has its
intuitive meaning.

An assignment of the qualitative variables is a mapping from variables into the
qualitative domain. Here, we will only consider the above three valued domain. Confluences
constrain the possible assignments of qualitative variables. They are described by variables,
denoted by identifiers, constraints

	

and [0], three symbols "+", "-" and "." which
should not be viewed as internal laws, parenthesis and the equalit

	

s mbol =. Arithmetic &
Qualitative expressions have the same morphology . For example,

[RV]=[T1
and SP+SV=ST

are confluences. An assignment maps variables onto constants . Variable assignment constrains
expression valuations through recursive rules that parallel computing equivalents in Analysis .
[+]+[-] is undetermined. Nevertheless in a given valuation a qualitative expression has a unique
value . An assignment of variables satisfies a set of confluences iff it generates at least one
valuation that is coherent with all confluences . A set of confluences is satisfiable iff there is at
least an assignment that satisfies it . The proofs of hardness of confluence solving we have
seen, failed to account for the requirement of a unique value for each expression, this has led us
to develop our own proof. Although literature [De Kleer 84a], [De Kleer 84b] does not
explicitly (at the exception of [De Kleer 86] (p . 34, 36, 37)) mention non-linear confluences
they seem quite useful if second-order differential are to be used in a device description.

Deriving causality in that context has a flavor that is very different from the derivation of
causal ordering by Iwasaki and Simon. The mythical causality, as it is suggested by [De Kleer
84a] and explained in [De Kleer 84b] [De Kleer 86] is designed to describe "the trajectory of
non-equilibrium states the device goes through before it reachieves a situation where the quasi-
static model is valid although the system is described through a set of equilibrium constraints.
Trajectories through non-equilibrium states are accounted for by viewing the device's
components as performing a simple computation" .

It is one of the major features of De Kleer and Brown's work to model the physical
system as a computing system, that "proves" that some evolution from an equilibrium state to
another one is feasible . De Kleer & Brown [De Kleer 84a] stress the fact that not all "proofs"
provide good basis for the causal account. They emphasize the role of proofs that are built
using the so-called "causal heuristic rules" [De Kleer 84b], [De Kleer 86] .
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Whatever the causal heuristics may be, an algorithm that is capable of computing a causal
account of any device behavior provides with a tool to solve the confluences satisfaction
problem. This may not seem obvious .

Any algorithm that computes mythical causality is able, starting from an equilibrium state,
after a disturbance originating from a single point (for example concerning a single variable) to
find another equilibrium state.

Let I be a system of confluences, the question is : is E satisfiable or not satisfiable ?

Let x' be a fresh variable that does not appear in Y-, every equation in

	

: Ei 13i = ki
where 13i and ki are qualitative expressions is associated with the equation E'i : x' (8i - ki) =
[0] . Let Y-' be the resulting system. Every assignment in which x'=[O] satisfies Y_' . To find a
satisfying assignment for

	

, it is enough to introduce the single disturbance x'=[+] .

This trivial and polynomial reduction of the confluence satisfiability problem to the
mythical causality determination problem works only because we have put no restriction on the
morphology of the confluence system, although the indications given by De Kleer & Brown
about what is a good structural description may have stringent morphological consequences . If
the locality principle of De Kleer & Brown is respected, it is hard to imagine how a single
variable like the fresh variable x' could appear in all confluences describing a device .

If the morphological consequences of De Kleer and Brown's modelling principles can be
clarified, it remains to check if confluence solving remains reducible to mythical causality
determination in that restricted context.

In the following, we will give another reason to consider restricted versions of confluence
solving. Embedding mythical causality determination in general confluence solving is not likely
to provide with feasible solutions, since it is likely to be intractable.

3 .3 . Computational status of mythical causality determination

The algorithms described by [De Kleer 86] (§2.1, §2.4) as a metaphorical illustration of
mythical causality determination, do not completely state the problem difficulty . The algorithm
sketched in §2.1 from [De Kleer 86] for computing mythical causality is compared with
gaussian elimination ; it looks polynomial as it does not use any backtracking, and each step is
polynomial . But the pivoting rule involves simplification and substitution rules provided by
algebraic structures like groups or fields, and qualitative domains usually do not have such a
structure. Replacement of the pivoting rule by causal heuristics cannot be done without
allowing the exploration of an exponential-sized search-tree. The algorithm stated in [De Kleer
86] (§2.4) may be exponential in the size of the greatest feedback loop in the worst case since it
is a blind exhaustive search . This is not enough to state that qualitative calculus is hard . It looks
intermediate between equation solving (an easy problem) and hard constraint satisfaction
problems like graph-coloring . We give here a proof that solving a set of non-linear confluences
is at least as hard as determining whether an hypergraph is 2-colorable.

3 .4 . Reduction from hypergraph 2-colorability to non-linear confluences
solving

Statement of the two problems

Hypergraph-2-colorability [Garey 79]
Instance : Collection C of subsets (lines) of a finite set of points S.
Question : Is there a coloring of S with two colors such that no line in C is uniformly
colored.

Confluences satisfiability
Instance : Collection S of non-linear confluences on a finite set of qualitative variables .
Question : Is S satisfiable ?

Reduction
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Each point vi from S is associated with a qualitative variable xi and a constraint
(1) xi . xi =[+] that ensures that xi takes values in { [+], [-] } .

Each line Ivi1 , vi2 . . . vij? from C is associated with j2 auxilliary qualitative variables Pk1
with 1<_ k :5j and 1<_ 1 <_j and the constraints

(2)
Pk1

1 . 'Pk11 = Pk' l , ensuring that every pk'1 takes values in { [0], [+] }

(3) ((E1~1 Pk ll ) +])=(~ljlpkil )I
ensuring that for every k Y1 ?1Pk11 behaves like natural

coefficients
(4) (F'=I.1EkI=.

	

=k11)= [+], ensuring that at least one Pk'1 takes value [+] .

(5) ~kl1(Fl=t11) .xik= 101

The transformation is polynomial since the resulting set of confluences has size
O(ISI+ICI2) . Assignments derive from 2-colorings by substituting value [+] (resp. [-]) for xi to
color yellow (resp . red ) for vi .

Every 2-coloring is associated with an assignment that satisfies the qualitative system,
the first kind of constraint is always satisfied. Considering the ith line, let p be the number of
yellow-colored points in it. For each such vik set

11 =[+] and Pk'1 =[0]for 1>1 .pk

There must be one red-colored vik0 in the line,

let Pkp1 be [+] if 1<p and [0] otherwise and let Pk11=[0] if ik#ik0 and vik is red-colored.

Such an assignment generates a valuation that agrees with all kinds of constraints
(induction on expression size).

Every assignment that satisfies the constraints is associated with a 2-coloring . The
coloring of the vi is derived from the xi's assignment. Plugging constraints of kind (2), (3) &
(4) into the corresponding constraint of kind (5) guarantees that not all terms can have a null
value, that the terms have the same sign as the corresponding xik, entailing that xiks do not
have all the same value.

This just proves that confluences solvability is NP-hard, since we do not know whether
the problem is in NP (it does not seem straightforward to verify that an assignment satisfies a
given system).

This results raises several questions concerning its significance .

The first question concerns the relevance of the concept of non-linear confluences.
Despite elliptic quotations ([De Kleer 86] p 34, 36 & 37), most of the confluence literature deals
with linear confluences . Th preceding result does not rule out the possibility that linear
confluence solving is solvable in polynomial time . But this would mean that non-linear
qualitative calculus has a strictly greater descriptive power than linear qualitative calculus . If
linear confluences were solvable in polynomial time and if there were a (polynomial-time)
transformation that maps solvable non-linear confluences systems onto solvable linear
confluences systems, the polynomial time algorithm for solving linear confluences could be
used to build a polynomial-time algorithm for solving non-linear systems.

If non-linear confluences are more descriptive than linear confluences, it remains to
determine whether this difference is of relevance to qualitative physics.

The second question concerns the very relevance of the intractability result with respect
to the results of De Kleer and Brown. They expose (in [De Kleer 84b]) problems on which
their heuristic rules work well, and which do notrequire any backtracking . There seems to exist
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a broad class of qualitative systems on which the mythical causality determination is feasible in
linear time . This may be analyzed according to two (not incompatible) directions .

1° The availability of a satisfying assignment may be of great help . The confluence
solving problem could still be hard for the class of confluences, but the availability of a solution
could make the search for another solution easy.

2° The confluences solving problem restricted to that class of instances could be easy.
For example, constraint satisfaction problems that are easily solvable with backtrack-free

search have been investigated in the literature [Freuder 82] . In those problems, where the
constraints are just that some labels should be different like in graph coloring, there is no
broader sufficient condition than "acyclicity of the constraints graph" . Bringing such a
condition in the field of confluences solving would forbid the description of any feedback
loop . So it seems interesting to characterize sufficient conditions for backtrack-free solvability
that does not involve acyclicity of the constraint graph but that exploits the special kind of
constraints met in qualitative physics and the locality conditions exhibited by De Kleer &
Brown .

We also ignore if it is hard to solve sets of confluences with the promise that the system
has a unique solution (which may be quite rare in qualitative physics) . [Valiant 86] shows that
solving instances of the satisfiability problem with the promise that there is a unique solution is
not easier than the whole problem under random reductions . It is also the same for hypergraph
2-coloring . Since our reduction does not preserve the number of solutions (is not
parsimonious), we ignore if it is also the case for non-linear confluences solvability.
4 .

	

Coping with incomplete information

Causal ordering seems, at first glance to deal specifically with self-contained systems.
This is quoted as a severe limitation in [De Kleer 86].

Nevertheless we may wonder wether some causal ordering may be determined in an
incomplete system. This approach could be relevant to the study of large devices constituted by
relatively independent components . Every component could be studied independently leaving
variables describing interfaces with other components undetermined .

The system E describing a device component is incomplete but non degenerated. It can be
associated with a bipartite graph (CUX, E) where 181 < IXI, but the K6nig-Hall condition is still
assessed when subparts from 0 are examined . Every possible completion of the system does
not modify 8, but adds "virtual" equations associated with the remaining variables .

If a subsystem from E is self-contained, the causal-ordering between the variables in the
system will be the same in all completions of the system . The ordering between other variables
from E will depend on the completion (cf the different mythical causal links derived by different
uses of the "causal heuristics" in [De Kleer 86]) . A small adaptation of the algorithm stated in
[Iwasaki 86] allows to determine the seed of causal ordering .

Property 1 : If G = (CUX, E) is a bipartite graph associated with an incomplete non-
degenerated system and G' = (8'UX, E') is associated with a self-contained subsystem, then
in any maximal matching of G' no lines joins 8' to X-X'.

Proof : By the Kbnig-Hall property any matching M in G saturates every point in 8 and
hence in C' . The following is trivial.

Property 2 : If G=(CUX,E) is the bipartite graph associated with an incomplete non-
degenerated system and (8'UX, E) is associated with the non-empty maximal self-contained
subsystem, then application of the algorithm stated in 2.4.4 . partitions 8'UX' into bipartite
elementary graphs associated with the complete minimal subsystems of the maximal self-
contained subsystem.

Proof : By property 1, no strongly connected component in the quotient graph can
contain points from (8 UX)/(C'UX') and 8'UX'. The algorithm operates on the subgraph
induced by 8'UX' like on any bipartite graph with a perfect-matching.
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The problem is that some strongly connected components provided by the decomposition
algorithm are not associated with any M.C.S . of the self-contained subsystem. Those unuseful
strongly connected components can be determined by a breadth-first-search of the quotient
graph. The breadth-first-search should begin with zero-order M.C.S . (if the system contains a
non-empty self-contained subsystem there must be some), for each strongly connected
component which contains equation-associated points, determine the variables which value is
necessary to solve the equation set associated with the strongly connected component. If all the
variables in that set belong to the self-contained subsystem, the strongly connected is associated
with a M.C.S . of the self-contained subsystem (the order does not matter), the variables
associated with the strongly connected component should be marked as belonging to the self-
contained subsystem. This computes the maximal self-contained subsystem. Correction of the
procedure can be assessed by induction on the maximal depth of the quotient graph.

It is difficult to illustrate the capabilities given in this section with respect to incomplete
data on the simplified condenser example, since this device cannot easily be relevantly
decomposed in relatively independent components . Nevertheless we could assume that the
relation between the device behavior and the ingoing water temperature is unknown, by
removing Eq7 and Eq9 from the equation set. This incomplete causal ordering still brings some
information about the device description, even though the links involving some variables like
ps, ts, t2 & Q are not known.

FIG 5 : Incomplete causal ordering of the variables describing the condenser Equations
7 and 9 have been removed from the description .

5 . Conclusion

We have given an efficient algorithm to determine Causal Ordering in a set of equations
that can be non-linear. We have proven that solving non-linear confluences is NP-hard and we
would like to state apparently open problems

The algorithmic scheme for computing the causal ordering may not be optimal.
Computing the perfect matching is the bottleneck . The question is whether the determination of
a perfect matching is linearly reducible to the decomposition into bipartite elementary graphs .
An answer to that question would help in locating the very difficulty of computing causal
ordering for any computing device .

Solving non-linear confluences seems difficult . But linear confluences may turn out to be
easily solvable. A reduction of linear confluences solving to linear programming should be
attempted . Polynomially solvable confluence classes should be searched for and compared with
sets of confluences which describe problems declared easy by engineers. This would maybe
bring some insights in the skills involved in qualitative reasoning.
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