
Abstract

Previous research on real-time qualitative
reasoning lias focused on making reasoning
fast . Little work has been devoted to the more
important issue ofmaking real-time qualitative
reasoning predictable . Thispaper describes an
architecture for qualitative reasoning that
addresses both speed andpredictability. Exten-
sions to the Qualitative Reasoning System
(Hamilton 1988) to support predictable real-
tinte performance are described.

1 . Introduction

39

An Architecture for Real-Time Qualitative Reasoning

Development of qualitative, or model-based,
reasoning systems is motivated by a number of
well-documented benefits . These benefits in-
clude device independence of knowledge and
reasoning techniques, clear definition of the
scope of a system's competence, and the ability
to diagnose faults with novel symptoms (Davis
1984) . The importance of research on qualita-
tive reasoning is substantiated by applications
experience . In the HELIX program (Hamilton
1988), for example, it was discovered that ex-
perts - in this case veteran helicopter test pilots
-do, in fact, base their diagnostic reasoning on
an understanding of the underlying structure
and function of the physical system .

Recently, research efforts have been aimed at
applying qualitative reasoning to real-time
problems . To date, these efforts have focused
primarily on improving run time performance
in qualitative reasoning (i.e ., making qualita-

Thomas P. Hamilton
United Technologies Research Center

Silver Lane
East Hartford, Connecticut, USA 06108

TPH@a UTRC .UTC.COM

tive reasoning fast) . Hamilton (1988) uses hier-
archical modeling to focus the diagnosis and
prunc the stanch space . Abbott (1988) expluies
the use ofmultiple representations and levels of
abstraction to focus attention during reasoning .
Doyle et . al. (1989) use a causal analysis to
choose a subset ofthe predicted events to moni-
tor from a potentially large numberof available
sensors .

As Stankovic (1988) points out, however, real-
time computing is not equivalent to fast com-
puting . "Rather than being fast (which is a rela-
tive term anyway), the most important property
of a real-time system should be predictability"
(Stankovic 1988) . Optimizations such as those
described above are clearly important to meet-
ing stringent timing specifications . They do
not, by themselves, guarantee that timing con-
straints will be met. Emphasis now must be
shifted from making qualitative reasoningfast
to making it predictable - guaranteeing that
timing specifications will be met in real-time
environments .

If the emphasis in real-time AI should be on
predictability rather than speed, what are the
barriers to building predictable AI systems?
Fundamentally, the answer is complexity.
Tasks typically assigned to Al programs are
complex ones. As a result, the amount of pro-
cessing that might be done to produce the best
answer is frequently greater than that which can
be done in the time available . Furthermore, the

_r

r

primary mechanism for dealing with complex-
ity in AI systems -search -is inherently unpre-
dictable . The next section describes approaches
to building predictable real-dime Al systems .

2 . Approaches to RealTime Al

The goal of real-time AI is to get the best an-
swer possible in the time available. Approaches
to achieving real-time performance with AI
systems may be broadly classified into three
categories : Re-engineering, performance engi-
neering, and time-constrained search .

2 .1 Re-Engineering

The goal of re--engineering an Al system i,5 to
reproduce its functionality using a more tradi-
tional algorithmic approach . The benefit of us-
ing AI techniques comes from the understand-
ing of the problem gained through rapid
prototyping . Re--engineering the system using
more traditional software techniques supplies
the predictability required for guaranteeing
real-time constraints are met- In this sense, the
AI techniques may be considered a systems
analysis tool .

2 .2 Performance Engineering

Performance engineering on a knowledge base
is a second method for achieving real-time per-
formance in an AI system . The objective ofthis
approach is to guarantee that the worst-case
performance on a particular knowledge base
satisfies timing requirements . This involves
carefully analyzing and partitioning the knowl-
edge base to bound the search process . For ex-
ample, in a rule-based system, knowledge of
the maximum number of rules that could fire
and the time required to fire arule can be used to
determine the system's worst-case perform-
ance .

Ho
2 .,3 Tune-Constrained Inference

A third method for achieving real-time per-
formance in an AI system is to bound the search
process by directly imposing time constraints .
Unfortunately, many problem-solving ap-
proaches are structured in such a way that par-
tial solutions present little or no useful inform,--
tion to the user. That is, the result ofreasoning is
only of value if the search runs to completion .

Reasoning algorithms that offer the greatest
benefit in dynamic real-time environments are
those that are able toreturn a useful partial solu-
tion even if unable to run to completion. Thus,
desirable characteristics of a real-time pro-
blem-solving algorithm are :

1) partial solutions to the problem repre-
sent useful approximate answers,

2) processing may be interrupted and par-
tial solutions rcturned when a time limit
is reached, and

3) if additional processing time becomes
available, it should be possible to con-
tinue the unfinished search to further re-
fine the answer.

The approach to achieving real-time qualita-
tive reasoning described here is based on the
time-constrained inferencing approach . The

remainder of this paper presents a brief over-
view of the Qualitative Reasoning System
(QRS), extensions to QRS to support real-time
operation, and a real-time testbed for QRS .

3. QRS Overview

The Qualitative Reasoning System (QRS) is a
software system designed to support the devel-
opment of qualitative reasoning applications .
QRS consists of two primary components - a
Qualitative Model Builder and a Qualitative
Re*oner. A brief overview of the capabilities

. ., .

	

.

	

.

	

.

	

. . .

	

.

	

. , ,

	

,

	

. . " ,

	

.:

	

. . " .

	

. .

	

. . . .

ofQRS is presented below. A detailed descrip-
tion ofQRSmay be found in Hamilton (1988) .

3.1 Qualitative Model Builder

Th . Quaktativ* Mo4ol Builder providoo an in
terface for conotruction, 3torago, and testing of
qualitative models. Qualitativomodels in QRS
are Qfv.),u Manic typeoi Elarrnontary Modclt, rep
resenting devices without substructure, and
Compound Models, representing devices com-
posed of components. Elementary models are

vying a cvriec ef mvnun for opooifj -ing
the device's variables and constraints.

Compound models are constructed graphically
with the model-building interface depicted in
Figure 1. Icons corresponding to model proto-
types are selected from the menu at the right
and moved into the model-building window at
the left . With the mouse, conduits are created
specifying the interconnections between com-
ponents . Using the Qualitative Model Builder
in this way produces collections of hierarchical

model representations that may stored into and
retrieved from model libraries .

TheQualitative ModelBwilder also provides an
111telluLe ttl 111u ftiastltllilg R1gnr11m u1 1118
Qualitative xea,tuuct . This allows interacrive
testing of elemenrary and compound i'Yfbde11 .

3.2 Oualitative Reasoner

The Qualitative Reasoner provides utilities for
reasoning over aqualitative model. These utili.-
ties may be accessed in an interactive, menu-
tltiveii fdshiuu ui way Ut" called tlllecdy by a
problem-solving application. The Qualitative
Reasoner operates on models to perform the
following operations :

State Generation - determining all pos-
sible assignments of qualitative values
to variables that are consistent with a
model and zero or more observations .

" Fault Detection - determining if ob-
wivP.rl valne..,q ccinflirt with a m.x c)�

"

	

Diagnosis - determining, using hierar-
chical constraint suspension (Davis

J9onocr~s
~ "c M

	

n
odett MOdtif
Undekte Ma1Q~
Qcar ken Mo,n

COPY Modc1 Library
1"A MoAd Library
(TOP-T,rvcl M-nu)

Future 1 . The QRS Qualitative Model Builder. The Qualitative Model Builder provides a graphical interface for
building, testing, and modifying qualitative models.

. .,

	

. .

	

,

	

Q-1 ,

	

q.".>,ia~,

	

."0'

	

") " . .

	

>a~, .

	

, ., .

	

.

	

. .

	

. . . . ")

	

" .

	

.

	

.

	

.

	

,. .

1984), what component failures ac-
count for a detected fault .

+ Sequential Diagnosis - interactive
troubleshooting based on system-gen-
erated test recommendations (de Kleer
and Williams 1987).

4. pQRS - Parallel QRS

The hierarchical approach to model representa-
tion and diagnosis used in QRS is ideally suited
to parallelization . As a diagnosis proceeds top-
down through the model hierarchy, valid hy-
potheses are identified . Each valid hypothesis
that contains substructure is expanded into a
new set of finer-grained hypotheses. The eval-
uation of these new expanded hypotheses can
be distributed to available processors and ex-
ecuted in parallel .

The architecture for parallel QRS, or pQRS, is
shown in Figure 2. pQRS is made up of three
components . The Diagnosis Manager accepts
observations, detects faults, initiates fault iso-
lation, and returns the diagnosis . The Hypothe-
sis Scheduler m aps hypotheses to be tested onto
remote processors for execution. Hypothesis

Figure 2. The pQRS Architecture . Hypotheses to be tested are distributed to available processors by the Hypotheses
Scheduler to perform aparallel hierarchical diagnosis.

Servers, residing on remote processors, evalu-
ate hypotheses and return the results . Each of
these three components is discussed in turn.

4.1 The Diagnosis Manager

When the Diagnosis Manager receives a set of
observations, the first step is to run the Fault
Detector to determine if the observations are
consistent with the normal behavior of the de-
vice . Observations are propagated through the
constraints of the root model to detennine if
there exists a state consistent with the model
and observations . If a state consistent with the
model and observations can be generated, the
observations are considered normal and the
Diagnosis Manager returns this result.

If there is no state consistent with the root mod-
el and observations, then a fault is detected . The
Diagnosis Manager then initiates fault isolation
by creating hypotheses and submitting them to
the Hypothesis Scheduler. Each hypothesis
created by the Diagnosis Manager corresponds
to a test whether the observations can be ex-
plained by a failure in one o£ the components of
the root of the model hierarchy.

Each hypothesis consists of amodelview and a
set of observations . The model view specifies
the level ofdetail with whichtoevaluate thehy-
pothesis .Th.e model view contains two lists: the
first is the list of components assumed to be
working; the second contains the components
to suspend. Together, these lists determine
which constraints are in themodel when the hy-
pothesis is evaluated. The observations are
pairs, each consisting of a modelparameterand
its measured qualitative value.

4 .2 The Hypothesis Scheduler

TheHypothesis Scheduler's duty is to maintain
two queues . The first is aProcessor Queuecon-
taining the processors currently available to
evaluate a hypothesis . The second queue,
called the Hypothesis Queue, contains the hy-
potheses waiting to be evaluated.

The type of search performed by pQRS can be
controlled conveniently by assigning priorities
to the hypotheses in the Hypothesis Queue. As-
signing priorities according to a hypothesis'
position in the hierarchy produces a standard
breadth- or depth-first search. Forexample, if
each hypothesis is given a lower priority than
its parent, abreadth-first parallel search will be
performed. Assigning higher priorities to chil-
dren than parents will produce a depth-first
search .

As pointed out by Lesseret . al . (1988), it is pos-
sible to avoid computation costs by avoiding
work on low-certainty alternative interpreta-
tions. This can have an impact on the type of
search performed. The more conservative the
scheduler, the more breadth--first the search
will tend to be to avoid missing better alterna-
tives. The less conservative the scheduler, the
more depth first the search will be to avoid ex-
pending computingresources on low-certainty

43
alternatives . Other factors, such as the critical-
ity of failures in different branches of the hier-
archy, may also influence the type of search
performed.

TheHypothesis Scheduler distributes hypothe-
ses, one per processor in the processor queue.
Each valid hypothesis may create additional,
more-specific, hypotheses . These are added to
the Hypothesis Queue with a priority deter-
minedby the search scheme. The highest prior-
ity process is created on the first available pro-
cessor. That processor is removed from the
Processor Queue; it gets enqueued again after
its process completes.

4.3 Hypothesis Servers
A Hypothesis Server is a process, running on a
remote processor, whosejob is to evaluate hy-
potheses . Each Hypothesis Serverperforms the
following duties :

"

	

Accepts requests to test hypotheses
"

	

Evaluates hypotheses
"

	

Returns result
"

	

Creates new hypotheses
Keeps track of its availability and in-
forms the processor scheduler

To evaluate a hypothesis, a Hypothesis Server
needs to have a model instance for the device
being monitored. This instance enables any
single or multiple fault hypothesis to be eva-
luated . When a hypothesis is received, the spe-
cified model view is created. The model view
determines which constraints of the model are
to be reasoned over. The observations are then
input to the state generation algorithm . Ifastate
consistent with the observations and con-
straints in the modelview is found, then the hy-
pothesis is valid. Otherwise, the hypothesis is
invalid . Theresult of this test is returned to the
Diagnosis Managerand stored with the Current
Diagnosis.

If a hypothesis is valid, the Hypothesis Server
must also determine if additional, more-de-
tailed hypotheses need to be created. Any valid
hypothesis representing a failure in a compo-
nent with substructure must be expanded .
These expanded hypotheses are submitted to
the Hypothesis Scheduler to be enqueued in the
Hypothesis Queue.

4.4 Benefits ofpQRS

Benefits of pQRS include the following:

Improved response time,
Flexible control of search,
Ability to dynamically change priori-
ties,

"

	

Fault tolerance, and
" Support for time-constrained infer-

ence.

As discussed previously, fast response does not
make pQRS a real-time system . What is still
missing is predictability. The architecture for
pQRS does, however, provide the foundation

44

on which to build apredictable real-time quali-
tative reasoning system. Section 5 describes
how the pQRS architecture can be extended to
ensure predictable performance.

5. QRSt -Time-constrained QRS

The hierarchical representation of QRS is well
suited to time---constrained inference . Each
successive level in the hierarchy represents a
finer-grained analysis . A partial solution for
the QRS diagnostic process might correspond
to isolating a fault down to the system or sub-
system level. Such a partial solution, though
less detailed than it might be given additional
computing resources, can still be of great value
in deciding how to respond to the failure.

Extensions to QRS to support time-constrained
inferencing result in adding two components to
the pQRS architecture . As shown in Figure 3,
these components are the Time Manager and
the Interrupt Manager. These components are
described in the following two sections .

Figure 3 . The QRSt Architecture . The Time Manager ensures chattime constraints on processing are met. The Interrupt
Manager allows the diagnosis to be interrupted when other, highcr,p4ority, processing requirements occur

5.1 Mme-Constrained Diagnosis

The basic time-constrained QRS architecture
requires only a few modifications to pQRS .
First, pQRS is modified to accept a time limit as
one of its inputs, along with the set of observa-
tions. This time limit is the amount of time that
qualitative reasoning may execute on a set of
observations before a diagnosis is required .

Second, aTimerProcess is added to the Control
Processor. The Timer Process is essentially an
alarm clock that is set to the allotted time when
observations arrive. When the time limit is
reached, the alarm clock goes off.

Both the Diagnosis Manager and Hypothesis
Scheduler listen to the alarm clock. When the
time limit is reached, the Diagnosis Manager
returns the most detailed diagnosis that is cur-
rently available.

The Hypothesis Scheduler responds to the
alarm by reclaiming processing resources. The
first action it takes is to dequeue all pendinghy-
potheses for that set of observations . Second, it
issues interrupts to each of the active Hypothe-
sis Servers that are evaluating hypotheses for
this set of observations . As each Hypothesis
Server terminates, it informs the Hypothesis
Scheduler of its availability and is returned to
the Processor Queue. The hypothesis processes
may either be suspended for future use or
killed, dependingon storage constraints andthe
expected value of saving the processing state.

With these extensions to pQRS, QRSt will re-
spond predictably. It accepts observation and
returns its best assessment of the situation with-
in the prescribed time limit.

qs

52 Interruptible Diagnosis

in addition to supporting time-constrained in-
ferencing, QRSt must also be interruptible .
Qualitative reasoning may bejust oneofanum-
ber of resources available in an overall status
monitoring/diagnostic system . Thus,QRS may
be in competition with other software modules
for computing resources . Situations may arise
in which resources allocated to QRS need to be
applied to other more urgent processing needs .
By making QRSt interruptible, it can stop work
on a problem when another, higher priority,
processing requirement occurs .

To support interruptibility, an Interrupt Manag-
er needs to be added to the QRSt architecture .
The Interrupt Manager receives interrupts and
relays them to the Diagnosis Manager and Hy-
pothesis Scheduler. These modules respond to
the interrupts in the same manner as to timer in-
terrupts .

G. pQRSt Testbed

QRS has previously been used in a number of
diagnostic applications . They vary in terms of
the time scale at which a response is required
and in the consequences of missing deadlines.
Twomajor application areas illustrate these dif-
ferences . The HELIX program (Hamilton
1988) is a helicopter status monitoring and
diagnostic system designed for airborne use.
HELIX is an example of an application in
whichthe time frame for response is rather tight
(typical response times are on the orderof afew
seconds) and the consequences for being late
can be quite severe.

In contrast, the Sherlock program (Hamilton,
19&7), is a ground-based gas turbine engine
diagnostic system . Timing constraints in Sher-

lock are far less stringent, both in terms of the
required response time and theconsequences of
failing to meet the deadline . In both cases,
though, there is a requirement to produce the
best assessment within some reasonable time
frainc .

QRS is written in Common Lisp and has been
hosted on a variety of hardware platforms
(Symbolics, Sun, Compaq). The development
environment for pQRSt is a network of Sym-
bolics workstations (one XI-A00 and five
3640s) . Both the HELIX and Sherlock applica-
tions will serve as test applications for evaluat-
ing the system.

7 . Discussion

The proposed architecture for pQRSt satisfies a
key requirement for real-time computing that
is often missing in real-time AI applications :
predictability. By supporting time-constrained
and interruptible operation, this architecture
makes the QRS hierarchical diagnostic process
suitable for use in real-time status monitoring
and diagnostic systems . In addition, the exten-
sions designed to support parallel evaluation of
hypotheses should provide both improved per-
formance and greater flexibility in controlling
search .

Implementation of the pQRSt architecture has
been initiated . Experiments with the system
should help to answer questions about both the
number and configuration of processors re-
quired to achieve desired response times for
different applications . Further research must
build on related work on operating systems to
support real-time AI (Stankovie et. al . 1989)
and on planning the problem-solving process

L4 6

8. References

using approximate reasoning techniques (Less-
er et. al . 1988) .

Abbott, K. H: Robust Operative Diagnosis as
Problem Solving in a Hypothesis Space .
Seventh National Conference on Artificial In-
telligence, St . Paul, Minnesota, 1988 .

Davis, R. : Diagnostic Reasoning Based on
Structure and Behavior. Artificial Intelligence,
24, 1984, 347-410.

de Kleer, J . and Williams, B.C. : Diagnosing
Multiple Faults . Artificial Intelligence, 32,
1987,97-130 .

Doyle, R. I ., Sellers, S . M., and Atkinson, D. j . :
A Focused, Context-Sensitive Approach to
Monitoring. Eleventh International Joint Con-
ference on Artificial Intelligence, Detroit.
Michigan, August 20-25, 1989, 1231-1237.

Hamilton . T. P. : HELIX: An Application of
Qualitative Physics to Diagnostics in Ad-
vanced Helicopters . International Journal for
AI in Engineering, Vol. 3, No. 3, pp 141-150,
July, 1988 .

Hamilton, T.P: Applications of Qualitative
Reasoning to Aircraft Diagnosis and Mainte-
nance. Artificial Intelligence and Robotics
Symposium, June 16-17, 1987, Norfolk, jru-

ginia.

Lesser, VR.,Pavlin, P, and Durfee, E. : Approx-
imate Processing in Real-lime Problem Solv-
ing . AI Magazine, Vol . 9, No. 1, Spring, 1988,
49-61 .

Stankovic, J. A. : Misconceptions About Real-
Time Computing . IEEE Computer, VoL 21, No.
10, October, 1988, 10-18 .

Stankovic, J . A., Ramamritham, K., and Nie-
haus, D. : On Using the Spring Kernel to Sup-
port RealTime Al Applications, Proc . Euro-
Miern Workshop on Real-Time Systems, June
1989 .

