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Abstract

The problem of complexity has kept qualitative physics techniques from being applied to
large real-world systems . Use of a hierarchy of abstract models is crucial for managing
complexity . Several researchers have proposed ways to use an abstraction hierarchy of
models to control the complexity of qualitative simulation [Falkenhainer & Forbus 88,
Kuipers 87] . All the approaches proposed require models at pre-defined abstraction levels .
Furthermore, the precise relations between different models are not explicitly defined,
which makes it difficult to relate the conclusions drawn from different models to generate
one coherent description of the behavior of the system as a whole . In this paper, we
describe a scheme for generating models at abstraction levels appropriate for a given
problem without requiring pre-defined set of abstract models. We also propose means for
integrating behaviors produced from different abstraction models into one coherent
description .



1 . Introduction

When reasoning about the behavior of physical systems, having an appropriate model for a
given reasoning goal is crucial . One important factor in deciding the appropriateness of a
model is the grain size of the model. Unnecessary details in the model can make the
analysis much more complicated than necessary or even impossible. For example, a model
of atraveling train including its acceleration and deceleration ability is often unnecessary if
the goal is estimating the amount of time the train takes to travel between two cities .
Simply using the expected average speed of the train gives a good enough answer for most
practical purposes . Recent work on qualitative physics has also shown that the amount of
computation required to predict possible behaviors of a qualitative model grows
exponentially with the number of variables in the model [Davis 87, Kuipers 86] . The only
way even a moderately complex system can be simulated using qualitative reasoning
techniques is by suppressing unnecessary details with the use of abstract models.

Use of abstraction hierarchy has been AI's standard answer to the problem of
complexity for a long time [Simon 81, Sacerdoti 74, Hobbs 85, Friedland & Iwasaki 85,
Falkenhainer & Forbus 88, Kuipers 87].

	

In all such work, there are a fixed number of
pre-defined levels of abstraction, and an abstract model at each level must be carefully
prepared by a system builder and given to the system.' Unfortunately, many systems with
multiple abstraction models do not explicitly define what each level represents.2 In other
words, it is not clear what one is abstracting over when going from a fine model to a coarse
model because they do not make explicit the precise relation between different levels . As a
consequence, it is not always easy to decide when it is appropriate to reason at a given
level, or how best to combine conclusions at different levels .

In this paper, we propose a scheme for formulating an abstract model that does not
require pre-defined hierarchy of abstraction models . The goal is to clarify the notion of
model abstraction and provide a way to define abstraction levels explicitly which would
allow graceful integration of reasoning at multiple abstraction levels . Since the choice of
the right abstraction level depends on the purpose of reasoning, i.e. what question about
the behavior is one trying to answer, the approach described requires information about the
user's goal in terms of the behavioral aspects of interests such as temporal scope, grain
size, types of phenomena. The research described here is part of a larger effort towards
constructing a flexible device modeling environment, which, given a representation of the
physical structure of a device, can generate a model, analyze its behavior, and give an
explanation of the behavior.

Section 2 outlines the model-based reasoning component of the device modeling
environment. Section 3 illustrates some difficulties in reasoning with multiple models. We
argue that it is important to specify explicitly the dimension along which a model is
abstracted also to take the reasoning goals into consideration when generating abstract
models. Section 4 describes our scheme for generating process models of appropriate
granularity. Section 5 proposes two techniques for reasoning with adetailed model and an
abstract model at the same time . Finally, Section 6 gives a summary and discusses
problems yet to be solved to implement the approaches discussed in the paper.

'The system by Falkenheiner and Forbus is an exception in that its generates a process model given a structure

and a question .
2Except in Kuipers work, where abstraction is explicitly defined to be along temporal scale .



Model-based reasoning about device behavior

The central components of the device modeling environment (DME) are the model
generation, simulation, and explanation modules. Given a description of the structure of a
device and a question about its behavior, the system will generate a model of its behavior,
simulate it, and generate an explanation that answers the question appropriately. The model
generation module must, first, determine the appropriate level of abstraction to model the
device . Then, it will formulate a model at the level, which is given to the simulation
module to predict its behavior. Sometimes, the level selected initially must be changed or
multiple models must be employed if it becomes apparent that more detailed or abstract
behavior must be studied. In such cases, the system should be able to formulate different
models. Finally, when the system finishes analyzing the behavior, conclusions drawn
from different models must be integrated into a coherent explanation of the behavior of the
system as a whole.

The model generation module of the system currently being implemented is based
on Qualitative Process Theory [Forbus 84]. It has a library of physical processes, and
given a structural description of a system, it detects active processes and generates
constraint equations from them. In QPT, Forbus defines the concept of physical processes
as "something that acts through time to cause changes" . In our scheme, the concept of
processes is extended to include the following;

steady-state process:

	

Aphenomenon that does not result in an observable change
of state but that can.be said to occur in the same sense as dynamic processes of
QPT. Forexample, a steady current flow in a close circuit with a constant voltage
source such as battery represents a steady-state process if the flow does not result
in appreciable discharge of the battery.

instantaneous change:

	

Aprocess that happens over a very short period of time but
that results in an appreciable change in the state. Forexample, opening or closing
of a relay can be perceived as happening instantaneously for most purposes .

component function :

	

Component functions can also be described as processes
which activate when certain conditions are satisfied and cause changes in the state
of the world according to some constraints.

The types of phenomena listed above are represented as processes because they can
be represented and reasoned about largely in the same manner as QPT"s dynamic
processes. Furthermore, they actually represent the same physical phenomena as QPT
processes at different granularity . The distinction between steady-state process, dynamic
processes, and instantaneous changes is a matter of grain size . The same heat flow process
can be regarded as a steady state process if the period of interests is relatively short and the
heat source and sink capacities are large; as an instantaneous change that equates the source
and sink temperature if the temporal grain size observation is very large; and as a dynamic
process otherwise . This means that the same phenomena should be represented as
instantaneous, dynamic, as well as steady-state process in the knowledge base, and we
plan to do just this in ourknowledge base of processes.

Alternatively, one could try to make the system generate these alternative
representations of processes automatically from one representation . However, since the
information content of the different representations is not equivalent, such conversion is not
possible in general without additional information or assumptions. This is obvious from



the fact that one can obtain equilibrium equations from differential equations describing
dynamic behavior of a system while one cannot derive correct differential equations from
equilibrium equations without making some assumptions about how the system behaves
when disturbed out of equilibrium3.

Once a process structure is determined, the model generation module produces a
qualitative equation model by instantiating the constraints and influences associated with
active processes as well as objects. This set of equations and a description of the initial
state is given to QSIM [Kuipers 86] to predict the behavior.

In order for the system to generate models and to reason at appropriate levels of
abstraction, there are several issues that must be addressed:

How can one define abstraction levels in such a way that information about the goal
can be used to select an appropriate level?

How can one characterize different goals of modeling, i.e. the types of answers
sought by the question, in a way that will help select an appropriate abstraction
model?

How can conclusions at one level be related to conclusions at another level?

The next section discusses the difficulties of reasoning with multiple models in more detail
with an example.

3. Difficulty with reasoning with multiple models

We illustrate the difficulty of combining reasoning at different abstraction levels, using an
example of a rechargeable, nickel-cadmium battery. When we are interested in the behavior
of the battery over hours, there are two types of processes, charging and discharging,
whose preconditions and effects are given below. C represents the amount of electrical
charge currently stored in the battery, and CMAX is the maximum amount that can be
stored.

Charging-process
precondition : C <CMAX
effects : dCldt > 0

Discharging-process
precondition : 0 < C
effects : dC/dt < 0

Let MNICD-0 denote the process model at this level of detail .
MNICD-0 = {Charging-process, Discharging-process)

If we observe the behavior of the battery over a large number -- thousands -- of
charge-discharge cycles, the maximum capacity of the battery slowly decreases . This
phenomenon is called aging.

3 de Kleer and Brown derive dynamic behavior using confluence equations obtained by differentiating algebraic
equations . However, they do so under the assumption that the system is quasi-static -- the relation represented by
each equilibrium equation is always maintained [de Kleer & Brown 841.



Aging-process
precondition

A large number (> 1000) of discharge-charge cycles take place.
effects : dCMAX/dt < 0

Let MNICD-1 represent the model at this more abstract level, containing the aging process
but not the individual instances of charging and discharging processes .

MNICD-1 = {Aging-process}

In MNICD-0. CMAX is a constant and will remain so forever, while MNICD-1
predicts that CMAX will decrease steadily . If we wish to use both models to predict the
behavior from hour to hour over a period of several weeks, we must find a way to combine
the conclusions from different models into a coherent explanation of the behavior . There
are several causes for the difficulty :

(1) There is no precise definition of what is meant by a more "abstract" model. This
leads to the following two problems :

(2) The scope of applicability of each model is not clear .

(3) There is no way to compare and relate the conclusions from the two models based
on the represented information .

In Following Section 3.1, we argue that the dimensions of abstraction must be specified
before we can define levels clearly . Section 3.2 discusses the importance of reasoning
goals for choosing abstraction dimensions and levels .

3.1 Dimensions of abstraction

One reason that it is not clear what each level in an abstraction hierarchy represents is that
there are many dimensions along which a model can be abstracted, and often each "step up"
in the hierarchy of models can involve abstraction along several dimensions though it is
seldom explicitly stated as such . Some important dimensions are;

structural :

	

Abstraction by lumping together a group of components that are
physically close .

functional:

	

Abstraction by lumping together a group of components that
collectively achieve a distinct function .

temporal :

	

Abstraction by ignoring behavior over a short period of time.

quantitative :

	

Abstraction by ignoring small differences in variable values .

These dimensions are not necessarily independent . For example, structural
abstraction often resembles temporal abstraction because physical proximity tends to
correspond to the speed of interaction between parts of a system. In defining abstraction,
the first thing which must be determined is the primary dimension along which to abstract.
In our effort to define abstraction clearly, we will initially concentrate on abstraction along
one dimension, namely temporal . This means that abstraction levels of models will be
defined in terms of their temporal grain size . The temporal grain size will be defined more
precisely in Section ??. For now, we will just state that it is the unit of time such that any



change taking place over a time period smaller than the unit will be considered
instantaneous . We will denote the temporal grain size of model Mby TM, where TM is
measured in log scale of seconds. In other words, if TM = n, M is a model formulated by
ignoring any time delay smaller than to^n seconds. M describes behavior in terms of
changes that can be observed at this temporal grain size . Any changes that take place in
much less time will be considered instantaneous while any changes that take place over a
much (orders of magnitude) longer period of time will be ignored in M.

3.2 Explicit representation of the reasoning goals

Any reasoning activity has some explicit or implicit purpose, in light of which the quality of
the outcome must be judged relative to the goal . In the case of model formulation, the
quality of a model must be judged relative to the particular types or aspects of behavior one
wishes to study. Therefore, information about the user's goal should be used to decide
what kind of model to formulate. In our scheme for model generation, the natural place for
incorporating this information is while selecting the relevant set of processes . We will
develop a simple language which a user can use to characterize his/her goal in terms of the
types and aspects of behavior of interest . Some relevant characteristics are;

" types of question: For example, determining stability, comparative statics, dynamic
transient behavior .

" types of phenomena of interests : For example, electrical, thermodynamic, structural,
kinetic.

" precision required: The degree of quantitative precision required for the answer.
What orders of magnitude change in variable values are negligible or significant?

" temporal grain size : The degree of temporal precision desired for the answer. Is one
interested in the changes from second to second or from day to day?

" temporal scope : The length of the time period over which the behavior must be
analyzed . Is one interested in the behavior over a few seconds or over years?

Eventually, the system should be able to determine heuristically the appropriate temporal
grain size and scope for the model using these characteristics of the user's goal, if such
information is not provided explicitly . For the purpose of this paper, we will assume that
the desired temporal scope and the grain size as well as the quantitative grain size have
already been determined.

4. Selecting a process model

Once the desired grain size and the temporal scope for a model and the quantitative grain
sizes for variables are determined, the first step in formulating a behavioral model is to
select the set of processes to be considered for inclusion in the model. For this, one must
determine the grain size of each process. Let vl be the variable whose value is directly
influenced by a dynamic process P. The temporal grain size of P denotes the time required
for the change in vl caused by P to become non-negligible -- i.e . larger than the granularity
required for vl . Let s(vl) represent the grain size of vi, and r(P) be typical rate of change
in vl caused by P. We can compute the approximate temporal grain size of P as s(vi)/r(P) .
Since it may not be possible to specify r(P) precisely, the grain size is likely to be a range in
orders of magnitude. For some processes such as traveling light, it is possible to know
r(p) precisely. For other processes, it cannot be determined a priori, because it depends on



other parameters. For example, heat conduction rate between two objects depends on their
temperature difference . Such processes will be assigned r(P) with a large interval . Thus,
every process in the knowledge base will lie in some interval along the entire range of
temporal grain sizes as shown in Figure 4-1 .

p0
P

p4

grain siz

Figure 4-1 : Processes with temporal grain sizes.

Given this knowledge of processes associated with approximate temporal grain
sizes, and the desired temporal and quantitative granularity for the problem, the system will
generate a process model as follows:

1 . For a given grain size no, classify the processes into the following three
categories ;
slow :

	

Processes whose grain sizes are much larger than no.
medium:

	

Processes whose grain sizes include no.
fast :

	

Processes whose grain sizes are much smaller than no.
The processes in the slow category are ignored because they have no detectable
effect within time period of interest . The processes in the fast categories are
treated as instantaneous processes with no time delay. Thus, they can cause
discontinuous changes in variable values . The processes in the fast and
medium categories form the process space with respect to the grain size no and
denoted by Sp(np) .

2. From Sp(np), find all the processes whose preconditions are satisfied with
respect to the current state of the structure. Instantiate these processes.

3 . Generate equations from the description of functional relations and effects
associated with the instantiated processes.

4. Perform orders of magnitude reasoning [Raiman 86] to determine the
approximate rate of changes of processes. Use this information to refine the
temporal grain sizes of processes.

5. Repeat steps 1 through 4 with the refined grain size information until the model
no longer changes.

The idea of classifying processes into the three categories is based on the theory of
aggregation [Simon &Ando 61, Iwasaki & Bhandari 88]. By differentiating among long-
term, short-term, and middle-term phenomena, attention can be directed to the dynamics of
specific subsystems without dealing with the entire system at once, reducing the degree of



complexity one must deal with when reasoing about the behavior of a dynamic system .
This procedure will produce an equation model of the desired temporal grain size in
multiple iterations . In each iteration, the estimates of the grain sizes of the processes are
improved to refine the model to fit the desired granularity . We believe this is similar to the
way humans build models. People rarely build a right model the first time, but a model's
failure to produce the expected behavior enables them to detect its inadequacies and to
improve it subsequently .

5 . Reasoning with multiple models

When the temporal scope of interest is large compared to the temporal grain size, it will be
necessary to take into consideration processes whose temporal grain sizes differ greatly .
When processes of significantly different granularity must be taken into consideration, it is
better to create separate models of different grain sizes than to create one large model.
Creating separate models, each consisting of processes of similar granularity, helps to keep
each model small -- therefore, to keep the complexity in reasoning about the behavior
down. However, having multiple models requires conclusions drawn from different
models to be integrated into one coherent description of behavior.

Consider the situation, where a block is continuously sliding right and left on a
surface along the x axis as shown in Figure 5-1 . Suppose that at the level of abstraction 1,
there are processes block-moving-right and block-moving-left:

Block-moving-right-process
effect :

	

dx/dt > 0
granularity : 0

Block-moving-left-process
effect : dx/dt < 0
granularity: 0

Let B 1 be the process model containing these two processes .
B 1 = { Block-moving-right-process, Block-moving-left-process }

Suppose further that the surface of the table slowly wears out as the block moves
back and forth many times . Thus, the block gradually sinks . This is represented in the
following process;

Surface-wearing-out-process

Figure 5-1 : Sliding block



precondition :
a large number (> 1,000) of block-moving-right and block-
moving-left processes

effect:

	

dy/dt < 0
granularity: 4

LetB4 be the model containing the surface-wearing-out processes.
B4 = (Surface-wearing-out-processs)

If we are interested in the behavior at grain size 1 over a period of more than 10^4
seconds, we must use both models . The first model, B1, will predict that y stays constant
for any length of time. While the second model, B4 will predict that y decreases . The
conclusions of the two models contradict each other. Unless we find means to
communicate the conclusions at 'one level to other levels, the behavior predicted at each
level will continue to diverge. In this example, the block in B1 will continue to move back
and forth at the same y coordinate forever, while the block in B4 will continue to sink . In
the following sections, we propose two methods for handling such interactions between
quantities at different levels in order to allow graceful integration of reasoning at multiple
levels .

5.1 Use of relative value measurement

One way to avoid contradictory conclusions about one quantity being drawn from different
levels is to redefine the variables in the finer grain size model to represent the relative value
with respect to the same variable in the coarse model. This is similar to the use of local
coordinate systems in spatial reasoning. When describing the motion of a finger, it is easier
to do so relative to the coordinate system attached to the hand . The movement of a hand
with respect to the arm is described in the coordinate system attached to the arm. Thus, the
movement of a finger with respect to the arm can be computed by combining the two
descriptions .

In the example of the sliding block, we will fast reason at level 1, which predicts y
= 0 for all time. When we introduce B4, we can change the interpretation of y in B 1 . y in
B1 originally represented the coordinate position of the block with respect to some global y
axis . Now, y in B1 represents the displacement with respect to y in B4. If we need to
know the y position of the block with respect to the global coordinate system, we can
compute it from the values of y in B4 and of y in B1, and its new interpretation . This
technique is useful when processes in a finer model cause rapid fluctuation in the value of a
variable, while in the long run the variable moves in the general direction determined by
long-term processes .

5.2 Changing landmark values

Using relative value does not solve all the problems. Consider, again, the rechargeable
battery example in Section 3. The detailed model will predict that CMAX remains constant,
while the more abstract model will predict the level decreases over many charge-discharge
cycles . If we interpret the change in CMAX in MO to be the change in the displacement of
CMAX in MO with respect to that in M1, and the value ofCMAX in MO to be CMAX in
M1, the predictions by the two models can be interpreted without contradiction . However,
when the aging process of the battery finally causes CMAX to become 0, the more detailed



model must detect that the conditions for the charging and discharging processes can no
longer be satisfied.4

In the sliding block example, the long-term process, surface-wearing-out, did not
interfere with the short-term, horizontal movement of the block. However, in other
situations, changes caused by a long-term process can affect activity of short-term
processes. This interference of long-term and short-term processes happened when a
change caused by long-term processes invalidates an assumption about the ordering of
landmark values implicit in the definitions of short-term processes . For example, the
definition of charging process in Section 3 makes implicit assumption that CMAX > 0,
where CMAX and 0 are both landmark values ofC.

The quantities that act as landmark values at the finer level are treated as constants at
the level. However, in the longer-term behavior, these quantities may change, altering the
ordering among such landmark values . If the conditions for short-term processes implicitly
assume certain ordinal relations among landmarks, whenever a change in the ordering is
detected in a coarse model, the preconditions of short-term processes should be
reexamined .

In order for this to take place, the following must be enforced:

1 .

	

In process definitions, one must make explicit the assumptions about the ordinal
relations among symbolic constants (i.e . the landmark values) that appear in the
preconditions .

2.

	

When a coarser model treats as a variable a quantity which is a landmark value in
a finer model, the quantity space of the variable must include the constants whose
ordinal relations with the quantity are among the assumptions described in 1 .

In the battery example, an implicit assumption in the precondition of the charging process
in MO is that CMAX > 0. The quantity space of CMAX in M1 should include 0. When
CMAX reaches 0, this fact can be detected by M1 and communicated to MO, which can
reexamine the preconditions of the charging process to discover that it can no longer be
satisfied.

6 . Summary and Discussion

This paper discussed difficulties involved in generating models of appropriate granularity.
In order to limit the size of a model and the complexity of reasoning about its behavior, it is
important to formulate a model that is focused on the behavior of interest instead of using a
comprehensive, complex model. Therefore, it is essential to make use of the information
about the user's goal in terms of the grain size and scope of the behavior of interest. The
paper proposed an approach for generating a model at an appropriate temporal grain size
given such information.

When the temporal scope of the behavior of interest is large, it becomes necessary to
formulate and reason with multiple models each of different granularity. The paper
discussed ways to integrate potentially conflicting conclusions about behavior drawn from
such models into one consistent description of behavior.

4 This is basically the same problem as that of noticing interference from other processes Weld discusses in his
work on aggregation. [Weld 861.



A number of problems remain to be solved before these approaches can be fully
implemented. We do not have good answers to questions of how to automatically
reformulate a process description so that a variable will represent a relative value instead of
an absolute value or even of deciding when it is appropriate to do so. We hope to gain
insights into these questions by experimenting with these approaches within the Device
Modeling Environment . DME is currently being implemented by How Things Work
project at Knowledge Systems Laboratory using CYC [Lenat & Guha 90] and QSIM
[Kuipers 86] .

The discussion in this paper focused on temporal dimension as the abstraction dimension,
but it is only one of many possible dimensions along which an abstraction hierarchy can be
constructed . In the future, we hope to generalize our approach by extending it to other
dimensions .
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