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ABSTRACT

This paper presents a methodology for integrating common-sense
and qualitative simulation of physical systems by the use of Fuzzy Sets .
This allows a semi-quantitative extension to qualitative simulation that
provides three significant advantages over existing techniques . Firstly, it
allows a more detailed description of physical variables, through an
arbitrary, but finite, discretisation of the quantity space, thereby reducing
qualitative ambiguity at source. The adoption of Fuzzy Sets also allows
common-sense knowledge to be utilised in defining values through the
use of graded membership. Secondly, the fuzzy quantity space allows
more detailed description of functional relationships in that both strength
and sign information can be represented by fuzzy relations held against
two or multi-variables . Thirdly, the quantity space allows ordering
information on rates of change to be used to compute temporal durations
of system states and the possible transitions. Thus, an ordering of the
evolution of the states and the temporal durations is obtained. This
knowledge is used to develop effective temporal filters that significantly
reduce the number of spurious behaviours. Experimental results with
the method are presented and comparison with other recently proposed
methods is made.
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1. Introduction
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The research strategy for developing qualitative reasoners has as its main aim the
development of a qualitative mathematics capable of yielding significant results consistent
with the purpose of a system model from a minimum of information . However, the weak
description of values, the lack of quantitative information, and no explicit temporal informa-
tion often leads a qualitative analysis to ambiguities [10, 11, 12, 13, 14], resulting in the
generation of many spurious behaviours of the system. Thus, an extension to current quali-
tative simulation methods based on well-developed mathematical techniques, to make them
capable of capturing and using both sign and strength information on the magnitudes and
rates of change of the system variables being modelled, would greatly enhance the
effectiveness of qualitative reasoning for approaches where such information is available .

This paper presents a methodology for integrating common-sense and qualitative simu-
lation of physical systems based on the use of Fuzzy Sets [5, 6, 19] . This gives an arbitrary,
but finite, discretisation of the representation of system variables, thereby reducing the quali
tative ambiguity at source . The method allows the subjective element of common-sense
knowledge to be incorporated within a formal algorithm for generating behaviour from a
structural model, hence, combining theoretical knowledge [9], in the form of modelling con-
straints, and empirical knowledge, in the interpretation of system values . Also, the use of
Fuzzy Sets allows a rigorous approach to capturing uncertainty and provides a unifying
framework from which other recently developed techniques can be generated as specializa-
tions . It synthesizes the previously disparate fields of qualitative simulation and Fuzzy Sets,
both of which were introduced to cope with the complexities found in reasoning about the
behaviour of physical systems. Further, such a representation provides ordering information
on the rates of change of variables, allowing a temporal duration to be calculated. In so
doing, it produces an estimate of how long the system remains within a particular state
and/or when a state transition occurs. Thus, an ordering of the evolution of system states
and the temporal durations is obtained. This makes qualitative simulation much more suit-
able for use within application systems, such as diagnosis, control, and training.

2 . Representation of Qualitative Values and Constraints
The choice of representation of physical quantities plays a critical role in qualitative

modelling. We exploit fuzzy qualitative values to provide a semi-quantitative extension to
the quantity representation of both magnitude and derivative of a system variable. A fuzzy
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qualitative value of a system variable is a fuzzy number chosen from a subset of normal
convex fuzzy numbers [5] . This subset is generated by an arbitrary but finite discretization
of the underlying numeric range of the variable . A set consisting of all the elements of such
subsets, for all the variables in the system, is called afuzzy qualitative space and written as
QF . The real number zero is required to belong to QF.

A computationally efficient way to characterise a fuzzy number is to use a parametric
representation of its membership function. The membership distribution of a normal convex
fuzzy number, expressed by a 4-tuple, [a, b, a, (3], is defined as

0 x<a-a
a1(x-a+a) xE[a-a,a]
1

	

x E [a, b]
P-1 (b + P - x)

	

x E [b, b + R]
0

	

x>b+P.

The arithmetic operations for these fuzzy numbers are well-developed [2], and we adopt
such a representation to form the QF.

As the fuzzy qualitative space QF is generated by a finite discretization of the underly-
ing range of each system variable, the variable will, of course, have a finite number of asso-
ciated qualitative values, and the whole underlying numerical range of interest can be
covered by the fuzzy qualitative values. Also, if x 1, x2 E R

	

characterize "similar things" or
stand for "similar properties" of a variable x, then the relevant qualitative values of x 1 and
x2 will be similar. Hence, we can translate a subset of a numeric range to one qualitative
value according to what is needed in a particular modelling process.

Such a representation of qualitative values is more general than ordinary (crisp) interval
representations, since it can represent not only the information stated by a well-determined
real interval but also the knowledge embedded in the soft boundaries of the interval . This is
achieved through the description of a gradual rather than an abrupt change in the degree of
membership of which a physical quantity is mapped onto a particular qualitative value.
Hence, it is closer to our common sense intuition of the description of a qualitative value.
For instance, using the crisp intervals whose characteristic functions are
~LB (x), B E [zero, small, medium, big ), shown in figure Lb, 40 belongs to [40, 80] named
medium while 39 does not. Whereas, in the fuzzy qualitative space shown in figure La, 40
belongs to medium with a strength or membership equal to 1.0 and 39 belongs to medium
with a membership 0.9 . Notice, however, that 39 also belongs to the set small with a
membership 0.05. This non-exclusivity of values is an important aspect of fuzzy sets and,
again, is important in capturing our common sense intuition .

In common with conventional qualitative simulation, three classes of operations can be
performed, i.e ., algebraic, derivative, and function relational operations, within a fuzzy quali-
tative space QF . However, the semi-quantitative description of quantities presented by the
fuzzy numbers allows a much more flexible method for capturing functional information,
allowing strength as well as sign information to be represented if indeed such information is
available.

An expression of the form

Q(z) =f (Q (x ), Q (Y)),

	

Q (x ), Q(Y), Q (z) E QF,

is called a relevant constraint on the system variables x, y, and z ; where x and y are called
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constraining variables, z is called a constrained variable . Both constraining and constrained
variables take values from the fuzzy qualitative space QF . By a constrained variable, we do
not mean that there exists a causality between the variable and the constraining variables in
the constraint, but rather that the directionality of solving a fuzzy equation is fixed. In fact,
if we know the values of the constraining variables, we can obtain the value which the con-
strained variable should take by simply performing the operation on the values of the con-
straining variables . However, we cannot, in general, find an unknown value of a constrain-
ing variable by solving the equation as we can do in solving numerical equations. For-
tunately, by restricting QF to be finite and closed, we can use the constraints to test the con-
sistency of the sets of possible solutions. The approximation principle [1, 19] is, therefore,
used to ensure that QF remains closed .

Fig. 1 . Comparison between Fuzzy and Crisp Quantity Spaces
When f is an algebraic operator, the formulae for the associated arithmetic operations

are those in the set of 4-tuple parametric fuzzy numbers [2] . For example, if
m = [a, b, ti, (3], n = [c, d, y, S], then,

m + n = [a+c , b+d, r+y, P+-S],

	

m - n = [a-d, b-c, ti+S, ~-I] .

A simple example can illustrate how arithmetic constraints serve to limit a set of the
possible values that a variable can take . Suppose that a system has three variables, x, y, z,
and that they satisfy

Q(z)=Q(Y)-Q(x) .

For simplicity, it is assumed that these variables have the same underlying numeric range
[-1, 1] and take values from a fuzzy qualitative space,
QF = (-big, -medium, -small, zero, small, medium, big), where each qualitative value is
defined by a 4-tuple parametric, normal and convex, fuzzy number [a, b, a, P] shown in
figure 2. If we know, at the beginning, that the values of the constraining variables x and y
are Q (x) = small and Q (y) = big, but the constrained variable z might be any value Q (z)
in the QF, then, through the relevant constraint, we will have

Q (z) = [0.9, 1, 0.1, 0] - [0, 0.2, 0, 0.2] = [0.7, 1, 0.3, 0] .

Since [0.7, 1, 0.3, 0] does not belong to QF , the approximation principle is used to ensure
QF remains closed. The use of this principle consists of two major steps. First, by check-
ing if an element in QF intersects with A = [0.7, 1, 0.3, 0], the set,
AQF = ( small, medium, big ), is generated [12, 13] . Then, distances [1, 13, 14] between A
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and A, A E AQF , are evaluated and the results are : D = { 1 .53, 0.6, 0.63) . It follows that

big - small = medium .

Fig . 2 . A Fuzzy Qualitative Space
This example clearly shows that the ambiguity with regard to conventional sign algebra

is significantly reduced. Even in the case where we could not tell the difference between 0.6
and 0.63, only two values can be the result of the calculation big - small, namely, medium
and big . Also, this result is well-suited to our common sense calculus and, from one aspect,
reflects the fact that the problem of order of magnitude reasoning [11] can be automatically
solved by propagating qualitative values through fuzzy algebraic constraints .

As with any simulation language for dynamic systems, differential operation is essential
for determining the transient behaviour of the system. Within the simulation it provides a
memory operation that accounts for energy storage in a physical system. A derivative con
straint, here, simply represents that the qualitative value of the magnitude of a variable y
must be the same as that of the rate of change of a variable x . Thus, the derivative of a
variable can take any value on a pre-specified subset of the QF , thereby, allowing ordering
information on the rates of change to be represented.

Current qualitative simulation techniques model functional dependencies as monotoni-
cally increasing or decreasing functions . Also, corresponding values are defined and used to
restrict certain values to be related. These functions allow partial knowledge of the relation
ship between variables to be represented . However, for many applications, these are often
too weak as they do not allow any information on the strength of a relationship that is
known to be utilised. The use of a fuzzy qualitative space allows qualitative function con-
straints to be represented as fuzzy relations [5] . This enables partial numerical information
to be utilised within functional dependencies, thereby providing a uniform technique capable
of representing the range of functional dependencies from complete numerical characteriza-
tion of constraints to purely qualitative values .

Through fuzzy representation, for example, a rule with the form:
if x is Ai , then if y is Bi , then z is Ci ,

	

A; , B i , Ci E QF ,

can be translated into a fuzzy relation [5, 19]

Ftc,(x , y, z) = min (gA;(x ), 9B, (y ), Iic, (z ))-

When a set of n fuzzy rules is available, the resulting relation L is the union of the n ele-
mentary fuzzy relations Li , i = l, 2, . . ., n .



gL (x , y, z) = .

	

max

	

min (ggA ; (x ), PB; (y ), gC; (z )) .
l F(1,2, . ..

If the constraining variables x and y take fuzzy values A ' and B', respectively, the fuzzy
value C ' of the constrained variable z is obtained by applying the compositional rule of
inference [5, 19]

C' =(A' XB')oL.

This allows constraining variables to be mapped onto the constrained variables in a semi-
quantitative way and makes it possible to represent functional relationships held against
multi-variables, making effective use of as much information about the functional dependen-
cies as is available .

3 . States and State Transitions
For a given system variable x, the fuzzy qualitative state of x within a duration ATP ,

QS (x, ATP ), is a pair <A, B >, A, B E QF, where A denotes the fuzzy magnitude and B
the fuzzy rate of change of x . Following the terminology in [4, 17] ATP is called the per-
sistence time of x in this fuzzy qualitative state.

In general, both the extent of the fuzzy magnitude A and the fuzzy rate of change B
will indicate the persistence time, which, in principle, should also be fuzzy [15] . However,
based on the resolution identity [6] a (crisp) interval, within which a persistence time may
lie, can be calculated by the following rules [12,

	

13], where A = [P 1, P 2, P 3, P 4] , B a
denotes the a-cut of B [5], and a is a degree of freedom:

(1)

	

If 0 EB a, then ATP E P 2

	

+ (1 - a)(P 3 +P4),

	

B ,

	

B >a_P1

	

0,

IB la

	

where IB i =

	

-B,

	

B <a 0;

(2)

	

If B = 0, then ATP = -;

(3)

	

If 0 e Bag and a * 1, then ATp is not well-determined, any length of time may
elapse .

In the rule (1) above, the partial order <a is such defined that for A, B E QF , A * B,
we say A is a-less than B, A <a B, iff a < b, a E A a, b E B a with A a and B a being the
a-cuts of A and B, respectively .

For instance, if we know that, in the quantity space given in figure 2, a variable x stays
in the state <small, medium >, and that a = 0.5 is used to calculate the a-cuts, then, the per-
sistence time of x staying at its current state lies in [0.125, 0.286].

	

Clearly, the persistence
time obtained in this way presents a description of the amount of time within which a vari-
able may remain in a particular state, although usually giving only a possible range.

A state transition happens when a system variable x changes from state
QS (x , ATP 1) = <A,, B j> to QS (x , ATp 2) = <A 2, B 2>, A,, A 2, B 1, B 2 E QF . Four kinds of
transitions are possible :
(1)

	

A 1 = A2, B 1 = B 2 -- Null-transition;
(2)

	

A 1

	

A2, B 1 = B 2 --- M-transition ;
(3)

	

A 1 = A 2, B 1 * B 2 --- R-transition;
(4)

	

A1 *A2, B 1 * B 2 --- MR-transition .
Like previous methods our qualitative simulation, integrating with common-sense, is

based on the fundamental assumption that the variables of the physical system being



modelled are continuously differentiable functions of time . Thus, possible state transitions,
e.g ., for a variable x to change from QS (x, ATP ,1) = <A 1 , B 1> to QS (x, ATP ,2 ) = <A 2 , B2>,
can be represented by a set of rules -- called the possible state transition rules . Within these
rules given below, A 1 and A 2 (or B 1 and B2) are the a adjacent qualitative values of each
other. We call A and B the a adjacent qualitative values of a variable iff there does not
exist a C, which belongs to the subset that the variable takes values from, such that
A <a C <a B if A <a B .

The following are the possible state transition rules :
(1)

	

If B1 >a 0 (B 1 <a 0), then
if A 1 E R, then A 2 >a A 1 ( A 2 <a A 1 ),
else A 2 Za A 1 ( A 2 sa A 1 );

(2)

	

If B t = 0, then
if A2za A,(A25a A,),then B 2 >a 0(B2<a 0),
if A 2 = A 1, then B 2 E {0, X, Y ), where X and Y, are the a adjacent qualitative
values of 0;

(3)

	

If A 2 = 0 and B2 >a 0 ( B2 <a 0), then A t <a 0 ( A1 >a 0).
The time that a variable x takes to transition from one qualitative state to another has

been called the arrival time [17], written as AT, As with the persistence time, the arrival
time should also be a fuzzy number. Consequently, to determine the arrival time we use a
similar formula to that previously used for calculating the persistence time [13] :

4. Filtering
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For a Null-transition or an R-transition, i.e ., <A, B 1> to <A, B2> with B 1 = B 2 or
B 1 *B 2 respectively, ATa = 0;

(2)

	

For

	

an

	

M-transition,

	

<A,, B>

	

to

	

<A 2 , B>,
A 2 = [q 1, q 2, q 3, q 4], the rules to calculate AT, are

ql - P2+ (a- 1)(q3 + P4)(i) If 0 E Ba, then

	

ATa E

	

IB la

	

.

(ii) IfB = 0, then ATa = -;

A 1 = [P 1 , P2 , P3, P41

	

and

(iii) If 0 E B., and a * 1, then ATa is not well-determined, any length of
time may elapse .

(3)

	

For an MR-transition, <A 1 , B t> to <A 2, B2>, let B = B2 - B 1 , then, the rules to cal-
culate ATa are the same as those in case (2) .

From the possible state transition rules, a set of transitions from one qualitative state
description to its possible successors, or next states, can be generated. Further restrictions
on the possible successor states can be imposed by checking for consistency with the
definition of the constraints and the consistence between constraints which share an argu-
ment -- called constraint filtering, and information on the rates of change of the system vari-
ables held as part of the fuzzy qualitative state -- called temporal filtering . In addition, other
knowledge about the system being modelled may be used to produce so-called global filter-
ing methods .

The Waltz filtering algorithm [16] is used to efficiently realise the constraint filtering.
The algorithm entails an operation, called refine, on each relevant constraint and each



argument of the constraint over and over again until the filtering rule produces no more
changes [3] .

	

In general, let C : C (Q (xi )), i = 1, 2, 3, be a relevant constraint among three
arguments : Q (xi ), though Q (xi ) may be equal to Q (xj ), i * j .

	

And, let Si be the set of
qualitative values for the argument Q (xi ) . Then, the refine operation is defined by

refine (C, Q (xi )) = [Ai e Si	I (Aj e Sl , j = 1, 2, 3, j * i ) ; C (At ), k = 1, 2, 31 .

Thereby, for each variable, the result of the fuzzy constraint filtering is a reduced set of its
possible transitions.

The possible successor states survived from the constraint filtering are further checked
by using the estimates of the persistence time and the arrival time . The following are the
temporal filtering criteria :
(1)

	

Persistence time filtering rule: for any two system variables, x and y, if the per-
sistence time of x >a (=, or <a) than the persistence time of y, then, if x is indepen-
dent of y, x will change (if any) only after (will change at the same time as, or will
change before) y does under the condition that prior to the current state, x and y
existed for the same amount of time ; otherwise, x and y will change at the same
time, after the system has remained within current state for the persistence time of
Y

	

(x ).
(2)

	

Arrival time filtering rule: for any two system variables, x and y, if the arrival time
of x is >a (=, or <a ) than the arrival time of y, then, if x is independent of y, x will
arrive (if any) only after (will arrive at the same time as, or will arrive before) y
does at the next state under the conditions that prior to the current state x and y
existed for the same amount of time and they have the same persistence time in the
current state ; otherwise, x and y should arrive the next state at the same time, after
the system has spent the arrival time of y (x ) .

In the above filtering rules, a system variable x being independent of another variable y
means that, in the physical structure of the system, there is neither any relevant constraint
between x and y nor any constraints associating x and y through other system variables to
force x to change together with y, or that, although there is a given constraint related x and
y, x is controlled by an external object of the system such that it will not affected by the
internal variable y .

These temporal filters are rather powerful because they utilize ordering information on
the rates of change of system variables . In fact, the order relationships among fuzzy qualita-
tive rates of change reflects additional knowledge about the higher-order (Z 2) derivatives of
the variables . In this way, temporal filtering is one of the most important extensions to
current qualitative modelling techniques.

After constraint and temporal filtering, the complete state descriptions are generated .
However, the set of next states may still contain a number of spurious behaviours and, there-
fore, be non-unique . A complete state description is only a mathematical assignment of a
possible transition to each variable in the system without conflicting with the constraint and
temporal restrictions . Some of these behaviours may be eliminated by knowledge of system
theoretic properties of the real behaviour or other, often heuristic, information from external
sources .

We utilise two global filtering methods in the simulation by checking for no-change
and repeating . A no-change means that the new state is identical to its immediate predeces-
sor and, therefore, can be deleted in the simulation . By a repeating state we mean the new
state is identical to a state of its predecessors but not the immediate previous one, or



identical to one of the other successors of its predecessors, which is not in the branch ended
with it. When such a state is met the behaviour is marked as repeating and no further next
state is generated from it.

In general, we conjecture that the extra information contained within the fuzzy quantity
space, i.e ., extended state representation, ordering information on rates of change, and
strength information on functional dependencies, eliminates many spurious behaviours at
source, and, therefore, obviates the need for extensive global filtering beyond the no-change
and repeating filters. So far, our empirical results have justified this assertion.

5. Experimental Results
The fuzzy qualitative simulation method has been implemented in the Quintus Prolog

language on a SUN 3 workstation with 16M bytes of RAM, the man-machine interface is
realised by using the Prowindows graphics extension. The results given in the following are
those obtained by directly running the program.

Consider a simple system, "a mass on a spring", as depicted in the first sub-window
within figure 3. The figure is a screendump of the major interface window, automatically
produced at the first stage of the simulation . This system consists of three variables: the dis
placement of the mass from the rest point of the spring, x, the velocity of the mass, v, and
the acceleration of the mass, a .

Variables Lsr_11mits up-limits
a n-b10, p-blp

V tiblp p-big
a n-big p-big

Initial State :

	

ea ©r^__10
Variables NagaltWes Cbsngs_ratss

a o_aadiua sets

Fig. 3 . The Major Interface Window of the Simulation of a Mass on a Spring
The following set of 4-tuple parametric fuzzy numbers was chosen to form the fuzzy

quantity space:

QF = [[-l, -0.7, 0, 0.1], [-0.6, -0.6, 0, 0], [-0.5, -0.1, 0.1, 0.1],

[0, 0, 0, 0], [0.1, 0.5, 0.1, 0.1], [0.6, 0.6, 0, 0], [0.7, 1, 0.1, 01 },



QF

with respective names given in the second sub-window in figure 3, which corresponds to the
perceived meaning . For sake of notational simplicity, the QF is represented by

(-b, -0.6, -s, 0, s, 0.6, b } .

The physical constraints in the system can be characterised as follows

The first and second equations establish the ordinary derivative relationships holding
amongst the distance, velocity, and acceleration of the mass . The third functional relation
between a and x is a very weak form of Hooke's law represented as a degenerated fuzzy
relation [ 12] .

The ranges of the magnitudes and the initial conditions of all system variables are
shown in figure 3 under the heading "Value Domains" and "Initial State", respectively . The
initial state indicates that the mass is moved away from the equilibrium point, x = 0, to
x = 0.6 > 0, and then let go . The simulation programme takes the description of the fuzzy
system structure and this initial state as input, and starts the simulation of the system. For
this particular system, we are not concerned about the possible behaviour of the rate of
change of the variable a . Thus, behaviours only different in the possible values of the rate
of change of a can be treated as one. Figure 4 shows one cycle of the unique behaviour for
each system variable produced by the simulation. Within the experimental simulation we
chose a = 0.5, which is used to exhibit how a real number typically belongs to a fuzzy qual-
itative value [5, 12, 13] .

b

	

b

	

b
0 .

	

0.6
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o-t is ofia t4 is ti t,

	

t
S
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-0 .6F °-"A- -0 .6F o-

	

-0 .6+-

Fig . 4 . A Cycle of the Behaviour of "a Mass on a Spring" System
It is very important to notice that, in figure 4, the temporal points (to, t 1, . . ., t8) satisfy

the following expressions [12] :

deriv x = v, deriv e = a,

"a x -b -0.6 -s 0 s 0.6 b
-b 0 0 0 0 0 1 1
-0.6 0 0 0 0 1 1 0
-s 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0
s 0 1 1 0 0 0 0
0.6 0 1 1 0 0 0 0
b 1 1 0 0 0 0 0
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t o = 0,

	

t l E [0.09, 1],

	

t2 E [0.63, 2.5],

	

t3 E [0.72, 3.5]

	

t4 F- [1 .26, 5],

is E [1 .35, 6],

	

t6 E [1 .89, 7.5],

	

0 E [1 .98, 8.5],

	

t8 E [2.52, 10] .

Thus, from the fuzzy simulation method, we can determine the time within which system
state changes to a new state.

	

In fact, a sequence, {OTpr , OTA, I i = 0, 1, . . ., 7}, which
represents the supremum supersets of the persistence times and arrival times of the system
states, respectively, can be generated as follows:

[0, [0.09, 1], [0.45, 0.5], [0.09, 1]} i ,

	

i = 1, 2, 3, 4.

Consider in two detailed samples.. Firstly, the persistence time, determined by the rule
of calculating persistence times, for the system (x, v, a) to remain within state
(<s , -s >, <-s , -s >, <-s , s >) lies in the range [0.45, 0.5]. For instance, the variable x stays
within this state <.s , -s > for a duration :

OTp I(x) E
0.5-0.1+(1-0.5)(0.1+0.1) -

[0.45, 0.5] .1[-0.5, -0.1, 0.1, 0.1110s

Secondly, following the rule to calculate the arrival time, given in section 3, the time cost
for the system to transition from this state to its successor, say,
(<0, -0.6>, <-0.6, 0>, <0, s>) lies in the range [0.09, 1] . For example, the variable v
changes from <-s, -s > to <-0.6, 0>, taking the arrival time

OTA1(v) E
-0.5 - (-0.6) + (0.5 - 1)(0.1 + 0) = [0.09, 1] .

I[-0.5, -0.1, 0.1, 0-1110.5

This highlights the advantage of our simulation method over previous qualitative simulation
techniques .

As an example, here, we give three typical samples to show how the simulation works
and produces a single behaviour of the system, (x, v, a), from the initial state to its succes-
sor, (<S' -S >' <-S, -S >' <-S, S >).

From the possible state transition rules, each variable will have a respective set of pos-
sible successors of the initial state as follows :

x - <0.6, 0>, <0.6, s >, <0.6, -s >, <b, s >, <s, s>;
v - <0, -0.6>, <-s, -0.6>, <-s, -s>, <-s, -b>;
a - <-0.6, 0>, <-0.6, s >, <-0.6, -s >, <s , s >, <-b , -s >.

Fortunately, many of these states are removed by the fuzzy constraint filter. For example, it
is obvious that the spurious next state, (<b, s>, <-s, -b>, <-b, -s>), is a false one, since
it invalidates the constraint v = deriv x. In fact, any combination formed by a possible
state value of each variable, which includes <b , s > and <-s, -b> as the states of variables
x and v, respectively, can be eliminated . Likewise, the state <s, -s> of the variable x and
<-b, -s> of a cannot co-exist within a system state because they are inconsistent with the
fuzzy relation a " x .

After constraint filtering, the qualitative states

(<0.6, -s>, <-s, -0.6>, <-0.6, s>),

	

(<0.6, -s>, <-s, -0.6>, <-0.6, 0>),
(<0.6, -s >, <-s, -0.6>, <-0.6, -s >),

	

(<0.6, -s>, <-s,

	

-s>, <-s,

	

s>),
still remain as the possible next states of the initial one. However, they are removed by the
temporal filters. For instance, before the system changes from the initial state to



(<0.6, -s>, <-s, -0.6>, <-0.6, s>), the variable v persists within the initial state for no
time, and therefore, the variables x and a remain within the state for the same amount (0) of
time, though they would persist there for ever if there were independent variables. While
the arrival time for x or a to change is 0 (an R-transition), but the time cost for v to transi-
tion from <0, -0.6> to <-s, -0.6> is 0.08. Hence, such a transition invalidates the arrival
filtering rule and is eliminated .

From the behaviour obtained above, it is clear that the mass will oscillate between the
maximum amplitudes +0.6 and -0.6 for ever . This forms a sharp contrast with the results
from previous qualitative reasoners, since the conventional qualitative simulation methods,
e.g ., QSim [7], produce three branches of possible behaviour after one oscillation and cannot
describe the sequence of the maxima during the oscillation.

It is worth pointing out that, the simulation of a coupled tanks system has also been
done, and again, a unique behaviour of the system was produced. However, because of lack
of space, in this paper we give the experimental results from the simulation of "a mass on a
spring" system only . More details are given in [13] .

6. Conclusion
The work presented herein synthesizes two previously disparate research areas of quali-

tative simulation and Fuzzy Sets to produce an effective algorithm for the simulation of
dynamic systems.

	

The resulting . algorithm shows three distinct advantages over previous
methods and, in addition, provides a unifying framework from which other recent work on
qualitative simulation can be interpreted. The first advantage stems directly from the use of
the more detailed description of the quantity space to reduce the qualitative ambiguity .
However, the use of graded membership within the fuzzy quantity space, albeit in a
parametricised form, allows the subjective element of common-sense knowledge to be incor-
porated in the basic description of the quantity space. Secondly, the use of fuzzy relations
and the fuzzy rule of compositional inference allows semi-quantitative information about the
strength, as well as the sign, of functional relationships to be represented. This is an impor-
tant practical advantage, in that, imprecise and partial numerical information about functional
relationships is often known, although not in enough detail to develop a well-posed numeri-
cal model. Current techniques do not make use of this knowledge or do so in an ad hoc
manner. The third advantage of the method is that by allowing the rate-of-change to be
defined on the full fuzzy quantity space, relative rates of change can be represented and tem-
poral durations computed. This results in powerful temporal filters that significantly reduce
the number of spurious behaviours generated, and puts qualitative simulation on a firmer
ground [18] by describing the behaviour of a dynamic system in its state sequence which is
associated with a temporal sequence .

Work is on-going in two directions . The first is to refine and extend the algorithm
through application to industrial size case studies. The second, to utilise the algorithm as the
predictive function for candidate evaluation within model-based diagnostic systems [8]. In
particular, the use of the fuzzy qualitative simulation within diagnostic systems, based on the
comparison of the predicted behaviours with the observed behaviour of an evolving system,
shows considerable promise for the early detection and diagnosis of faults as they are occur-
ring.
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