16

Task-Driven Model Abstraction

Daniel S. Weld
Department of Computer Science and Engineering, FR-35
University of Washington
Seattle, WA 98195
Phone: (206) 543-9196
Internet: WELD@CS.WASHINGTON.EDU

Sanjaya Addanki
IBM T.J. Watson Research
Yorktown Heights, NY 10598

Date: February 21, 1990

ABSTRACT

Since algorithms for tasks such as design, diagnosis, and analysis become
intractable when manipulating large models, we explore techniques for auto-
matically abstracting a concrete model using the current task for guidance.
First we define the downward-solution and downward-failure properties on
abstractions of artifact models. Then we use these tools to analyze the ab-
stractions used by some existing programs for design and analysis. Finally,
we describe how these properties can be used to direct the selection of useful
abstractions for the task of analysis.

1 Introduction

It is commonly recognized that a central problem in automated reasoning
about physical systems is that the complexity of reasoning increases drasti-
cally (often exponentially) with the size of the model of the system in ques-
tion. We believe that computers can be programmed to solve the complexity
problem in the same way that human engineers cope with complexity — by
introducing simplifying assumptions.

This proposal is no longer surprising. For example, explanation based
learning can be seen as a technique for creating a specialized domain model
that efficiently supports a restricted set of queries [Van Harmelen and Bundy,
1988], and the benefits of this approach have been clearly demonstrated
[Minton, 1988]. Recently a number of researchers in qualitative physics
have described systems that reason with abstract models to great advan-
tage [Kuipers, 1987, Falkenhainer and Forbus, 1988, Addanki et al., 1989,
Weld, 1989). However, most of the modeling work in qualitative physics
assumes that a hierarchy of models is given to the program as input.

In this paper we describe first steps towards eliminating the need for
prespecified abstract models. We catalog a set of abstraction operators which
a reasoning program can use to customize simpler models for the task at hand.
Then we analyze the behavior of abstractions in terms of the DOWNWARD-
SOLUTION and DOWNWARD-FAILURE PROPERTIES. Next we illustrate how
existing programs for hierarchical design and diagnosis can be viewed in this
framework. And finally we explain how these properties can be used to direct
the dynamic selection of useful abstractions for the task of analysis.

The important attributes of our approach are as follows:

e Task Driven. Our approach uses the current reasoning task and the
particular problem at hand to drive the process of model creation.

¢ Qualitative / Quantitative. Our techniques are independent of rep-
resentation.

e Abstraction Guarantees. Our theory provides a reasoner with a
promising about the utility of its abstraction by specifying when an
abstract solution can be specialized to the concrete level.

Section 2 makes clear the relationship between a task and a model,
then presents a set of model abstraction operators. Section 3 defines the
downward-solution and downward-failure properties and uses them to ana-
lyze some existing programs for design and diagnosis. Section 4 shows how
these properties can be used to guide the selection of model abstraction op-
erators for the task of analysis. Finally, section 5 concludes the paper.

2 Abstraction Operators

Since the notion of abstraction is most clear (and has been most thoroughly
studied) in the context of search, we take state-space search as our foun-
dation and generalize to more structured domains. The key step in this
generalization is determining the nature of the models used by each task.
Basing ourselves in search, we consider the tasks of design, diagnosis, and
analysis.

2.1 Abstraction in Planning and Search

The use of an abstract representation for simplifying or speeding reasoning
has been best studied in the context of search and planning. ABSTRIPS
[Sacerdoti, 1974] solved planning problems abstractly by eliminating low pri-
ority preconditions and then refining the solution by gradually reintroducing
detail. [Gaschnig, 1979] defined an abstract space as an edge supergraph of
the concrete space and showed that the cost of solving the abstract prob-
lem provided an admissable heuristic for solving the concrete problem. More
recently, [Mostow and Prieditis, 1989] implemented this approach and gen-
eralized the abstraction transformations to include node merging as well as
the addition of edges in the abstract graph. [Korf, 1987] has shown that
the use of a hierarchy of abstraction spaces can transform an exponential
time problem into a linear time problem. We seek to extend these results
to types of reasoning less commonly formalized as search: design, diagnosis,
and especially analysis.

2.2 Models for Different Tasks

Although the tasks of design, diagnosis, and analysis can all be formalized
as search, this reduction does not necessarilly give insight into why abstract
models are powerful for these tasks. The key issue in understanding hierar-
chical design, diagnosis and analysis is the notion of model.

The objective of design is to generate a description of an artifact that
satisfies the design specifications. Assuming a lumped element (system dy-
namics) framework [Shearer et al., 1971], a given design might be described
by a set of components with connections between named ports. Thus a
model of a design would be a specification of the components and their con-
nections. We are interested in abstraction-based design systems that use
multiple spaces of models (e.g., in one space all transistors might be rep-
resented as discrete switches while in another they might be represented as
nonlinear systems). Regardless of the model space in question, the same

13

problem solving operators would be used.

The objective of diagnosis is to explain why a particular artifact is mal-
functioning. Assuming that the artifact can be thought of as a number of
connected components, standard diagnosis algorithms use a model of the
components to predict behavior based on the assumption that various com-
ponents are functioning properly. A conflict between predicted and observed
behavior allows the diagnoser to narrow the set of candidate faults. Hier-
archical diagnosis programs such as XDE [Hamscher, 1988] use a series of
abstract models to predict less detailed (and hence less costly to manipu-
late) behavioral descriptions for comparison with observation, but the same
conflict recognition, candidate generation, and probe selection operations are
used regardless.

Although there are many types of analysis (e.g., stability analysis, esti-
mation of reliability or manufacturing cost, etc.), in this paper we take the
objective of analysis to be the prediction of an artifact’s time-varying be-
havior. In particular, we consider in some detail techniques for answering
questions concerning the value of a parameter at a point in time. In their
simplest form, these questions reduce to the evaluation of an inequality, for
example, “Is the maximum torque on beam three greater than that required
to break the beam?” To answer such an analysis question, one needs a model
of the artifact that allows the prediction of how external inputs to the system
(say forces) are distributed between components in the artifact. As is shown
below, we have much to say about the use of abstract system models for the
task of analysis.

2.3 Abstraction Operators

As we have seen, very similar component models are used in design, diagnosis,
and analysis. In this section we catalog some of the ways one may transform
a model into a new model that is more abstract.

e Abstract Parameter Values. One technique for creating a more
abstract model is to relax real-valued parameters and use a qualitative
representation instead. There is a natural flow from the real numbers
to interval arithmetic to sign algebra [Murthy, 1988].

¢ Abstract Component Constraints. Typically, component mod-
els are built out of constraint equations. If the component models
include dynamic equations, then there is a natural progression from
ordinary differential equations (ODEs), to piecewise linear differen-
tial equations, to qualitative differential equations (QDEs), to a sim-
ple (signless) record of what parameters affect what other parameters.

3

20

By relaxing these constraints, a more abstract model is achieved. In
addition, constraint equations can often be abstracted without chang-
ing their classification: for example, by eliminating insignificant terms.
One important type of constraint abstraction is the introduction of an
approximation reformulation [Weld, 1989]; this leads to an idealization
of the original equation.

e Temporal Abstraction. By viewing behavior at a more coarse grain
size, an abstract model is created. To this end, several operators have
been advanced. Aggregation [Weld, 1986) disregards the intermediate
changes in a recurring cycle of processes by determining the net ef-
fects of one iteration. XDE'’s class of ‘change abstractions’ ignores the
particular values of a parameter over an interval, instead it computes
simply whether or not the value changed [Hamscher, 1988]. XDE’s
class of ‘sequence abstractions’ describes the sequence of values taken
by a parameter in an interval, but ignores the duration of each value.

e Structural Consolidation. By merging several components and con-
sidering them as one, a more abstract model is created. Typically this
operator is followed by an abstraction of the resulting component con-
straints.

2.4 Notation

Applying one or more of these operators to a model results in a more abstract
model. Since we are interested in the relation between a CONCRETE model
and its ABSTRACT model, we consider the reformulation function that maps
between concrete and abstract models, and we use the symbol ¥ s to denote
this abstraction reformulation. Typically an abstraction reformulation is a
noninvertible surjection (from the space of concrete models onto the space
of abstract models). We use ¥} to denote the corresponding mapping from
an abstract model to its preimage under ¥y (the set of concrete models that
U maps to the abstract model).

Determining whether a particular model satisfies the goals of a task re-
quires comparing the behavior predicted by the model with some desired
behavioral specification. Since the legal behavioral constraints vary between
spaces of models, our abstraction reformulations must map concrete behav-
ioral constraints to abstract ones. We use the ¥ and ¥3' functions to
denote these mappings. Finally, we note that since the domains of ¥»s and
Up are disjoint, we can define a total reformulation function ¥ which has
the union of the two domains as its domain. Similarly, we use ¥~! to map
from abstract models and behavior constraints back to concrete ones.

yA

The next section explains which abstraction reformulations are appropri-
- ate for which tasks and why.

3 Task-Driven Reformulation

We seek to explore the properties of the various model abstraction operators
and their relation to the tasks of design, diagnosis, and analysis. We take as
our starting point the following definition (adapted from [Tenenberg, 1989]).

Definition 1 An abstraction reformulation ¥ has the UPWARD-SOLUTION
PROPERTY iff Wps(m.) is an abstract model satisfying abstract behavioral con-
straints Wg(p.) for all concrete models 7, satisfying concrete constraints p,
(figure 1). Similarly, an abstraction reformulation ¥ has the DOWNWARD-
SOLUTION PROPERTY iff for all concrete constraints p. any abstract model
7o satisfying ¥ p(p.) can be specialized to a concrete model satisfying p.. Le.,
there ezists a 7. € Wy/ (7,) such that 7. satsifies p..

Satisfies(7,, pa
T = ‘I’M’(’ch) (£) Pa = tI‘B(pc)

s Up

Satisfies(7., p.)
e Pe

Figure 1: The Upward-Solution Property

We note that [Tenenberg, 1989] observed that that the upward-solution
property is independent from the downward-solution property (neither im-
plies the other). We now extend these properties.

Definition 2 An abstraction reformulation ¥ has the UPWARD-FAILURE PROP-
ERTY iff the fact that there is no model satisfying concrete constraints p. im-
plies that there is no abstract model satsifying Yp(p.). ¥ has the DOWNWARD-
FAILURE PROPERTY iff the fact that there is no model satifying abstract
constraints p, implies that forall p. € Vg'(pa) there is no concrete model
satisfying p..

The following relationships are straightforward, but important.

21

Proposition 1 An abstraction reformulation ¥ has the upward-solution prop-
erty iff it has the downward-failure property; ¥ has the downward-solution
property iff it has the upward-failure property.

To make these notions concrete, consider the classic reformulation of the
mutilated-checkerboard problem. It is clear that a checkerboard missing two
diagonally opposed corners cannot be tiled by similarly-sized dominoes be-
cause each domino obscures both a red and black square and the checkerboard
no longer has the same number of squares of each color. The abstraction of a
tiling operation into an operation that decrements the number of remaining
squares of each color has the downward-failure property and the upward-
solution property. For an example of a useful reformulation with the other
two properties, see section 3.1.

While these properties are clearly deserving of further exploration, we
choose instead to use them in the context of specific tasks. In the next
two sections we analyze some existing approaches to hierarchical design and
diagnosis in terms of these properties. Then in section 4 we consider the task
of analysis more carefully.

3.1 Design

In this section we analyze two existing design systems that use hierarchical
representations, VEXED [Steinberg, 1987] and Ibis [Williams, 1989], in terms
of our framework. Although both programs first search for satisfactory de-
signs in an abstract space and then consider more concrete representations,
analysis shows that the reformulations they use are very different. This is
because VEXED embodies a theory of top-down refinement of library designs
while Ibis implements a theory of innovative design.

VEXED views desigr as “top-down refinement plus constraint propaga-
tion.” The system searches! for an abstract design that satisfies the desired
constraints, and then specializes that model with a series of refinement rules.
Since each refinement rule specifies “legal, correct implementations” of the
abstract description, it is clear that VEXED’s refinement hierarchy satis-
fies the downward-solution property. However VEXED does not have the
upward-solution property since there may be legal designs that cannot be
generated by the refinement rules. This abstraction hierarchy is an excellent
choice for a system that does library-based design.

Ibis [Williams, 1989] takes quite a different approach to design. Given
a design specification, Ibis first searches an abstract space, one of “interac-
tions,” to see if there is a way to connect changes in one parameter to changes

1VEXED’s search was manually controlled.

13

in another. At this initial stage in design, Ibis ignores whether the causal
connections are of the correct magnitude or even of the correct sign; the
space of interactions represents the most abstract constraint abstraction op-
erator listed in section 2.3. Once a promising path is discovered through the
interaction space, Ibis attempts to refine the design by substituting a more
concrete model of the primitive components and using the MINIMA algebraic
reasoner [Williams, 1988] to see if the resulting design satisfies the concrete
constraints. Since it is impossible for one quantity to influence another in a
particular direction and with a particular magnitude unless there is some path
of interaction between the two quantities, Ibis’ representational abstraction
satisfies the downward-failure property and hence the upward-solution prop-
erty. But since some paths of interaction may act in the direction opposite
to what was specified, Ibis does not satisfy the downward-solution property.
Since Ibis is intended as a theory of innovative design this conservative ap-
proach (no concrete solutions are missed by searching in the abstract space)
is appropriate.?

3.2 Diagnosis

We now analyze the hierarchical representations in the XDE hardware trou-
bleshooter [Hamscher, 1988]. Recall that a key step in model-based diagnosis
is conflict recognition — given a set of components,” determine if the arti-
fact’s observed behavior contradicts the assumption that the components
in the set are functioning properly. If there is a conflict, then candidate
hypotheses are created and a probe point selected for measurement to dis-
criminate among the candidates. Conflict recognition can can be expressed
in a form similar to that used in our analysis of diagnosis, since the observed
misbehavior forms a kind of behavioral constraint. When the predicted be-
havior is inconsistent with measurements (i.e. a conflict is found), we will
say that we have a “solution.” Our interest is in whether these “solutions”
map between representations. In other words, if an inconsistency is found in
the abstract space, is it guaranteed that the inconsistency will persist when
it is refined? Similarly, if no inconsistency is found in the abstract space, is
it guaranteed that all components in the set are functioning properly at the
concrete level?

XDE uses a hierarchical functional model of the circuit to be diagnosed
and starts diagnosis with an abstract description, refining components only

2Qur discussion of Ibis is necessarily cursory; for example, [Williams, 1989] describes a
compact representation for the space of interactions which makes it a logical choice as an
abstraction space.

3An ‘environment’ in the terminology of GDE [de Kleer and Williams, 1987].

24

as necessary to narrow the set of candidate faults. For example, an ab-
stract model of a microprocessor might distinguish only two unfaulted states:
stopped and running. The advantage of this representation is that behaviors
can be quickly checked during conflict recognition. If the processor has been
reset and should be running, but the oscilloscope shows that the program
counter is not changing, then a conflict has been found. Because the behav-
ioral abstractions used by XDE are sound (though incomplete), it has the
downward-solution property. If an abstract model of a component allows a
conflict to be recognized, then at least one fault is in the component. How-
ever, the fact that the microprocessor appears to be running, doesn’t mean
it is running correctly. Hence XDE's abstract representations do not have
the downward-failure property.

4 Directing Reformulation for Analysis

We now show how a program could use the downward-solution and downward-
failure properties to guide the introduction of simplifying assumptions for the
task of analysis. The result is a framework that allows a program to ignore
detail in a model, selectively. By using the particular question under consid-
eration to determine which components to abstract, the program will reason
efficiently yet still be sure of its results.

As mentioned above, we can take the goal of analysis to determine the
truth value associated with an inequality statement about the value of one
or more parameters at a given time. For example, in the system of figure 2,
we might wish to ask “If force f is applied to the end of bar A, will beam C
break?” Naturally, this can be translated into a question about an inequality:
S > Bec. “Is the shear force on beam C greater than the force required to
break such a beam?”

The job for an intelligent analyst, then, is to determine the truth value of
this inequality. But to calculate precisely the shear force requires a detailed
model of beams, bending, joint friction, the action of spring S, and the flow of
air around the sides of piston P, hence abstract models are preferable if they
can be used. In this section, we show how the abstraction properties defined
above enable the selection of simplifying assumptions while guaranteeing a
valid answer.

The fundamental insight is simple. We say that the reformulation to an
abstract space has the downward-solution property if whenever the abstract
calculation of shear force S, is greater than the abstract approximation of
the force required to break the beam B,, then that inequality holds in the
concrete model as well. Thus we say that the downward-solution property

&5

Figure 2: Will Beam C Break?

holds if
Se>B, =» S>B
and the reformulation has the downward-failure property if
S.<B, = S<B

In other words, if an analysis in an abstract model with the downward-
solution property suggests that the beam will break, then we can be sure that
it will. Similarly, if analysis in an abstract model with the downward-failure
property claims that the beam will not break, then we can be sure that it
will not. An answer that does not meet these criteria admits doubt.

Thus a powerful reasoning strategy follows a kind of “devils advocate,”
and attempts both to prove and disprove this inequality by simplifying with
problem reformulations that have either the downward-solution or downward-
failure property. For example, one could try to prove that the force will not
break beam C (in figure 2) by modeling spring S and piston P as infinitely
stiff, thus considering D’s position fixed. If beam C doesn’t break if D is
fixed, then it certainly won't break if there is give and play in D. Thus this
abstraction satisfies the downward-failure property. Alternatively, one could
try to show that the force will break beam C by choosing abstractions that
underestimate the applied force; this would amount to a reformulation with
the downward-solution property.

A key question, of course, is which abstraction operators lead to the
downward-solution property and which engender downward-failure. This de-
termination cannot be made except in the context of the particular artifact
under analysis. Depending on the system at hand, an abstraction operator

9

26

may lead to an over- or an underestimate of various quantities. This suggests
rethinking the doctrine of CLASS-WIDE ASsUMPTIONS [de Kleer and Brown,
1984] which states that all components in a given class should be modeled
at the same level of abstraction. leading to the policy that if you model one
joint as frictionless, you should use that model for all joints. But notice that
this can result in an abstraction with neither the downward-solution nor the
downward-failure property. While modeling joints A/B and B/C as friction-
less increases the shear force on C, removing friction from C/D decreases
the shear force.

5 Conclusions

We are encouraged by the flurry of results on automated model manage-
ment (Kuipers, 1987, Falkenhainer and Forbus, 1988, Addanki et al., 1989,
Weld, 1989] since we believe that enabling the intelligent introduction of sim-
plifying assumptions is the key step in building problem solvers that can deal
with detailed models of complex physical systems. However, most existing
modeling work in qualitative physics suffers from two major limitations.

e Programs do not generate their own abstractions — they require as
input a graph of models [Penberthy, 1987] or its equivalent.

e Programs do not make sufficient use of information about the current
task and question when selecting models.

In this paper we have presented a framework for analyzing task-driven
reformulation. Abstraction operators extend a concrete model into a space
of possible abstractions; the trick is to find a member of the abstraction
space which is useful for the problem at hand. By extending the notion
of the downward-solution property to continuous, physical domains, and by
introducing the concept of the downward-failure property, we have provided
a powerful tool for analyzing reformulation for the tasks of design, diagnosis,
and analysis.

5.1 Related Work

Several other recent pieces of research have also investigated automatic ab-
straction of dynamic systems. Aggregation [Weld, 1986] recognizes repeating
cycles and constructs a continuous process summary of the effect of each iter-
ation. By performing transition analysis on the abstract description, simula-
tion efficiency is greatly increased. Unfortunately, this abstraction technique
is limited to cases with repeating processes.

10

L

Recently, a more formal model for the aggregation of dynamic structure
was presented [Iwasaki and Bhandari, 1988]. This approach defines an ag-
gregate variable for each subsystem of a nearly decomposable system and
rewrites the equations in terms of the aggregate variables. While this ap-

proach has a solid mathematical foundation, the restructuring is not task
driven.

5.2 Future Work

Much remains to be done. The space of reformulations generated by our ab-
straction operators is huge, yet we have not suggested heuristics for guiding
search. For the task of analysis, we have yet to provide techniques for classify-
ing the properties of abstraction operators as they affect a given problem. We
continue to workon these questions and suspect that qualitative solutions are
possible and promising. In particular, we believe that INTER-MODEL COM-
PARATIVE ANALYSIS [Weld, 1989] (based on approximation reformulations
[Weld, 1990]) may enable abstraction operator classification, at least for the
domain of analysis. For example, to see if abstracting away joint friction for
joint A/B preserves the downward-solution property, one must determine
whether this assumption will increase or decrease the shear force. This is
precisely the task of inter-model comparative analysis.

11

28

ACKNOWLEDGEMENTS

Many thanks for conversations with Mark Shirley which started this line
of thinking and conversations with Armand Prieditis which suggested new
directions. This paper was improved by comments from Franz Amador, Tony
Barrett, Steve Hanks and Scott Penberthy. The heroic efforts of Eric Lund-
berg saved (a version of) this paper from the wreckage of a dead magnetic
disk, scant hours before the AAAI deadline.

This research was funded in part by National Science Foundation Grants
IRI-8902010 and IRI-8957302, and a donation from the Xerox corporation.

References

[Addanki et al., 1989] S. Addanki, R. Cremonini, and J. S. Penberthy. Rea-
soning about Assumptions in Graphs of Models. In Proceedings of IJCAI-
89, August 1989.

[de Kleer and Brown, 1984] J. de Kleer and J. Brown. A Qualitative Physics
Based on Confluences. Artificial Intelligence, 24, December 1984.

[de Kleer and Williams, 1987] J. de Kleer and B. Williams. Diagnosing Mul-
tiple Faults. Artificial Intelligence, 32, April 1987.

[Falkenhainer and Forbus, 1988] B. Falkenhainer and K. Forbus. Setting up
Large Scale Qualitative Models. In Proceedings of AAAI-88, August 1988.

[Gaschnig, 1979] J. Gaschnig. A Problem Similarity Approach to Devising
Heuristics: First Results. In Proceedings of IJCAI-79, 1979.

[Hamscher, 1988) W. Hamscher. Model-Based Troubleshooting of Digital
Systems. AI-TR- 1074, MIT AI Lab, August 1988.

[Iwasaki and Bhandari, 1988] Y. Iwasaki and I. Bhandari. Formal Basis for
Commonsense Abstraction of Dynamic Systems. In Proceedings of AAAI-
88, pages 307-312, August 1988.

[Korf, 1987] R. Korf. Planning as Search: A Quantitative Approach. Artifi-
cial Intelligence, 33(1), September 1987.

[Kuipers, 1987] B. Kuipers. Abstraction by Time-Scale in Qualitative Sim-
ulation. In Proceedings of AAAI-87, July 1987.

12

29

[Minton, 1988] S. Minton. Quantitative Results Concerning the Utility of
Explanation-Based Learning. In Proceedings of AAAI-88, pages 564-569,
August 1988.

[Mostow and Prieditis, 1989] J. Mostow and A. Prieditis. Discovering Ad-
missable Heuristics by Abstracting and Optimizing: A Transformational
Approach. In Proceedings IJCAI-89, pages 701-707, August 1989.

[Murthy, 1988] S. Murthy. Qualitative Reasoning at Multiple Resolutions.
In Proceedings of AAAI-88, pages 296-300, August 1988,

[Penberthy, 1987] J.S. Penberthy. Incremental Analysis and the Graph of
Models: A First Step towards Analysis in the Plumber’s World. MS Thesis,
MIT Laboratory for Computer Science, January 1987.

[Sacerdoti, 1974] E. Sacerdoti. Planning in a Hierarchy of Abstraction
Spaces. Artificial Intelligence, 5:115-135, 1974.

[Shearer et al., 1971] J. Shearer, A. Murphy, and Richardson H. Introduction
to System Dynamics. Addison-Wesley Publishing Company, Reading, MA,
1971.

[Steinberg, 1987] L. Steinberg. Design as Refinement Plus COnstraint Prop-
agation: The VEXED Experience. In Proceedings of AAAI-87, pages 830-
835, August 1987.

[Tenenberg, 1989] J. Tenenberg. Inheritance in Automated Planning. In
Proceedings of the International Conference on Knowledge Representation,
pages 475-485, May 1989.

[Van Harmelen and Bundy, 1988]
F. Van Harmelen and A. Bundy. Explanation-Based Generalisation =
Partial Evaluation. Artificial Intelligence, 36(3), October 1988.

[Weld, 1986] D. Weld. The Use of Aggregation in Causal Simulation. Arti-
fictal Intelligence, 30(1), October 1986.

[Weld, 1989] D. Weld. Automated Model Switching: Discrepancy Driven
Selection of Approximation Reformulations. Technical Report 89-08-01,
University of Washington, Department of Computer Science and Engi-
neering, October 1989.

[Weld, 1990] D. Weld. Approximation Reformulations. In Submitted to
AAAI-90, Perhaps to appear 1990.

13

30

[Williams, 1988] B. Williams. MINIMA: A Symbolic Approach to Qualita-
tive Algebraic Reasoning. In Proceedings of AAAI-88, August 1988.

[Williams, 1989] B. Williams. Invention from First Principles via Topologies
of Interaction. PhD Thesis, MIT Artifical Intelligence Lab, June 1989.

14

