
Compiling Devices and Processes

Johan de Kleer
Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto CA 94304 USA
Unfinished Draft - Please do not redistribute

February 26, 1990

Abstract

This paperpresents a new approach for exploiting Truth Maintenance Systems(TMSs
in which the inference engine can convey locality in its knowledge to the TMS . This
approach is ideally suited for systems which reason about the physical world because
much of knowledge is inherently local, i .e ., the constraints for a particular component
or process usually only interact with constraints of physically adjacent components and
processes . The new TMSs operate with a set of arbitrary propositional formulae and
use general Boolean Constraint Propagation(BCP) to answer queries about whether a
particular literal follows from the formulae . Our TMS exploits the observation that
if propositional formulae are converted to their prime implicates, then BCP is both
efficient and logically complete. This observation allows the problem solver to influ-
ence the degree of completeness of the TMS by controlling how many prime implicates
are constructed . This control is exerted by using the locality in the original task to
guide which combinations of formulae should be reduced to their prime implicates .
We show that conveying locality to the TMS is an important strategy for qualitative
physics problem solvers . For example, at a minimum formulae corresponding to a
single component (or commonly occurring combinations) model should be compiled
into prime implicates in order to minimize run-time cost . When confluence models are
used, the results of using our TMS subsume those of the qualitative reasolution rule .
This approach has been implemented and tested both within Assumption-Based Truth
Maintenance Systems and Logic-Based Truth Maintenance Systems .



1 Introduction

This paper presents a new approach for exploiting Truth Maintenance Systems(TMSs) in
which,the inference engine can convey locality in its knowledge to the TMS. The basic
intuition behind this new approach is to convey the locality of the knowledge representation
of the problem solver to the TMS. Many AI problem solvers, particularly those which reason
about the physical world, are inherently local - each constituent of the problem (e.g ., a
process such as flowing, a component such as a pipe, etc.) has a fixed behavioral model .
Much of the reasoning can be viewed as local propagation : whenever some new signal is
inferred to be present the models of the components on which it impinges are consulted
to see whether further inferences are possible from it . Many of these AI problem solvers
either exploit TMSs to do much of this propagation, or use TMSs to represent the results
of propagations . Although widely used, anyone who has used these strategies can atest that
current TMSs have some surprising logical incompleteness when used in this way. These blind
spots result from the fact that locality present in the original model is often completely lost
within the TMS .

Most problem solvers wish to represent arbitrary propositional formulae many of which
derive from local constituents of the problem (e.g ., component or process models) . However,
most TMSs lack the expressive power to represent such arbitrary formulae . Therefore, one is
typically forced to encode the propositional formulae in terms the TMS accepts. For example,
[4] provides a variety of ways of encoding propositional formulae for the Assumption-Based
Truth Maintenance Systems (ATMSs) [2, 6] . Techniques like these are widely used in QPE
[11, 12] . Unfortunately, these encodings tend to be extremely cumbersome. The TMSs
which accept arbitrary clauses (such as Logic-Based Truth Maintenance Systems (LTMS)
[2, 17, 18, 19]) seem to be more powerful because any propositional formula can easily be
converted into a set of clauses by putting it into CNF[1] .

Unfortunately, complete LTMSs based on clauses are never used because they are too inef-
ficient . Instead, all common LTMS implementations use Boolean Constraint Propagation(BCP) [2,
17, 18, 19] on clauses . BCP is a sound, incomplete, but efficient inference procedure . BCP
is inherently local considering only one propositional formula (i.e ., boolean constraint) at a
time . This locality is the source of both its incompleteness and efficiency. Unfortunately,
converting a formula to its CNF clauses loses the locality of the original constraint. Consider
the formula :

(x =0- (y V z)) n (x V y V z)

If y were false, then considering this formulae alone in isolation we can infer z must be true
(this can be seen by the fact that if z were false, both conjuncts would evaluate to false) .
However, this information is lost in converting to the CNF form:

-IxV yV z,

	

xVyV z.

	

(2)

Neither of these constraints can, individually, be used to infer z from -y-

Consider QPE as an example [11, 12] . QPE encodes every qualitative process model
as a set of formulae which are eventually encoded as a set of ATMS horn clauses . Within
the inference engine, this set of horn clauses represents a fixed local module, but within the
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ATMS these modules are independent . As some of these clauses are non-Horn the basic
ATMS algorithms are incomplete, and the ATMS is therefore incapable of making simple
local inferences which follow from the model alone . QPE deals with this difficulty by adding
more clauses (than conversion to CNF would indicate) so that the basic ATMS algorithms
can make more inferences than they otherwise would. Part of our proposal is that the set
of formulae representing a model be conveyed to the TMS as a single module and the TMS
use a complete inference procedure locally on modules . As a result we achieve the kind
of functionality that is desired, without incurring any substantial performance degradation .
This process can be made efficient by recognizing that each model type instantiates the same
set of formulae and therefore most of the work can be done at compile time once per model
type .

Conceptually, the new TMSs operate with a set of arbitrary propositional formulae and
use general BCP to answer queries whether a particular literal follows from the constraints
which although usually applied to clauses can be applied to arbitrary formulae as well .
As input our TMS can accept new propositional formulae to define a module, conjoin two
existing modules, or accept a new formula to be conjoined with an existing module . Locally,
within each module, the TMS is logically complete . As a consequence, the problem solver
can dynamically control the trade-off between efficiency and completeness - if completeness
is required, all the modules are conjoined, if efficiency is is required, each formula is treated
as an individual module . Later in this paper we present a number of techniques to guide
which modules should be conjoined and thus which prime implicates should be constructed
such that even when logical completeness is required that relatively of the prime implicates
of the entire formula set need be constructed . This approach has been implemented and
tested both with ATMMs and LTMSs .

Consider the example of two pipes in series (Fig . 1) . Each pipe is modeled by the
qualitative equation (or confluence, see [3] for precise definitions) [dP,] - [dP,] = [dQ] where
Pr is the pressure on the left, P, is the pressure on the right and Q is the flow from left
to right.

	

([da] is the qualitative (+, 0, -) value of di ).

	

Thus, the attached pipes can be
completely modeled by three confluences :

[dPA] - [dPB] = [dQAB],

[dPa] - [dPc] = [dQBC],

[dQAB] = [dQBC] .

Suppose we know that the pressure is rising at A (i .e, [dPA] = +) and the pressure is fixed
at C (i.e ., [dPc] = 0) . Considering each component or confluence individually we cannot
infer anything about the flows . If the individual qualitative equations are converted to their
propositional equivalents for a TMS (as many qualitative physics systems do), the flows
remain unknown due to the incompleteness of most TMS's. However, in our TMS if the
formulae representing the individual components are merged then [dQAB] = [dQBC] is
inferred .

As such component combinations reoccur in many devices, this combining can be done
once in the model library. To compile this combination, our TMS merges the propositional



Figure 1 : Assembling the qualitative models of the two joined pipes is equivalent to merging
the two formulae modeling the two pipes .

encoding of the confluences but without the specific inputs ([dPA] = + and [dPC] = 0) . The
result is identical to the propositional encoding of the confluence :

[dPA] - [dPC] = [dQAB] = [dQBC] .

After compiling this combination, and applying the inputs our TMS infers [dQAB] = [dQBC] =
[+] far more efficiently than before (i.e ., immediately) . A device can always be analyzed by
first compiling it without knowledge of any input or outputs . However, compiling a full
device is expensive - it is only useful if we expect to put it in the model library or need
to consider many input value combinations . When analyzing a device our TMS does not
force the problem-solver to decide whether or not to compile the device beforehand . Our
TMS lazily compiles the propositional constraints it is supplied - it only compiles enough
to answer the query from the givens it is supplied . When the givens are changed the TMS, if
necessary, incrementally compiles more pieces of the device to answer the query . If all givens
and queries are applied, then the compiled result will be the same as having compiled the
full device beforehand .

After developing our approach Section 7 expands on these observations and analyzes its
relationship with the qualitative resolution rule [9, 10] .

2

	

BCP on formulae and clauses

As our approach draws deeply on the intuitions underlying BCP, we synopsize it here . (Note
that BCP achieves similar results to unit resolution .) BCP operates on a set of propositional
formulae (not just clauses) B in terms of propositional symbols S. A formula is defined
in the usual way with the connectives ~, =*-, _, V, n and tax . (tax is an extremely useful
connective requiring that exactly one of its arguments be true.)

BCP labels every symbol T (i.e ., true), F (i .e ., false) or U (i.e ., unknown) . BCP is
provided an initial set of assumption literals A; if x E A, then x is labeled T, and if
-x E A, then x is labeled F. All remaining symbols are initially labeled U. The reason for
distinguishing A from B is that B is guaranteed to grow monotonically while assumptions
may be added and removed from A at any time .

BCP operates by relabeling symbols from U to T or F as it discovers that these symbols
logically follow from the formulae B U A. A labeling which does not label any symbol U is
complete. Conversely a labeling which labels some symbols U is partial. A completion of a
partial labeling is one which relabels all the U symbols T or F. Given any labeling each
BCP constraint (in the BCP literature propositional formulae are called constraints) :



e The labeling satisfies the constraint : for every completion of the current labeling the
constraint is true . For example, the labeling x to be T satisfies the constraint x V y .

The labeling violates the constraint : there is no completion of the current labeling
which satisfies the constraint . Consider two examples : (1) if the constraint is x Vy and
both x and y are labeled F, then the constraint is violated, and (2) if the constraint is
(x V y) n (x V -,y) and x is labeled F there is no way to satisfy the constraint .

o A constraint forces a symbol's label if in every completion of the current labeling
which makes the constraint true that symbol is always labeled T or always F . There
may be multiple such symbols. For example, if x is labeled T, then the constraint
x - (y n z) forces y and z to be labeled T. Consider the example from the introduction :
(x =~* (y V z)) n (x V y V z) . 'If y is labeled F, then the label of z is forced to be F.

e Otherwise a constraint is open .

BCP processes the constraints one at a time monotonically expanding the current label-
ing . The behavior of BCP depends on the condition the constraint is in :

9 If the current labeling satisfies the constraint, then the constraint is marked as satisfied
and is no longer considered .

* If the current labeling violates the constraint, then a global contradiction is signaled .

If the current labeling forces the label of some other symbol, then that symbol is labeled
and all unsatisfied and unviolated constraints mentioning that symbol are scheduled
for reconsideration. If the current constraint is now satisfied it is so marked.

Otherwise the constraint remains open and BCP reconsiders it when some (other)
symbol it references is labeled T or F.

If the constraints are clauses, then BCP can be implemented efficiently. In particular,
we store a count with each clause indicating the number of symbols mentioned by the clause
whose current label is opposite to how it appears in the clause . For example, given the clause
x V -y where x is labeled U and y is labeled T, the count for the clause is 1 . Whenever
this counter is reduced to 1, then the clause forces the label of a single remaining symbol
(i.e ., in this case x is forced to T). If the count is reduced to 0, then the clause is violated
and a contradiction is signaled . As a consequence of this encoding, BCP on clauses can
be implemented simply by following pointers and decrementing counters . Conversely, the
process of removing an assumption from .A can be efficiently implemented by following
pointers and incrementing counters . (See [6] for details.) BCP on clauses is equivalent to the
circuit value problem and therefore is P-complete (see also [13]) . Its worse case complexity
is the number of literals in the clauses.

BCP is logically incomplete in that it sometimes fails to label a symbol T or F when it
should . For example, consider the two clauses from the introduction :

-xV yV z,

	

xV yV z .
If y is labeled F, then BCP on the clauses does not label z T. (Note that BCP is also
logically incomplete in that it sometimes fails to detect contradictions.)
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Compiling constraints

which in clausal form is,

The previous example (the encoding of equation (1) shows that running BCP on the original
formulae is not the same as running BCP on the clauses produced by converting the formulae
to CNF. (BCP on the original formulae is always stronger.) Hence, we cannot directly use
the efficient BCP algorithms that have been developed for clauses for arbitrary constraints
and no correspondingly efficient BCP algorithm is known for arbitrary formulae . This section
shows that if each individual constraint is encoded by its prime implicates[14, 15, 20], then
BCP on the resulting clauses is equivalent to running BCP on the original formulae .

Clause A is subsumed by clause B if all the literals of B appear in A. An implicate of
a set of formulae B is a clause which logically follows from B. A prime implicate of a set of
formulae B is an implicate of B which is not subsumed by some other implicate of B. Using
these definitions, the following two theorems are key to an efficient implementation of BCP
on constraints :

Theorem 1 Suppose that the set of clauses Z are the set of prime implicates of some set of
propositional formulae, then BCP on I is logically complete .

Proof. We presume BCP is sound. We must show that the theorem holds for any initial set of
assumptions A. Suppose that literal x logically follows from Z and assumptions A,, . . . , A�
(possibly none) . If x follows from A,,..., A� then the formula,

A, A . AA� =* x,

-A,V . . .V-A,,Vx,

must be an implicate of Z and thus subsumed by some clause of Z.

Theorem 2 Given a set of propositional formulae B and Z is the union of the prime impli-
cates of each of the formulae of B, then BCP on B produces the same labeling as BCP on
Z.

Proof. We presume BCP is sound . As each formula is individually replaced by its prime
implicates, BCP on .7 cannot label any symbol that BCP on B does not . We do the reverse
direction by proof by contradiction . Suppose BCP on formula b E B labels symbol s while
BCP on the prime implicates of b does not . If s is labeled T let x be the literal s and if s is
labeled F let x be the literal -s . Given BCP on b labels s it must be the case that,

A,A . . .AA,Ax i A . . .Axm =0- x,

follows from b alone where the xi are literals involving symbols of b and Ai are assumptions .
Therefore, the clause,

-A,V . . .V-,Anu-xiV . . .V-x,Vx,



is an implicate of b alone . Therefore, it either is or is subsumed by a prime implicate of b .
As this prime implicate necessarily contains x, BCP on this implicate must have labeled x
true .

The first theorem tells us that we can make BCP complete if we need to. The second
theorem tells us that running BCP on the prime implicates of the individual formulae is the
same as running BCP on the formulae . Thus, we can exploit the efficient implementations
of clausal BCP.

Consider the simple example of the introduction . Using the conventional conversion to
CNF the formula,

(x =:> (y V z)) n (x V y V z),

	

(4)

is equivalent to the conjunction of, the clauses,

-xV yV z,

	

xV yV z.

However, there is only one prime implicate,

y V z .

This example is illustrates that there may be fewer prime implicates than the conjuncts in
the conventional CNF . Unfortunately, the reverse is usually the case . Consider the clause
set :

-+a V b,

	

-ncV d,

	

-c V e,

	

-bV -d V -e.

In this case, these 4 are all prime implicates, but there are 3 more:

-a V -+d V -e,

	

-bV -c,

	

-1a V -c.

Note that the prime implicates, by themselves, do not solve the task - they represent a
family of solutions each characterized by a distinct assumption set A. Computing the prime
implicates is analogous to compiling a propositional formula (or set of them) so that it is
easy to compute the resulting solution once some input, i.e ., A is provided .

Although replacing the entire set of formulae with their equivalent set of prime implicates
allows BCP to be logically complete, the required set of prime implicates can be extremely
large . This large set is both difficult to construct and, its very size, makes it hard for BCP to
work on. Therefore it is usually impractical to exploit this strategy. In general, converting
individual formulae to their individual prime implicate form is far more effective.

There are a variety of different algorithms for computing prime implicates (see [5, 6, 8, 14,
20, 21]) . Stripped from all the efficiency refinements discussed in the next section, our basic
approach is to use a variation of the consensus method to compute prime implicates . First,
the formula is converted into CNF to produce an initial set of clauses . Then we repeatedly
take two clauses with complementary literals and construct a resulting clause with both
those literals removed . All subsumed clauses are removed. This process continues until no
new unsubsumed clause is producible.
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Labeling A

l.abcling (3

l .abcling A

lahcling C

Figure 2: This figure illustrates the different ways BCP can be used . BCP on arbitrary
formulae (expensive) produces labeling A . If the formulae encoded as their CNF clauses,
then an efficient clausal BCP produces an (unfortunately weaker) labeling B. If formulae are
individually converted into their prime implicates, then the efficient clausal BCP finds the
same labeling A as the inefficient formula BCP on the original constraints. Finally, if the
prime implicates of all the formulae are constructed, then clausal BCP is logically complete .

4

	

Limiting prime implicate construction

There are a number of important observations which reduce the complexity of dealing with
prime implicates .

Prime implicates need to be computed only when a formula is added . No recomputation
is required if more assumptions are added or retracted . Therefore, the major cost is paid up
front when the a formula is added to B and not when A is changed.

Many AI problem solvers operate with a knowledge base or component library. Given a
particular task, pieces of this knowledge base are instantiated as needed. For example, in
Qualitative Process Theory [11, 12] most processes are instantiated with the same fixed set
of formulae (but with different symbols) . Hence, the schemas for prime implicates for each
model in the library can be constructed a priori, and prime implicate constructions can be
avoided run time .

Sometimes it becomes necessary to conjoin two sets of formulae at run time . We can
exploit the observation that the prime implicates of a conjunction of two formulae is the same
as the prime implicates of the union of the prime implicates of the two individual formulae .
Starting with the two initial sets of formulae is usually far more efficient than starting from
scratch.

We exploit BCP labels to construct prime implicates lazily . But we must distinguish
the different reasons a symbol can be labeled T/F: (1) a symbol can be labeled because it
follows from B alone (we call this a fixed label), and (2) a symbol can be labeled because
it follows from B U A (we call this a variable label) . The important difference is that the
fixed labels cannot change if assumptions are added or retracted. If a fixed literal label
satisfies a clause, then that clause is removed from B. If a variable literal label satisfies
a clause, then the clause is temporarily set aside. If a fixed literal label violates a clause,
then the literal is removed from the clause . Therefore our implementation only resolves
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Coping with incompleteness

two clauses if the complementary literals are labeled U. For efficiency, as soon as any new
clause is constructed, BCP is run in order to try to avoid consensus constructions . Note that
as variable labels change clauses which were previously set aside need to be reanalyzed to
compute further prime implicates .

A single propositional formula can yield a very large number of prime implicates. If some
of the symbols of a formula are internal (i.e ., appear only in the formula, are guaranteed
never to be referenced by any new input formula and are of no further interest to the
problem solver), then all the prime implicates mentioning that symbol can be discarded
without affecting the functionality of the TMS. As a result BCP need not stumble over these
needless clauses .

In this section we briefly summarize the basic TMS transactions within our framework.
(compile-formula schema internal-symbols) : Used at compile time . This converts

the formula schema into a set of prime implicate schemas . This is designed to be used
when constructing the knowledge base or the model library. Section 2 outlines the allowed
connectives . internal-symbols is a set of internal symbols which are guaranteed not to
appear again . Therefore, after computing prime implicates, all references to these symbols
can be discarded .

(load-formula schema) : Used at run time . This takes the prime implicate schemas
and communicates them to the TMS . We call the set of prime implicates for a formula a
module. It returns a description of the module.

(add-formula formula) : Used at run time . This adds an individual formula to the
TMS. This is equivalent to using compile-formula and load-formula in succession .

(merge-modules modules module2) : Used at run time . This tells the TMS to conjoin
the two modules, by computing the prime implicates of the combination .

(enable-assumption symbol label) : Used at run time . This labels the symbol T or
F .

(retract-assumption symbol) : Used at run time . This removes the initial label for
the symbol. Note that the symbol might retain a non-U label if it can be derived via BCP
from other clauses .

(label? symbol) : Used at run time . This returns the label for the symbol.
(internal symbol) : Used at run time . This informs the TMS that the symbol is inter-

nal . If all occurrences of this symbol appear in the same module, than all clauses mentioning
this symbol can be discarded . This greatly reduces the number of clauses the TMS needs to
consider .

BCP is, in general, incomplete . But we have to be careful to determine when this in-
completeness poses a difficulty . Just because some symbol is labeled U is no indication of



incompleteness - no one guarantees that enough formulae are provided to force every sym-
bol to be T or U. However, if every formula is individually satisfied by some labeling, then
we know that the clause set is consistent and we can complete the labeling by arbitrarily
changing every U to T or F. These observations provide two fundamental techniques for
coping with incompleteness . (We define a module to be satisfied if every one of its clauses
is satisfied .) First, the problem solver can introduce additional assumptions to attempt to
satisfy open constraints, in effect, performing a backtrack search. Second the problem solver
can merge modules. Merging has two important effects : (a) merging can enable the con-
struction of new prime implicates which yield relabelings, and (b) if each of its modules are
either satisfied or merged into one common unsatisfied module, then we know that BCP is
complete . This tradeoff of whether to use backtracking or merging to construct a solution is
analogous to the one faced by CSP [7, 16] solvers .

Both approaches to coping with incompleteness can be improved with various tactics .
We focus here on tactics to improve the performance of merging. If an internal symbol is
labeled U, then the modules which mention it are candidates for early merging . Whether or
not this relabels the internal symbol, after the merge the internal symbol mentioning it can
be discarded . Modules sharing no symbols can be trivially merged as the prime implicates
of the conjunction is the union of the antecedent prime implicates . However, that if there
are variable labels which are subsequently changed after a merge, the fact that the merge
occurred causes additional work.

7 Modeling

The user of this style of TMS must make a fundamental tradeoff whether all the formulae
should be in one module (and hence be logically complete), or whether the formulae should
all be in their individual modules . For pragmatic reasons, it is usually far better to have in-
dividual modules, however, there are applications where forming larger modules is extremely
useful . For those symbols which were not provided any initial labels, the same set of prime
implicates will now suffice for any initial labeling . This ideally matches the requirements of
problem solving tasks which require the inputs to be changed and with the input formulae
remaining constant . In other words, by computing the prime implicates we have made it
easy to solve 2" different problems via BCP.

One clearcut example of this occurs in qualitative simulation . Typically qualitative anal-
ysis uses propagation to determine the qualitative behavior of a system, however, it is well
known that simple propagation is incomplete and therefore that additional techniques are
needed (feedback heuristics, feedback analysis, etc.) One such technique is the qualitative
resolution rule [9] which assembles individual component models into larger assemblages so
that (a) the entire the device is repeatedly simulated on different inputs by simple propaga-
tion alone and (b) larger devices can be analyzed by building it out of known assemblages .

Our TMS framework achieves the analogous effect . In fact, the qualitative resolution
rule (sometimes called the qualitative Gauss rule) can be implemented using our TMS . [9]
presents an example where two pipes (Fig . 1) connected together produce a model for a
single pipe . Consider the following instance of the qualitative resolution rule . Let x, y, and

10



z be qualitative quantities such that,

From these two confluences we can infer the confluence,

y+z=0.

x+y=0, -x+z=0

(To those unfamiliar with qualitative physics this may not seem that surprising, but it is
important to remember that qualitative arithmetic does not obey the usual field axioms and
thus the equations cannot be manipulated as in conventional arithmetic.) The qualitative
resolution rule is analogous the binary resolution . Two confluences can be usefully combined
only if they share at most one symbol in common, otherwise the result is meaningless .

Our TMS acchieves the effect of the qualitative resolution rule by conjoining the formulae
of the two individual pipes . Expanded into prime clauses x+y = 0 includes : -(x=+) V -(y=

~(x = +) V -+(y = 0), -,(x = U) V - (y = +), ~(x = 0) V -, (y

	

~(x = -) V (y =
0), -(x = -) V -(y

	

Expanding -x + z = 0 into clauses includes : -,(x = -) V -(z =
+), -(x = -) V -(z = 0), .-,(x = 0) V -(z = +), -(x = 0) V -,(z = -), -,(x = +) V (z =
0), -(x = +) V -(z = -) .

	

If we add the clause (x = +) V (x = 0) V (x = -), compute
prime implicates and consider {x = +, x = 0, x = -} internal symbols, then the result is
exactly the prime implicates of the result of the qualitative resolution rule (i.e ., of y+z = 0).
This encoding might appear cumbersome, but the result is nevertheless efficient . As we have
argued earlier, propagation on clauses (i .e ., BCP) is efficiently implemented by following
pointers and manipulating counters . Thus, by `Assembling' the device, we obtain a set of
prime implicates with which it is easy to determine a system's outputs from its inputs .

Dormoy [10] points out that applying the qualitative resolution rule sometimes produces
a combinatorial explosion . This is analogous to the explosion that can occur in expanding a
formula to its prime implicates. In his paper Dormoy proposes a joining rule for controlling
this explosion . The joining rule applies the qualitative resolution only to components which
share an internal variable - it is equivalent to our TMS heuristic of attempting to combine
modules which share internal symbols .

The TMS formulation provides also admits another approach . Consider the two pipe
problem of the introduction again. Suppose we know that [dPA] = [+] and [dPB] = [0]. We
have, in effect, two choices how to solve the problem. We could first inform the TMS of these
values and then ask it two merge the modules of the two pipes ; or we could first merge the
two modules and then add these values. Although the answer [dQ] = [+] remains the same.
The resulting TMS data base is quite different . If we start with [dPA] = [+] and [dPc] = [0],
then most of the prime implicate constructions can be avoided because they provide initial
BCP labels to 6 assumption symbols . On the other hand, if the modules are merged first,
then all prime implicates are constructed, and although only a few of them are necessary
to solve for the given inputs it is now much easier to solve problems where the inputs are
changed .

Although computing all the prime implicates for a full device may be expensive, it often
may be very useful to incur this cost . Once the prime implicates of a device are constructed,
the input-output behavior is completely characterized . From the resulting data base of prime



[dP3]-(dP4)-IdQ1=0[011-I021-(0-0

IdP2)-(dP3)-(dQ)+IdA)-0 I041-(051-1dQ)-0

Figure 3: Constructing a composite model of the pressure regulator

implicates one can construct the inputs from the outputs just as easily as outputs from the
inputs without constructing any additional prime implicates . So the same data base can be
efficiently utilized for a variety of distinct tasks .

Consider the pressure regulator (Fig . 3) as an example. One version of the pressure
regulator is described by the confluences in the figure (from [10]) . Converting into proposi-
tional formulae and providing no initial labels, our TMS yields 2814 prime implicates (many
of which are trivial) . At first sight this seems like an awful lot of information, but these
2814 prime implicates contain a very large amount of information for performing a variety of
tasks on the device and thus it makes sense to construct these implicates if we are repeatedly
performing tasks on the same device . For example, many of the implicates are of the form :

([dP1 ] 34 +) n ([dPs] i4 -) =*- ([dA] i4 +) .

Often we are only interested in those values which follow from some other, and not such
inequalities . Of the 2814 prime implicates, 496 are such definite clauses . If we regard all
except Pl, Ps and Q as internal variables, there remain 21 prime implicates. Finally, if we
know that [dP,] = + and [dP5] = 0, then one clause remains . Equivalently, of the 2814 prime
implicates, only 50 do not contain internal variables, and 21 of these are definite clauses .
Thus we see that the input-output behavior of the pressure regulator can be compiled into
relatively few very simple clauses . As our TMS compute prime implicates lazily there is never
any reason to compile the whole device except, perhaps, for the model library. Instead,
as each of the possible givens (usually inputs) are supplied, the TMS computes enough
prime implicates to answer the query . Only after all input-output combinations (including
negations and disjunctions) have been explored will the TMS have constructed all the prime
implicates. (This technique may not be as successful for all devices because in the worst
case, given n input-output variables, we might need 2° clauses to characterize its behavior .)

In the case of [9, 10] it makes not practical difference whether the qualitative resolution
rule is used or our TMS - the effect is the same. However, the prime implicate formulation
is more general, these same advantages accrue to any formulation of qualitative arithmetic
and, indeed, to any problem solver which uses a TMS.
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