
Interactive Semi-Qualitative Simulation *

Charles A. Erignac
Center for Human Modeling and Simulatio n

University of Pennsylvania, PA 19104-6389, US A
cerignac@graphics .cis .upenn.edu

Abstract

In most virtual worlds, users and agents have limited
interactions with the artifacts populating their envi-
ronment . They can at most operate and sense the m
with a set of action whose consequences have been pre -
determined . We propose to extend their range of inter -
action by introducing interactive semi-qualitative sim -
ulation . This would allow them to interactively chang e
the structure of the artifacts and use the simulator' s
internal models to reason about their behaviors . Vir -
tual prototyping, virtual construction sets, and train -
ing systems are direct applications of this technology.
In this paper we develop an architecture supportin g
this concept and report on our current and future im -
plementations .

Introduction
An increasing number of simulations take place in com-
plex virtual worlds where users and intelligent agent s
interact with each other . They also interact with the
environment itself. Beyond simulating basic physical
interaction (gravity and collision), the environment al -
lows users and agents to interact with simulated arti-
facts of various complexity .

Although interaction is initiated by agents or a user
interface, it is mainly supported by the model of the
simulated artifact . As a consequence, complex interac-
tion is synonymous with complex system behaviors an d
structures .

Currently, in most applications, interactions are lim-
ited to operating and sensing simulated artifacts. In
other words, interaction is mediated through a fixed se t
of inputs (switches, valves, etc .) and outputs (gauges ,
lights, etc .) . Interactions allowing structural system
modifications and model-based reasoning are rarely im-
plemented. This is mainly due to their computationa l
costs .

Overcoming these limitations would enable highly
interactive applications such as virtual prototypin g

` This research was partially supported by the U .S . Ai r
Force through Delivery Orders F41624-97-D-5002-17, an d
F33615-99-D-6001-1 .

tools, virtual construction sets, and virtual laborato-
ries . Eventually, every virtual world could contain ar-
tifacts supporting a range of interactions which are, fo r
now, only possible in reality .

We believe that interactive semi-qualitative simula-
tion (ISQS) is a key component of such systems. It
has the unique ability to dynamically assemble simu-
lation models, generate quantitative physics-based be-
haviors, and produce qualitative representations of th e
physical world . This data is suitable for both animating
a virtual world and symbolic processing by intelligen t
agents . It supports all possible man-machine interac-
tions: operating, assembling, sensing, and reasoning .
Furthermore, compositional modeling (Falkenhainer &
Forbus 1991) techniques allow automated tailoring o f
simulation models for any scenario .

Our long term goal is to implement real-time environ-
ments where intelligent virtual humans would interac t
with complex artifacts in a realistic fashion . In par-
ticular, our current target application is a maintenanc e
simulation system where virtual technicians carry ou t
maintenance procedures . This system could be used t o
validate procedures, generate digital maintenance man-
uals, and train students .

In the remainder of this paper we will present ou r
ongoing research on ISQS . First, we motivate our ap-
proach, and elaborate on a conceptual ISQS architec-
ture . Afterwards, we present, through a case study, a
semi-qualitative simulator implemented as a proof of
concept . We conclude by reflecting on the experienc e
acquired through this experiment and we outline futur e
research directions to improve our system .

Why ISQS?
Simulations where the user or intelligent agents interac t
with simulated artifacts can be found in video-games ,
virtual worlds, virtual laboratories, and training ap-
plications. However, because of modeling and perfor-
mance limitations, their scenarios provide only limite d
interaction .

In order to better understand these limitations let u s
define four agent-artifact interaction categories :

Operational : The agent operates an artifact . It uses



4 1

the artifacts controls to change its internal state . For
example, flipping a switch turns On or Off a device .

Structural : The agent changes the structure of an ar-
tifact . It removes or adds parts or disconnect arti-
facts . For example, disconnecting a pipe from a tan k
changes the structure of the system .

Sensory : The agent senses the state of an artifact . For
example, reading a gauge is a sensory action .

Cognitive: The agent uses the simulator and its mod-
els to reason about the structure and behavior of a n
artifact . For example, an explanatory agent will ana-
lyze a simulation trace and models to answer a query.
An agent can also enlist the services of the simulator
to run a separate "what if" simulation .

In general, an action belongs to more that one inter -
action category .

So far, only operational and sensory interactions hav e
been widely implemented . For example, virtual labo-
ratories (Schmid 1999) and training programs (Goa d
1999) allow users to navigate through a 3D environ-
ment and operate buttons and valves to control phys-
ical systems . However, the simulated artifacts cannot
be modified .

The tutoring agent Steve (Rickel & Johnson 1999 )
teaches the operations of a virtual ship engine room . I t
demonstrates and explains tasks, and it supervises stu-
dents . Although virtual machinery is simulated, Steve
does not use the underlying models to explain principle s
of operation . It uses . instead . separate causal networks .

Systems . such as the CyclePad (Forbus & Whalley
1994) and the "How Things Work" electronic encyclo-
pedia (Amador 1994), perform real cognitive interac-
tion . Their agents analyze and debug user assembled
systems . However, since the simulations run in batch ,
these applications fall short from being a truly interac-
tive .

The reason for the predominance of operational and
sensory interactions is simple . Of the four categories ,
they are the only ones that can run in real time . In
order to achieve acceptable performance, artifacts are
simulated with highly optimized ad-hoc numerical mod-
els .

An artifact's structure either disappears (hiring op-
timization or is static . This means that a simulato r
cannot handle unanticipated structural modifications .
Furthermore, these "diluted" models cannot be share d
with participating agents .

Building an optimized model supporting structural
modification would require enumerating all possible as-
semblies and compiling each of them ahead of time .
Although this solution is feasible for very restrictiv e
scenarios, it is impractical for applications based on un-
restricted structural manipulation such as virtual lab -
oratories, and virtual prototyping tools . Their set of
possible assemblies are infinite .

Structural and cognitive interactions are related .
Predicting interactive structural modifications is un-
tractable . The only alternative is to have the simulator

assemble its equation model at run-time . This auto -
mated model building and solving is a form of model -
based reasoning. It uses explicit structural and behav-
ioral models . They could be shared, via cognitive inter -
action, with model-based reasoning agents . Up to now ,
real-time model building has proved impractical. As
a consequence, typical run-time simulation models ar e
devoid of any information suitable for either structura l
or cognitive interaction .

These performance-driven limitations have prevente d
the development of virtual environments where arti-
facts have interactively reconfigurable structure and in-
spectable models . Such a technology would enable vir-
tual environments where users and agents perform con -
figuration, assembly, operation, analysis, and explana-
tory tasks .

So far only semi-qualitative simulators such a s
CDME (Iwasaki et al . 1997), SIMGEN (Forbus &
Falkenhainer 1995), and Pika (Arnador 1994), have im-
plemented structural and cognitive tasks in general pur-
pose frameworks . These simulators are respectivel y
used for computer assisted engineering, self-explanator y
simulations, and electronic encyclopedias . They are no t
however adequate for ISQS . They are batch simulators
which prohibit user interaction .

More fundamentally, CDME and Pika are inter-
preters . They will not scale-up. SIMGEN produces
compiled simulations in C, but its artifact structures
are static .

Finally, their modeling languages use modeling units ,
model fragments, of limited expressiveness . A fragmen t
can only capture one operating mode . A complex de -
vice model, having many modes and sub-modes, ends -
up being scattered across many units which, accord-
ing to language semantics, are not related . This com-
plicates model authoring and maintenance as well a s
model-based reasoning .

Our work focuses on developing an ISQS framewor k
for virtual environments . It is composed of an interac-
tion architecture and a domain independent interactiv e
semi-qualitative simulator' . The architecture addresse s
the problem of integrating the simulator in a virtua l
environment simulation system and its interfacing wit h
users and agents . The simulator itself is a preliminary
answer to run-time performance and modeling issues .
We present them in the two following sections .

Interactive Simulation Architecture

The ISQS architecture is simple : a simulation engin e
can be considered a regular agent in a virtual environ-
ment . In order to reach this conclusion, we will firs t
define the nature of agent-artifact interaction . Then by
discussing avatars and agent architectures, we will se e
how an engine can interface uniformly with users an d
agents alike .

'We will also refer to it as a simulation engine .



42

'/////Shared Ressources //'////'

Communicatio n
	 Planning 	

1	 Executive 	
Reactive	
Sensory

Communicatio n

Simulatio nEngine

Communication
	 User Input 	

Executive
Reactiv e
	Sensory

The Nature of Interactions

We define the interaction between entities as a multi-
directional flow of actions . Each action is either a dis-
crete or continuous process initiated by one entity, th e
subject, and directed towards others, the objects . Sub-
ject and objects can be affected by the action's effects .

A discrete action is equivalent to a message sent fro m
the subject to the object . For example flipping a switch
can be modeled as a discrete action . A continuous ac-
tion consists of applying constraints until a terminatio n
condition is satisfied . For example keeping a car key on
Start until the engine turns over is a continuous ac-
tion . Continuous actions are initiated and terminated
via message passing .

Actions are either primitive or complex. Primitive
actions correspond to built-in behaviors of the subjec t
and objects . Complex actions are assembled by com-
posing other actions .

We call a set of action definitions a vocabulary.

Uniform Interaction Interface

In a virtual world users and embodied agents 2 have a
virtual body, giving them a physical existence in th e
virtual environment . The virtual embodiment of a use r
is called an avatar.

Contemporary agent architectures are layered (Gen-
nings, Sycara, & Wooldridge 1998 ; Kendall et al. 1998) .
Low-level layers handle sensory input and reactive o r
built-in behaviors such as locomotion, reach, grasp, an d
attention. Mid-level layers control task execution an d
monitoring . High-level layers perform communicatio n
with other agents and task planning .

Depending on the modeled sensors, the state of th e
world may be totally or partially observable . Many vir-
tual worlds are only partially observable by the agent s
and users .

The vocabulary of actions an agent can perform i s
stored in a knowledge base (KB) . The reactive laye r
executes primitive actions . The task execution layer ,
a .k .a . executive layer, uses the KB to carry out comple x
actions .

We assume that avatars and agent models of the sam e
kind, let us say human, share the same low- and mid -
level layers as well as the communication layer . They
may also share the same KB . Aside from making the m
equal in terms of physical abilities this solution allow s
for the implementation of a uniform interaction inter-
face. In other words, agents and avatars share the sam e
action vocabulary and sense the environment in th e
same way. This includes the effects of actions . They
can also act by using the same primitive actions . Fur-
thermore, they use a common communication protocol .

In Object-Oriented terms, the layers that differenti-
ate an avatar from an agent are encapsulated inside th e
same interface . This means that agents and avatars of

'We will use the term agent regardless of whether it is
embodied or not . We will be more explicit only to preven t
ambiguity.

Architecture
	

Environmen t

f - -i Interaction

	

) ) ) User Contro l

Figure 1 : Sensory and communication layers encapsu-
late agent and avatar architectures within the same in-
teraction interface . The simulation engine uses a stan-
dard communication layer to be integrated as a generi c
agent .

the same kind are also perceived the same way (see Fig -
ure 1) . The only difference is that some high-level layer s
in agents are replaced by the user command interface
in the avatars .

Depending on the interface modalities and the ab-
straction level of user commands, the avatar will have
more or less autonomy to carry out its orders . This au -
tonomy is achieved by sharing with agents some com-
plex behaviors produced in certain high-level layers .

In our framework, avatars and agents of a similar kind
can only be distinguished by their degree of autonomy .
As far as interaction is concerned agents and avatars
are identical . For the remainder of this paper will us e
the term agent to refer to both fully autonomous or use r
controlled entities .

Agent-Simulator Interaction
Each artifact is ultimately modeled and simulated in -
side a simulation engine. In order to interact with an
artifact, an agent must possess a least a minimal vocab -
ulary of primitive actions interpretable by the engine .

We take the position of letting an agent and the en-
gine have their own representation of the same action .
In other words, actions are explicitly modeled in the do-
main theory used by the engine . This maximizes decou-
pling between the engine and various kinds of agents .
Also, actions are reified and can be subjects of agen t
reasoning . We rely on message passing between agent s

Source So

	

Valve V 1

Agent

	

Artifact



43

and the engine to initiate, terminate, and diagnose ac-
tions .

Cognitive actions raise the issue of observability.
Some agents should only have limited access to the
models and unobservable states of the artifacts . The
engine should answer agents' queries within the lim-
its of their sensory abilities . However, "extra-sensory "
skills are commonly used by explanatory or tutorin g
agents (Rickel & Johnson 1999) .

The nature of an action ultimately depends on th e
complexity of the agent and artifact models . In partic-
ular this determines the amount of feedback an agen t
requires from the simulator during an action . The feed-
back indicates whether an action has failed or is success -
ful, and when it is completed. Ideally, feedback should
be implemented in the sensory component of the action ;
that is as a termination condition or a sub-action .

For example, filling a tank to a certain level can b e
implemented as a discrete action where the engine sid e
of the action simply assigns a value to the fluid level in
the tank . It can also be implemented as an autonomou s
continuous process where a valve is left open until th e
prescribed level is reached . Finally, it can be a feedback
loop where the action is implemented, on the agent side ,
with an action opening a valve, a wait action whos e
terminating condition is predicated on the fluid level ,
and an action closing the valve . The third solution i s
the most realistic as it decouples the artifact from the
agent by only using primitive actions on the engine side .

It is important to note that some actions can be ini-
tiated by the engine . An agent can register with the
engine its interest into sensing certain events . When
the event occurs, the engine sends a message to the
agent . This mechanism allows implementing termina-
tion conditions without systematic agent polling .

A Simulation Agent

The simulation engine is similar to a regular agent . I t
maintains internal processes initiated internally or b y
external events . These processes trigger further inter -
actions with other entities . It also uses the commo n
resources of the virtual world, such as inter-agent com-
munication (messaging), and the scene managemen t
system which supports the geometric representation of
the world . Indeed each artifact has a geometric mode l
whose appearance, motion, orientation, and positio n
are conditioned by its internal state as modeled in th e
engine . For example, the value read by a simulate d
gauge will translate into a rotation angle of the needl e
in the corresponding gauge 3D model .

Access to these resources is achieved by fitting th e
engine with a standard communication interface (see
Figure 1) .

Therefore, as far as the software platform support-
ing the virtual environment is concerned the simula-
tion engine is an agent . This is the approach we will
use to integrate our next generation simulator . Our
target platform is the Parametric Action Representa-
tion (PAR) system (Badler, Palmer, & Bindiganavale

1999) . This system supports a run time environment
for avatars and agents . It provides messaging, KB ser-
vices, shared working memory, action execution, an d
time sharing .

Case Study
We developed a simulation engine and tested it with
an interactive simulation case study . It consists of a
web-based application to practice virtual maintenanc e
procedures on hydraulic systems . The application com-
prises an interactive user interface remotely connected
with a simulation server .

We did not fully implement the ISQS architecture .
This experiment was meant to evaluate the techni-
cal difficulties of introducing interaction into a semi -
qualitative simulation .

Scenarios

Two scenarios with different tasks were developed t o
illustrate various hazard models and complex mainte-
nance procedures . The scenarios are briefly describe d
as follows :

First Scenario : A pipeline composed of a pipe be-
tween two isolation valves interconnects a wate r
source and sink . The source and sink are respectively
pressurized at 3 and 1 Atmospheres 3 . The mainte-
nance task is to disconnect the pipe from the system
(see Figure 2) .

Second Scenario: An open tank receives a steady in -
flow of water from a valve . Its water level is regulate d
by a controller driving a servo-valve to maintain th e
appropriate outflow . The maintenance task is to dis-
connect the servo-valve from the system (see Figur e
3) .

The first scenario is meant to test basic interactio n
on a simple system as well as demonstrating hazar d
detection . These hazards, leaking and sudden decom-
pression, are modeled as processes . The second hazard
detects the disconnection of a pipe containing residual
pressure. Depending on the order in which the valve s
were closed pressurized water can be trapped in th e
pipe .

The second scenario illustrates the complexity o f
preparatory steps required prior to removing the valve .
It also allows the user to interact with a self-regulate d
(reactive) physical system . The user has a choice be-
tween planning the whole task on its own or letting th e
program execute preplanned complex actions such a s
draining the tank and removing the servo-valve .

Draining the tank closes the inflow valve, turns of f
the controller and opens the servo-valve manually . It
ends when the tank is empty.

The remove servo-valve action starts by calling th e
drain tank action if required, then it disconnects th e
servo-valve from the hydraulic and electric circuits .

'Pressure measurements are absolute .



44

Figure 2 : First scenario's user interface .

Figure 3 : Second scenario 's user interface .

Architecture

Both scenarios are presented to the user through a ded-
icated Java program . Each applet controls the user in-
terface which consists of animated schematics of the hy -
draulic system, buttons to control the simulation and
perform actions, and diverse status text boxes .

The valve schematics can be interactively dragge d
with the mouse to set their aperture . Both scenarios

have buttons to couple and decouple the component s
of interest from the rest of the system . The secon d
scenario has buttons to start complex actions such a s
draining the tank and removing the servo-valve .

The simulator uses an Object-Oriented model-
ing language supporting procedural, rule-based, an d
constraint-based behaviors . In particular, constraint s
are logical clauses, algebraic equations, and differentia l
operators . These constraints can be explicitly grouped
into qualitative states. User-defined transitions contro l
the hybrid behavior .

Devices, and processes of the hydraulic domain ar e
defined in separate fragments . On the simulator side ,
actions are directly modeled as procedures or processes .

The applets translate a user action into a procedur e
call (or any type of statement supported by the lan-
guage) and ship it in textual form to the simulato r
which interprets it . Each applet runs in lockstep with
a remote server hosting the simulation . After an inte-
gration step, the simulator sends update messages fo r
each variable that changed .

The simulator uses a pattern directed inference en-
gine, a LTMS (McAllester 1978) and custom code t o
build qualitative states . Its solver uses a symboli c
Gauss pivoting method and explicit Euler integration .
This method allows solving differential algebraic equa-
tion (DAE) systems of the form 0 = f (x', x, y, u) where
the algebraic unknowns y and the state vector deriva-
tive x' are in linear form. Although this method only
applies to a restricted class of DAE systems it is fast .

Threshold crossing is detected after each pivoting an d
integration steps 45 .

Evaluation

This case study is a proof of concept to validate th e
interactive semi-qualitative simulator we developed fo r
ISQS . We focussed on the following points :

• Interaction Support .

Operational, sensory, and structural interaction s
were successfully implemented . In our system, th e
applet plays the role of an avatar . Since it was just
an interface, complex actions were directly modeled
in the simulation domain. Cognitive interaction re-
mains to be tested .

• General Purpose Engine .

The engine is scenario and domain independent .
Each scenario is described in a model fragment. It
is passed by the client to the server when they initi-
ate their connection . The engine's modeling language
can model complex devices, such as a servo-valve or a
controller, with finite state machines, and processes ,
such as liquid flows, with self-instantiating fragments .

4 A more accurate root finding method, such as bisection
(Shampine, Allen, & S . 1996), will be used in the future .

'For more information on the simulation engine and it s
modeling language see (Erignac 1999) .



45

• Suitability of ISQS as a training tool .
Although we did not implement a complete trainin g
system, the user is able to experiment freely with the
hydraulic systems and perform maintenance proce-
dures . Other features such as self-explanatory an d
tutoring functions would be necessary to complete
the application .

• Ease of developing a hydraulic and control domain
that supports partially assembled systems .
The hydraulic domain theory we developed model s
pressurized tanks and single phase flows as in (Collin s
& Forbus 1987) . It is, however, far more complex
than their approach, because it supports partially as-
sembled systems . In fact, we model hydrostatic state
and residual pressure in pipes . The theory also has
an environmental model and associated hazards as i n
(Catino 1993) . Finally, liquid flows are dynamic t o
include transient behaviors .
The equation solver of the engine is simple . This
made our model fragments quite complex especiall y
since we modeled static and dynamic regimes in
pipes .

• Real-time performance of the simulation engine .
The simulation engine is an interpreter . Although i t
is able to deliver real-time performance for a give n
qualitative state, regenerating equation models takes
a few seconds during which the simulation is sus-
pended .

The case-study shows that ISQS is feasible . The user
is able to operate, remove, and reinsert parts in the hy-
draulic systems . The environment reacts continuousl y
to these actions with the appropriate physical behav-
iors (including hazards 6 ) . We address the outstandin g
issues in the next section .

Future Work
The proof of concept presented above deals mostl y
with building an interactive semi-qualitative simulator .
Modeling a hydraulic domain and simulating it reveale d
that the simulator's run-time performance and model-
ing expressiveness need improvement . However user in -
teractions were successfully modeled and processed b y
the system .

Implementing the whole ISQS architecture requires
developing adequate agent-simulator communication .
In particular, we need a common language to enabl e
cognitive interaction, that is exchanging behavior mod-
els and simulation traces. This will be our next tas k
once some of the following proposed improvements t o
the engine are made .

Run-Time Performance
The key factor to improve is run-time performance .
Without it ISQS will not be able to leverage its uniqu e

6 Hazards actually helped us debug our assemblies whe n
we failed to connect certain pipes while building our
scenarios .

interaction capabilities against fast static simulations .
The performance of the engine is affected by th e

speed at which it can build and solve its equation mod-
els . It builds an equation model once along with it s
resolution plan . This plan is interpreted at each iter-
ation to solve the system . Both models and plans are
cached for ulterior reuse during the simulation .

The engine does not deliver good real-time perfor-
mance because it is interpreted and lacks optimization .
We plan to optimize the code dealing with threshold de -
tection, state transition, and truth maintenance . Also ,
an incremental solver, as in (Amador 1994), would min-
imize the amount of replanning when a new system i s
built .

More importantly, we will experiment with adap-
tive just-in-time compilation of resolution plans . This
means converting the most frequently interpreted plan
into a C function, compiling it, and loading it as dy-
namic library. The function would substitute the plan' s
interpretation .

This method is similar to run-time profiling of Java
programs and the compilation of the most used cod e
segments performed in the HotSpot Java Virtual Ma -
chine (Sun Microsystems Inc . 1996) . Other elements o f
the simulation, such as threshold detection, can also b e
compiled. Our proposed compilation scheme only im-
proves run-time performance within a given qualitativ e
state . Latency should be expected the first time a new
state is encountered .

In order to truly remain interactive we must predict
the next qualitative state and solve its equation mode l
ahead. One solution would be to look ahead in time
until a new state is encountered . Because agent inter -
action is not predictable, this new state might not b e
the one actually reached . Another solution would be t o
use a persistent cache to store the qualitative states o f
a given scenario across simulation sessions .

Modeling Construct Expressiveness
After simulation speed, having expressive modeling con -
structs is the main concern of our framework . This im-
pacts the complexity of the modeling process as well as
the workload of the engine .

The engine's modeling language uses finite state ma -
chines to capture different operating modes within on e
fragment . Although this proved useful to model valves ,
the sub-modes of the electronic components had t o
be flattened . This produces multiple states containin g
the same constraints and complex transition patterns .
Complex devices are better modeled with hierarchical
finite state machines such as Statecharts (Harel 1987) .
We will make our states hierarchical to keep our models
compact and true to mode and sub-mode hierarchies .

The ease of modeling a wide range of continuous be -
haviors depends on the power of the engine's equatio n
solver . If the solver is not powerful enough, a model
fragment will be burdened with additional states an d
transitions to ensure that its active constraints are al-
ways solvable . Furthermore, operation modes of related



46

fragment instances must be kept synchronized to ensur e
the solvability of the whole equation model . As men-
tioned earlier our fragment models are quite comple x
because of the solver's simplicity .

Solution techniques from the field of quantitative sim-
ulation could improve the solver's expressiveness . For
example, index reduction allows using an algebraic con-
straint regardless of whether its variables are unknown s
or state variables . In the hydraulic domain this equate s
to using a flow conservation equation for both transient
and quasi-static regimes. More generally, index reduc-
tion resolves the singularities occuring when assemblin g
certain devices .

Enhancing the solver with such a method would sim-
plify connecting and modeling fragments . Real-time
performance however remains to be assessed . Although
complex solving methods will slow down the solver, they
will require less frequent equation model switching .

Conclusion
We presented a framework for implementing interac-
tive semi-qualitative simulation (ISQS) in virtual en-
vironments . This novel application of semi-qualitativ e
simulation breaks the limitations of traditional quanti-
tative simulation where users and agents can only op-
erate and sense precompiled artifact models . It gives
them the ability to interactively modify artifact's struc-
ture and access their simulation models . We devel-
oped a semi-qualitative simulator and built a web-based
maintenance simulator around it . This experiment con -
firmed the feasibility of ISQS provided the simulatio n
engine is upgraded to run at interactive rate . Several
methods where proposed and will be implemented .

Acknowledgment
We want to thank Hogeun Shin for developing the web -
based architecture of the case study, and the referee s
whose constructive comments helped us improving thi s
paper .

References
Amador, F . G. 1994 . Self-explanatory simulation fo r
an electronic encylopedia . Technical Report TR-94-
07-06, University of Washington, Department of Com-
puter Science and Engineering .

Badler, N . I . ; Palmer, M . ; and Bindiganavale, R . 1999 .
Animation control for real-time virtual humans . Com-
munications of the ACM 42(7) :65-73 .

Catino, C. A . 1993 . Automated Modeling of Chemi-
cal Plants with Application to Hazard and Operability
Studies . Ph.D. Dissertation, Department of Chemica l
Engineering, University of Pennsylvania, Philadelphia ,
PA .

Collins, J . W ., and Forbus, K . D . 1987. Reasoning
about fluids via molecular collections . In Proc. 6th
National Conf on Artificial Intelligence (AAAI-87) ,
590-594 . San Mateo, CA: Morgan Kaufmann .

Erignac, C . 1999 . Semi-qualitative simulation for vir-
tual environments . In Price, C ., ed ., Thirteenth Inter-
national Workshop on Qualitative Reasoning, 73-83 .
Falkenhainer, B ., and Forbus, K. D. 1991 . Composi-
tional modeling : Finding the right model for the job .
Artificial Intelligence 51(1-3) :95-144 .
Forbus, K. D ., and Falkenhainer, B . 1995 . Scaling
up self-explanatory simulators : Polynomial-time com-
pilation . In IJCAI95, 1798-1805 .
Forbus, K ., and Whalley, P . 1994. Using qualiativ e
physics to build articulate software for thermodynam-
ics education . In Proceedings of AAAI-94, 1175-1182 .
Gennings, N . ; Sycara, K . ; and Wooldridge, M . 1998 .
A roadmap of agent research and development . Au-
tonomus Agents and Multi-Agent Systems (1) :7-38 .
Goad, C. 1999. A language-level attack on compi-
sitional
simulation . Technical report, The Behavior Engin e
Company, http ://www.besoft .com/cssindex .html .
Harel, D . 1987 . Statecharts : A visual formulation fo r
complex systems . Science of Computer Programming
8(3) :231-274 .
Iwasaki, Y . ; Farquhar, A . ; Fikes, R . ; and Rice, J .
1997 . A web-based compositional modeling system fo r
sharing of physical knowledge . In Proceedings of th e
15th International Joint Conference on Artificial In-
telligence (IJCAI-97), 494-500 . San Francisco : Mor-
gan Kaufmann Publishers .
Kendall, E . ; Murali Krishna, P . ; Pathac, C . ; and
Sureash, C . 1998 . Patterns of intelligent and mobil e
agents . In Proc. Int . Conf. on Autonomous Agents ,
92-99 . ACM Press .

McAllester, D . A . 1978 . A three valued truth mainte-
nance system . (MIT) Artificial Intelligence Memo 473 ,
Department of Computer Science, Massachusettes In-
stitute of Technology.

Rickel, J ., and Johnson, L . 1999. Animated agents
for procedural training in virtual reality : Perception ,
cognition,and motor control . Applied Artificial Intel-
ligence (7) :343-382 .
Schmid, C . 1999 . A remote laboratory using virtual
reality on the web . Simulation 73(1) :13-21 .
Shampine, L . ; Allen, R. J . ; and S ., P. 1996 . Funda-
mentals of Numerical Computing . John Wiley & Sons .
ISBN: 0471163635 .

Sun Microsystems Inc . 1996 . The Java HotSpot per-
fomance architecture . A White Paper About Sun' s
Second Generation Performance Technology .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

