Interactive Semi-Qualitative Simulation *

Charles A. Erignac
Center for Human Modeling and Simulation
University of Pennsylvania, PA 19104-6389, USA
cerignac@graphics.cis.upenn.edu

Abstract

In most virtual worlds, users and agents have limited
interactions with the artifacts populating their envi-
ronment. They can at most operate and sense them
with a set of action whose consequences have been pre-
determined. We propose to extend their range of inter-
action by introducing interactive semi-qualitative sim-
ulation. This would allow them to interactively change
the structure of the artifacts and use the simulator’s
internal models to reason about their behaviors. Vir-
tual prototyping, virtual construction sets, and train-
ing systems are direct applications of this technology.
In this paper we develop an architecture supporting
this concept and report on our current and future im-
plementations.

Introduction

An increasing number of simulations take place in com-
plex virtual worlds where users and intelligent agents
interact with each other. They also interact with the
environment itself. Beyond simulating basic physical
interaction (gravity and collision), the environment al-
lows users and agents to interact with simulated arti-
facts of various complexity.

Although interaction is initiated by agents or a user
interface, it is mainly supported by the model of the
simulated artifact. As a consequence, complex interac-
tion is synonymous with complex system behaviors and
structures.

Currently, in most applications, interactions are lim-
ited to operating and sensing simulated artifacts. In
other words, interaction is mediated through a fixed set
of inputs (switches, valves, etc.) and outputs (gauges,
lights, etc.). Interactions allowing structural system
modifications and model-based reasoning are rarely im-
plemented. This is mainly due to their computational
costs.

Overcoming these limitations would enable highly
interactive applications such as virtual prototyping

"This research was partially supported by the U.S. Air
Force through Delivery Orders F41624-97-D-5002-17, and
F33615-99-D-6001-1.

tools, virtual construction sets, and virtual laborato-
ries. Eventually, every virtual world could contain ar-
tifacts supporting a range of interactions which are, for
now, only possible in reality.

We believe that interactive semi-qualitative simula-
tion (ISQS) is a key component of such systems. It
has the unique ability to dynamically assemble simu-
lation models, generate quantitative physics-based be-
haviors, and produce qualitative representations of the
physical world. This data is suitable for both animating
a virtual world and symbolic processing by intelligent
agents. It supports all possible man-machine interac-
tions: operating, assembling, sensing, and reasoning.
Furthermore, compositional modeling (Falkenhainer &
Forbus 1991) techniques allow automated tailoring of
simulation models for any scenario.

Our long term goal is to implement real-time environ-
ments where intelligent virtual humans would interact
with complex artifacts in a realistic fashion. In par-
ticular, our current target application is a maintenance
simulation system where virtual technicians carry out
maintenance procedures. This system could be used to
validate procedures, generate digital maintenance man-
uals, and train students.

In the remainder of this paper we will present our
ongoing research on ISQS. First, we motivate our ap-
proach, and elaborate on a conceptual ISQS architec-
ture. Afterwards, we present, through a case study, a
semi-qualitative simulator implemented as a proof of
concept. We conclude by reflecting on the experience
acquired through this experiment and we outline future
research directions to improve our system.

Why ISQS?

Simulations where the user or intelligent agents interact
with simulated artifacts can be found in video-games,
virtual worlds, virtual laboratories, and training ap-
plications. However, because of modeling and perfor-
mance limitations, their scenarios provide only limited
interaction.

In order to better understand these limitations let us
define four agent-artifact interaction categories:

Operational: The agent operates an artifact. It uses

the artifacts controls to change its internal state. For
example, flipping a switch turns On or Off a device.

Structural: The agent changes the structure of an ar-
tifact. It removes or adds parts or disconnect arti-
facts. For example, disconnecting a pipe from a tank
changes the structure of the system.

Sensory: The agent senses the state of an artifact. For
example, reading a gauge is a sensory action.

Cognitive: The agent uses the simulator and its mod-
els to reason about the structure and behavior of an
artifact. For example, an explanatory agent will ana-
lyze a simulation trace and models to answer a query.
An agent can also enlist the services of the simulator
to run a separate “what if” simulation.

In general, an action belongs to more that one inter-
action category.

So far, only operational and sensory interactions have
been widely implemented. For example, virtual labo-
ratories (Schmid 1999) and training programs (Goad
1999) allow users to navigate through a 3D environ-
ment and operate buttons and valves to control phys-
ical systems. However, the simulated artifacts cannot
be modified.

The tutoring agent Steve (Rickel & Johnson 1999)
teaches the operations of a virtual ship engine room. It
demonstrates and explains tasks, and it supervises stu-
dents. Although virtual machinery is simulated, Steve
does not use the underlying models to explain principles
of operation. It uses, instead, separate causal networks.

Systems, such as the CyclePad (Forbus & Whalley
1994) and the “How Things Work” electronic encyclo-
pedia (Amador 1994), perform real cognitive interac-
tion. Their agents analyze and debug user assembled
systems. However, since the simulations run in batch,
these applications fall short from being a truly interac-
tive.

The reason for the predominance of operational and
sensory interactions is simple. Of the four categories,
they are the only ones that can run in real time. In
order to achieve acceptable performance, artifacts are
simulated with highly optimized ad-hoc numerical mod-
els.

An artifact’s structure either disappears during op-
timization or is static. This means that a simulator
cannot handle unanticipated structural modifications.
Furthermore, these “diluted” models cannol be shared
with participating agents.

Building an optimized model supporting structural
modification would require enumerating all possible as-
semblies and compiling each of them ahead of time.
Although this solution is feasible for very restrictive
scenarios, it is impractical for applications based on un-
restricted structural manipulation such as virtual lab-
oratories, and virtual prototyping tools. Their set of
possible assemblies are infinite.

Structural and cognitive interactions are related.
Predicting interactive structural modifications is un-
tractable. The only alternative is to have the simulator

41

assemble its equation model at run-time. This auto-
mated model building and solving is a form of model-
based reasoning. It uses explicit structural and behav-
ioral models. They could be shared, via cognitive inter-
action, with model-based reasoning agents. Up to now,
real-time model building has proved impractical. As
a consequence, typical run-time simulation models are
devoid of any information suitable for either structural
or cognitive interaction.

These performance-driven limitations have prevented
the development of virtual environments where arti-
facts have interactively reconfigurable structure and in-
spectable models. Such a technology would enable vir-
tual environments where users and agents perform con-
figuration, assembly, operation, analysis, and explana-
tory tasks.

So far only semi-qualitative simulators such as
CDME (Iwasaki et al. 1997), SIMGEN (Forbus &
Falkenhainer 1995), and Pika (Amador 1994), have im-
plemented structural and cognitive tasks in general pur-
pose frameworks. These simulators are respectively
used for computer assisted engineering, self-explanatory
simulations, and electronic encyclopedias. They are not
however adequate for ISQS. They are batch simulators
which prohibit user interaction.

More fundamentally, CDME and Pika are inter-
preters. They will not scale-up. SIMGEN produces
compiled simulations in C, but its artifact structures
are static.

Finally, their modeling languages use modeling units,
model fragments, of limited expressiveness. A fragment
can only capture one operating mode. A complex de-
vice model, having many modes and sub-modes, ends-
up being scattered across many units which, accord-
ing to language semantics, are not related. This com-
plicates model authoring and maintenance as well as
model-based reasoning.

Our work focuses on developing an ISQS frameworlk
for virtual environments. It is composed of an interac-
tion architecture and a domain independent interactive
semi-qualitative simulator!. The architecture addresses
the problem of integrating the simulator in a virtual
environment simulation system and its interfacing with
users and agents. The simulator itself is a preliminary
answer to run-time performance and modeling issues.
We present them in the two following sections.

Interactive Simulation Architecture

The ISQS architecture is simple: a simulation engine
can be considered a regular agent in a virtual environ-
ment. In order to reach this conclusion, we will first
define the nature of agent-artifact interaction. Then by
discussing avatars and agent architectures, we will see
how an engine can interface uniformly with users and
agents alike.

"'We will also refer to it as a simulation engine.

42

The Nature of Interactions

We define the interaction between entities as a multi-
directional flow of actions. Each action is either a dis-
crete or continuous process initiated by one entity, the
subject, and directed towards others, the objects. Sub-
ject and objects can be affected by the action’s effects.

A discrete action is equivalent to a message sent from
the subject to the object. For example flipping a switch
can be modeled as a discrete action. A continuous ac-
tion consists of applying constraints until a termination
condition is satisfied. For example keeping a car key on
Start until the engine turns over is a continuous ac-
tion. Continuous actions are initiated and terminated
via message passing.

Actions are either primitive or complez. Primitive
actions correspond to built-in behaviors of the subject
and objects. Complex actions are assembled by com-
posing other actions.

We call a set of action definitions a vocabulary.

Uniform Interaction Interface

In a virtual world users and embodied agents® have a
virtual body, giving them a physical existence in the
virtual environment. The virtual embodiment of a user
is called an avatar.

Contemporary agent architectures are layered (Gen-
nings, Sycara, & Wooldridge 1998; Kendall et al. 1998).
Low-level layers handle sensory input and reactive or
built-in behaviors such as locomotion, reach, grasp, and
attention. Mid-level layers control task execution and
monitoring. High-level layers perform communication
with other agents and task planning.

Depending on the modeled sensors, the state of the
world may be totally or partially observable. Many vir-
tual worlds are only partially observable by the agents
and users.

The vocabulary of actions an agent can perform is
stored in a knowledge base (KB). The reactive layer
executes primitive actions. The task execution layer,
a.k.a. ezecutive layer, uses the KB to carry out complex
actions.

We assume that avatars and agent models of the same
kind, let us say human, share the same low- and mid-
level layers as well as the communication layer. They
may also share the same KB. Aside from making them
equal in terms of physical abilities this solution allows
for the implementation of a uniform interaction inter-
face. In other words, agents and avatars share the same
action vocabulary and sense the environment in the
same way. This includes the effects of actions. They
can also act by using the same primitive actions. Fur-
thermore, they use a common communication protocol.

In Object-Oriented terms, the layers that differenti-
ate an avatar from an agent are encapsulated inside the
same interface. This means that agents and avatars of

*We will use the term agent regardless of whether it is
embodied or not. We will be more explicit only to prevent
ambiguity.

‘Shared Ressources
' 4 4
|] |
Communication Communication Communication
Simulation Executive
Engine
Sensory Sensory
Architecture

Agent Artifact Avatar

-+ - - |nteraction 1) J) User Control

Figure 1: Sensory and communication layers encapsu-
late agent and avatar architectures within the same in-
teraction interface. The simulation engine uses a stan-
dard communication layer to be integrated as a generic
agent.

the same kind are also perceived the same way (see Fig-
ure 1). The only difference is that some high-level layers
in agents are replaced by the user command interface
in the avatars.

Depending on the interface modalities and the ab-
straction level of user commands, the avatar will have
more or less autonomy to carry out its orders. This au-
tonomy is achieved by sharing with agents some com-
plex behaviors produced in certain high-level layers.

In our framework, avatars and agents of a similar kind
can only be distinguished by their degree of autonomy.
As far as interaction is concerned agents and avatars
are identical. For the remainder of this paper will use
the term agent to refer to both fully autonomous or user
controlled entities.

Agent-Simulator Interaction

Each artifact is ultimately modeled and simulated in-
side a simulation engine. In order to interact with an
artifact, an agent must possess a least a minimal vocab-
ulary of primitive actions interpretable by the engine.
We take the position of letting an agent and the en-
gine have their own representation of the same action.
In other words, actions are explicitly modeled in the do-
main theory used by the engine. This maximizes decou-
pling between the engine and various kinds of agents.
Also, actions are reified and can be subjects of agent
reasoning. We rely on message passing between agents

and the engine to initiate, terminate, and diagnose ac-
tions.

Cognitive actions raise the issue of observability.
Some agents should only have limited access to the
models and unobservable states of the artifacts. The
engine should answer agents’ queries within the lim-
its of their sensory abilities. However, “extra-sensory”
skills are commonly used by explanatory or tutoring
agents (Rickel & Johnson 1999).

The nature of an action ultimately depends on the
complexity of the agent and artifact models. In partic-
ular this determines the amount of feedback an agent
requires from the simulator during an action. The feed-
back indicates whether an action has failed or is success-
ful, and when it is completed. Ideally, feedback should
be implemented in the sensory component of the action;
that is as a termination condition or a sub-action.

For example, filling a tank to a certain level can be
implemented as a discrete action where the engine side
of the action simply assigns a value to the fluid level in
the tank. It can also be implemented as an autonomous
continuous process where a valve is left open until the
prescribed level is reached. Finally, it can be a feedback
loop where the action is implemented, on the agent side,
with an action opening a valve, a wait action whose
terminating condition is predicated on the fluid level,
and an action closing the valve. The third solution is
the most realistic as it decouples the artifact from the
agent by only using primitive actions on the engine side.

It is important to note that some actions can be ini-
tiated by the engine. An agent can register with the
engine its interest into sensing certain events. When
the event occurs, the engine sends a message to the
agent. This mechanism allows implementing termina-
tion conditions without systematic agent polling.

A Simulation Agent

The simulation engine is similar to a regular agent. It
maintains internal processes initiated internally or by
external events. These processes trigger further inter-
actions with other entities. It also uses the common
resources of the virtual world, such as inter-agent com-
munication (messaging), and the scene management
system which supports the geometric representation of
the world. Indeed each artifact has a geometric model
whose appearance, motion, orientation, and position
are conditioned by its internal state as modeled in the
engine. For example, the value read by a simulated
gauge will translate into a rotation angle of the needle
in the corresponding gauge 3D model.

Access to these resources is achieved by fitting the
engine with a standard communication interface (see
Figure 1).

Therefore, as far as the software platform support-
ing the virtual environment is concerned the simula-
tion engine is an agent. This is the approach we will
use to integrate our next generation simulator. Our
target platform is the Parametric Action Representa-
tion (PAR) system (Badler, Palmer, & Bindiganavale

43

1999). This system supports a run time environment
for avatars and agents. It provides messaging, KB ser-
vices, shared working memory, action execution, and
time sharing.

Case Study

We developed a simulation engine and tested it with
an interactive simulation case study. It consists of a
web-based application to practice virtual maintenance
procedures on hydraulic systems. The application com-
prises an interactive user interface remotely connected
with a simulation server.

We did not fully implement the ISQS architecture.
This experiment was meant to evaluate the techni-
cal difficulties of introducing interaction into a semi-
qualitative simulation.

Scenarios

Two scenarios with different tasks were developed to
illustrate various hazard models and complex mainte-
nance procedures. The scenarios are briefly described
as follows:

First Scenario: A pipeline composed of a pipe be-
tween two isolation valves interconnects a water
source and sink. The source and sink are respectively
pressurized at 3 and 1 Atmospheres®. The mainte-
nance task is to disconnect the pipe from the system
(see Figure 2).

Second Scenario: An open tank receives a steady in-
flow of water from a valve. Its water level is regulated
by a controller driving a servo-valve to maintain the
appropriate outflow. The maintenance task is to dis-
connect the servo-valve from the system (see Figure
3).

The first scenario is meant to test basic interaction
on a simple system as well as demonstrating hazard
detection. These hazards, leaking and sudden decom-
pression, are modeled as processes. The second hazard
detects the disconnection of a pipe containing residual
pressure. Depending on the order in which the valves
were closed pressurized water can be trapped in the
pipe.

The second scenario illustrates the complexity of
preparatory steps required prior to removing the valve.
It also allows the user to interact with a self-regulated
(reactive) physical system. The user has a choice be-
tween planning the whole task on its own or letting the
program execute preplanned complex actions such as
draining the tank and removing the servo-valve.

Draining the tank closes the inflow valve, turns off
the controller and opens the servo-valve manually. It
ends when the tank is empty.

The remove servo-valve action starts by calling the
drain tank action if required, then it disconnects the
servo-valve from the hydraulic and electric circuits.

®Pressure measurements are absolute.

44

FVETEM LEARRG)

Wamalet iy Fine | 1% NE

Figure 3: Second scenario’s user interface.

Architecture

Both scenarios are presented to the user through a ded-
icated Java program. Each applet controls the user in-
terface which consists of animated schematics of the hy-
draulic system, buttons to control the simulation and
perform actions, and diverse status text boxes.

The valve schematics can be interactively dragged
with the mouse to set their aperture. Both scenarios

have buttons to couple and decouple the components
of interest from the rest of the system. The second
scenario has buttons to start complex actions such as
draining the tank and removing the servo-valve.

The simulator uses an Object-Oriented model-
ing language supporting procedural, rule-based, and
constraint-based behaviors. In particular, constraints
are logical clauses, algebraic equations, and differential
operators. These constraints can be explicitly grouped
into qualitative states. User-defined transitions control
the hybrid behavior.

Devices, and processes of the hydraulic domain are
defined in separate fragments. On the simulator side,
actions are directly modeled as procedures or processes.

The applets translate a user action into a procedure
call (or any type of statement supported by the lan-
guage) and ship it in textual form to the simulator
which interprets it. Each applet runs in lockstep with
a remote server hosting the simulation. After an inte-
gration step, the simulator sends update messages for
each variable that changed.

The simulator uses a pattern directed inference en-
gine, a LTMS (McAllester 1978) and custom code to
build qualitative states. Its solver uses a symbolic
Gauss pivoting method and explicit Euler integration.
This method allows solving differential algebraic equa-
tion (DAE) systems of the form 0 = f(z', z, y,u) where
the algebraic unknowns y and the state vector deriva-
tive ' are in linear form. Although this method only
applies to a restricted class of DAE systems it is fast.

Threshold crossing is detected after each pivoting and
integration steps*®.

Evaluation

This case study is a proof of concept to validate the
interactive semi-qualitative simulator we developed for
1SQS. We focussed on the following points:

e Interaction Support.

Operational, sensory, and structural interactions
were successfully implemented. In our system, the
applet plays the role of an avatar. Since it was just
an interface, complex actions were directly modeled
in the simulation domain. Cognitive interaction re-
mains to be tested.

e General Purpose Engine.

The engine is scenario and domain independent.
Each scenario is described in a model fragment. It
is passed by the client to the server when they initi-
ate their connection. The engine’s modeling language
can model complex devices, such as a servo-valve or a
controller, with finite state machines, and processes,
such as liquid flows, with self-instantiating fragments.

* A more accurate root finding method, such as bisection
(Shampine, Allen, & S. 1996), will be used in the future.

SFor more information on the simulation engine and its
modeling language see (Erignac 1999).

e Suitability of ISQS as a training tool.
Although we did not implement a complete training
system, the user is able to experiment freely with the
hydraulic systems and perform maintenance proce-
dures. Other features such as self-explanatory and
tutoring functions would be necessary to complete
the application.

e Ease of developing a hydraulic and control domain
that supports partially assembled systems.
The hydraulic domain theory we developed models
pressurized tanks and single phase flows as in (Collins
& Forbus 1987). It is, however, far more complex
than their approach, because it supports partially as-
sembled systems. In fact, we model hydrostatic state
and residual pressure in pipes. The theory also has
an environmental model and associated hazards as in
(Catino 1993). Finally, liguid flows are dynamic fo
include transient behaviors.
The equation solver of the engine is simple. This
made our model fragments quite complex especially
since we modeled static and dynamic regimes in
pipes.

¢ Real-time performance of the simulation engine.
The simulation engine is an interpreter. Although it
is able to deliver real-time performance for a given
qualitative state, regenerating equation models takes
a few seconds during which the simulation is sus-
pended.

The case-study shows that ISQS is feasible. The user
is able to operate, remove, and reinsert parts in the hy-
draulic systems. The environment reacts continuously
to these actions with the appropriate physical behav-
iors (including hazards®). We address the outstanding
issues in the next section.

Future Work

The proof of concept presented above deals mostly
with building an interactive semi-qualitative simulator.
Modeling a hydraulic domain and simulating it revealed
that the simulator’s run-time performance and model-
ing expressiveness need improvement. However user in-
teractions were successfully modeled and processed by
the system.

Implementing the whole ISQS architecture requires
developing adequate agent-simulator communication.
In particular, we need a common language to enable
cognitive interaction, that is exchanging behavior mod-
els and simulation traces. This will be our next task
once some of the following proposed improvements to
the engine are made,

Run-Time Performance

The key factor to improve is run-time performance.
Without it ISQS will not be able to leverage its unique

PHazards actually helped us debug our assemblies when
we failed to connect certain pipes while building our
scenarios.

45

interaction capabilities against fast static simulations.

The performance of the engine is affected by the
speed at which it can build and solve its equation mod-
els. It builds an equation model once along with its
resolution plan. This plan is interpreted at each iter-
ation to solve the system. Both models and plans are
cached for ulterior reuse during the simulation.

The engine does not deliver good real-time perfor-
mance because it is interpreted and lacks optimization.
We plan to optimize the code dealing with threshold de-
tection, state transition, and truth maintenance. Also,
an incremental solver, as in (Amador 1994), would min-
imize the amount of replanning when a new system is
built.

More importantly, we will experiment with adap-
tive just-in-time compilation of resolution plans. This
means converting the most frequently interpreted plan
into a C function, compiling it, and loading it as dy-
namic library. The function would substitute the plan’s
interpretation.

This method is similar to run-time profiling of Java
programs and the compilation of the most used code
segments performed in the HotSpot Java Virtual Ma-
chine (Sun Microsystems Inc. 1996). Other elements of
the simulation, such as threshold detection, can also be
compiled. Our proposed compilation scheme only im-
proves run-time performance within a given qualitative
state. Latency should be expected the first time a new
state is encountered.

In order to truly remain interactive we must predict
the next qualitative state and solve its equation model
ahead. One solution would be to look ahead in time
until a new state is encountered. Because agent inter-
action is not predictable, this new state might not be
the one actually reached. Another solution would be to
use a persistent cache to store the qualitative states of
a given scenario across simulation sessions.

Modeling Construct Expressiveness

After simulation speed, having expressive modeling con-
structs is the main concern of our framework. This im-
pacts the complexity of the modeling process as well as
the workload of the engine.

The engine’s modeling language uses finite state ma-
chines to capture different operating modes within one
fragment. Although this proved useful to model valves,
the sub-modes of the electronic components had to
be flattened. This produces multiple states containing
the same constraints and complex transition patterns.
Complex devices are better modeled with hierarchical
finite state machines such as Statecharts (Harel 1987).
We will make our states hierarchical to keep our models
compact and true to mode and sub-mode hierarchies.

The ease of modeling a wide range of continuous be-
haviors depends on the power of the engine’s equation
solver. If the solver is not powerful enough, a model
fragment will be burdened with additional states and
transitions to ensure that its active constraints are al-
ways solvable. Furthermore, operation modes of related

46

fragment instances must be kept synchronized to ensure
the solvability of the whole equation model. As men-
tioned earlier our fragment models are quite complex
because of the solver’s simplicity.

Solution techniques from the field of quantitative sim-
ulation could improve the solver’s expressiveness. For
example, index reduction allows using an algebraic con-
straint regardless of whether its variables are unknowns
or state variables. In the hydraulic domain this equates
to using a flow conservation equation for both transient
and quasi-static regimes. More generally, index reduc-
tion resolves the singularities occuring when assembling
certain devices.

Enhancing the solver with such a method would sim-
plify connecting and modeling fragments. Real-time
performance however remains to be assessed. Although
complex solving methods will slow down the solver, they
will require less frequent equation model switching.

Conclusion

We presented a framework for implementing interac-
tive semi-qualitative simulation (ISQS) in virtual en-
vironments. This novel application of semi-qualitative
simulation breaks the limitations of traditional quanti-
tative simulation where users and agents can only op-
erate and sense precompiled artifact models. It gives
them the ability to interactively modify artifact’s struc-
ture and access their simulation models. We devel-
oped a semi-qualitative simulator and built a web-based
maintenance simulator around it. This experiment con-
firmed the feasibility of ISQS provided the simulation
engine is upgraded to run at interactive rate. Several
methods where proposed and will be implemented.

Acknowledgment

We want to thank Hogeun Shin for developing the web-
based architecture of the case study, and the referees
whose constructive comments helped us improving this

paper.

References

Amador, F. G. 1994. Self-explanatory simulation for
an electronic encylopedia. Technical Report TR-94-
07-06, University of Washington, Department of Com-
puter Science and Engineering.

Badler, N. I.; Palmer, M.; and Bindiganavale, R. 1999.
Animation control for real-time virtual humans. Com-
munications of the ACM 42(7):65-73.

Catino, C. A. 1993. Automated Modeling of Chemi-
cal Plants with Application to Hazard and Operability
Studies. Ph.D. Dissertation, Department of Chemical
Engineering, University of Pennsylvania, Philadelphia,

Collins, J. W., and Forbus, K. D. 1987. Reasoning
about fluids via molecular collections. In Proc. 6th
National Conf. on Artificial Intelligence (AAAI-87),
590-594. San Mateo, CA: Morgan Kaufmann.

Erignac, C. 1999. Semi-qualitative simulation for vir-
tual environments. In Price, C.. ed., Thirteenth Inter-
national Workshop on Qualitative Reasoning, 73-83.

Falkenhainer, B., and Forbus, K. D. 1991. Composi-
tional modeling: Finding the right model for the job.
Artificial Intelligence 51(1-3):95-144.

Forbus, K. D., and Falkenhainer, B. 1995. Scaling
up self-explanatory simulators: Polynomial-time com-
pilation. In IJCATI95, 1798-1805.

Forbus, K., and Whalley, P. 1994. Using qualiative
physics to build articulate software for thermodynam-
ics education. In Proceedings of AAAI-94, 1175-1182.
Gennings, N.; Sycara, K.; and Wooldridge, M. 1998.
A roadmap of agent research and development. Au-
tonomus Agents and Multi-Agent Systems (1):7-38.

Goad, C. 1999. A language-level attack on compi-
sitional

simulation. Technical report, The Behavior Engine
Company, http://www.besoft.com/cssindex.html.

Harel, D. 1987. Statecharts: A visual formulation for
complex systems. Science of Computer Programming
8(3):231-274.

Iwasaki, Y.; Farquhar, A.; Fikes, R.; and Rice, J.
1997. A web-based compaositional modeling system for
sharing of physical knowledge. In Proceedings of the
15th International Joint Conference on Artificial In-
telligence (1JCAI-97), 494-500. San Francisco: Mor-
gan Kaufmann Publishers.

Kendall, E.; Murali Krishna, P.; Pathac, C.; and
Sureash, C. 1998. Patterns of intelligent and mobile

agents. In Proe. Int. Conf. on Autonomous Agents,
92-99. ACM Press.

McAllester, D. A, 1978. A three valued truth mainte-
nance system. (MIT) Artificial Intelligence Memo 473,
Department of Computer Science, Massachusettes In-
stitute of Technology.

Rickel, J., and Johnson, L. 1999. Animated agents
for procedural training in virtual reality: Perception,
cognition,and motor control. Applied Artificial Intel-
ligence (7):343-382.

Schmid, C. 1999. A remote laboratory using virtual
reality on the web. Simulation 73(1):13-21.
Shampine, L.; Allen, R. J.; and S., P. 1996. Funda-

mentals of Numerical Computing. John Wiley & Sons.
ISBN: 0471163635.

Sun Microsystems Inc. 1996. The Java HotSpot per-
fomance architecture. A White Paper About Sun’s
Second Generation Performance Technology.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

