Computing Topological Adjacency Relations Between Iso-contours

Xingang Huang
Dept. of Computer and Information Science,
The Ohio State University,
2015 Neil Avenue, Columbus, OH 43210
huang@cis.ohio-state.edu

Abstract

Contoured charts are widely used to visualize 2D phys-
ical fields. Experts can identify global patterns and
structures in a contoured chart by looking at the iso-
curves and reasoning about their spatial relations. We
develop an algorithm for computing the topological ad-
jacency relations between iso-contours. The algorithm
is novel in that it grounds the computation of spatial
relations between aggregate spatial objects upon the
computation of relations between the constituents. It
is scale-independent and efficient. We present an ap-
plication of the algorithm to weather data analysis for
extracting patterns from numerical weather datasets.

Introduction

Contoured charts have been widely used to visualize 2D
physical fields. They abstract out local fluctuations and
retain global patterns, and are a concise and qualitative
intermediary representation often suitable for studying
the global behaviors of physical fields. For example,
in weather analysis, contoured charts are a primary
tool used by meteorologists to read weather conditions.
From the charts, they detect different patterns such as
pressure systems, troughs and fronts, and use them to
forecast weather.

A contoured chart comprises a group of iso-curves.
These curves are non-intersecting: they do not self-
intersect or intersect each other. They are also separat-
ing: each curve divides the chart into two disconnected
parts. Patterns in a contoured chart are formed as qual-
itatively distinct spatial configurations of the curves.
To computationally identify a pattern, it is essential to
quantify the spatial relations between the curves. One
spatial relation of particular importance is the topolog-
ical adjacency (TA) relation: two curves are topolog-
ically adjacent if they are not separated by any other
curves.

Topological adjacency relations are useful in group-
ing iso-curves relevant to a pattern, and in serving as
links between curves to form the structure of a pattern.
The computation of the relations is a key component
in our larger research effort in automating global spa-
tial reasoning and pattern identification, the kinds of
reasoning tasks routinely performed by meteorologists

Feng Zhao
Xerox Palo Alto Research Center,
3333 Coyote Hill Road,
Palo Alto, CA 94304
zhao@parc.xerox.com

in analyzing weather data sets. It provides a set of ba-
sic spatial relations upon which more global, aggregate
structural descriptions such as troughs, thermal pack-
ing, as well as features such as cold/warm fronts can be
efficiently derived (Huang 2000; Huang & Zhao 2000b).

In this paper, we study the properties and the tran-
sitivity rules of the topological adjacency relations,
develop an efficient algorithm to compute them, and
present an application of the algorithm to weather anal-
ysis for extracting high/low pressure centers. The algo-
rithm first determines an initial, partial set of topolog-
ical adjacency relations for curves from more primitive
relations on points, and then uses the partial adjacency
information together with higher-level structural knowl-
edge about adjacency graphs to recover the additional
adjacency information.

Related Work

Topological spatial relations between regions have been
studied mainly from two directions: the Region Con-
nection Caleulus (RCC) (Randell, Cui, & Cohn 1992;
Bennett 1994; Cohn et al. 1997; Renz & Nebel 1999)
in Al and the J-intersection model (Egenhofer 1991;
Engenhofer & Mark 1995) in GIS. RCC adopts a re-
gion topology in which regions are primary objects and
the connection relation is the primary relation. Other
relations between regions are defined upon the connec-
tion relation with a set of axioms and Boolean functions
using first-order logic. RCC research (Bennett 1994;
Renz & Nebel 1999) studies the composition rules of
different spatial relations and uses these rules to un-
cover unknown relations from known ones.

The 9-intersection model adopts a point-set topol-
ogy in which points are primary objects and regions
are defined as sets of points. A topological rela-
tion between two regions is classified as one of the
nine possible intersections between the interiors, exte-
riors and boundaries of the two regions (only empty
and non-empty are distinguished). This classifica-
tion of adjacency relations has been used in defin-
ing spatial query languages (Svensson & Zhexue 1991;
Hadzilacos & Tryfona 1992).

RCC and the 9-intersection model work at different
levels. The 9-intersection model works at the point

68

Figure 1: A group of separating, non-intersecting curves
in a 2D space. Examples of the topological adja-
cency relation are: TA(A,B), TA(B,C), TA(C,QG),
-TA(A,C), -TA(A,G). Examples of the same-side
relation are: SS(A,B,C), SS(A,C,D), SS(B,E, D),
-8S(B,F,E), -SS(A,D,C), -SS(D, F, E).

level and requires detailed descriptions of regions, RCC
works at the region level and requires only qualitative
descriptions of regions; thus, it avoids expensive point-
level computations. A limitation of the 9-intersection
model is that a relation between two regions has to be
completely determined by the two regions involved; the
model is not able to compute binary relations that are
dependent on other regions, such as the topological ad-
jacency relation studied in this paper. RCC exploits
the transitivity of relations using a logic approach and
is not restricted by this limitation. Though RCC rea-
sons about regions, in real applications it has to rely
on point-level computation to build the base relations
that it can reason upon. A problem for both RCC and
9-intersection is that the relations they study are often
too general to express rich spatial constraints found in
many applications.

This paper studies topological relations between con-
strained aggregate spatial objects, i.e., separating and
non-intersecting curves, on which more specific rela-
tions can be defined. It develops an algorithm which
utilizes both point-level computations and curve-level
reasoning. The point-level computations are different
from the ones used in the 9-intersection model in that
when computing point relations between two curves,
the points of other curves are also considered. The con-
straints imposed upon the curves enable the definition
of new spatial relations and the discovery of new tran-
sitivity rules which have not been previously studied
using RCC.

Topological Adjacency Relation and
Topological Adjacency Graph

In this section we examine the topological adjacency
relation defined on a group of separating and non-
intersecting curves in a 2D space. Common examples
of such curve groups are the iso-contours in contoured
2D charts. Fig. 1 shows an example of such a group of
curves, with relations to be defined shortly.

The separating and non-intersecting properties are
only meaningful to a curve when it is a member of
a group of curves in a 2D space. For conciseness, in
this paper we often do not mention explicitly the curve
group and the 2D space to which a curve belongs; and
when we refer to a curve, it is assumed to be a member
of a group of separating and non-intersecting curves in
a 2D space. Due to the page limit, we will also omit
some lengthy proofs and algorithms in the following sec-
tions. Interested readers should consult (Huang & Zhao
2000a,).

We first define topological adjacency and same-side
relations, and study their properties such as transitivity.
We then study properties of a graph defined on a group
of curves by their topological adjacency relations.

The Topological Adjacency Relation
Definition 1 (Topologically Adjacent) Two dif-
ferent curves A and B are topologically adjacent
(denoted as TA(A, B)) if they are not separated by any
other curves. A curve is not topologically adjacent to
itself.

Definition 2 (Same-side) Two curves A and B are
on the same side of a curve C (denoted as SS(A, B,C))
if both A and B are in the same part of the space par-
titioned by C.

Examples of these two kinds of relations are given
in Fig. 1. The topological adjacency (TA) relation is
a binary relation. It is symmetric but not transitive.
Whether it is reflective depends on definition. We define
it to be non-reflective so that it can induce a graph nat-
urally. The same-side relation is a ternary relation. One
of its basic properties is: SS(A, B,C) & SS(B,A,C).

Lemma 1 Let A, B be two curves. Then TA(A, B) &
vC ¢ {A,B},SS(A,B,C).

This lemma describes the connections between the
two relations: if two curves are topologically adjacent,
then they are on the same side of any other curves; if
two curves are not topologically adjacent, then there
exists another curve that separates them. The lemma
is straight-forward from the definitions of the S5 and
T A relations.

Although the TA relation is not transitive, it becomes
transitive if the three curves involved satisfy a same-side
relation:

Lemma 2 Let A, B and C be three different curves.
Then TA(A, B)YATA(B,C)ASS(A,C,B) = TA(A,C).

Proof — by contradiction:

Assume -T'A(A,C). Then there exists a curve D,
s.t. —SS(A,C, D), i.e., A and C belong to different
parts of the space D partitions. Since B can only be
in one the two parts of the space partitioned by D, we
have =SS(A, B, D)V-5S(C, B, D). Therefore, we have
-TA(A, B) v -T'A(B,C). Contradiction. «

A
(AR
B
B
F E E
¢ (ED—BCEQ
c
c
@D
D
(a) (b)

Figure 2: The T-graph (a) and the clique tree (b) of
the curves in Fig. 1. The A-nodes of the T-graph are
B,C and E, and the NA-nodes are A, D, F and G. This
T-graph has four largest cliques. They are drawn as el-
lipses in (b) and are labeled by the curves they contain.
An edge between two cliques is labeled by the A-curve
the two cliques share, which is also the only curve the
two cliques share.

Lemma 3 Let FyP,...P, be a sequence of curves,
in which any two consecutive curves P; and Pji,
are topologically adjacent. Then Vi, 0 < i < n,
SS(Pf—I 3 “pt'-‘rl: PL) = TA(PD: Pﬂ)'

Lemma 3 is a generalization of Lemma 2 and can be
proven by induction. It can be used for reasoning about
whether two curves are topologically adjacent through
a chain of topologically adjacent curves.

Next we study the graph defined by the topological
adjacency relations.

The Topological Adjacency Graph and Its
Properties

Definition 3 (Topological Adjacency Graph)

The Topological Adjacency graph (T-graph) of a set
of curves is a two tuple: (V,E), where V is the set of
curves, and E is the set of all unordered pairs of curves
A and B in V that satisfy T A(A, B).

The T-graph of the curves in Fig. 1 is shown in Fig. 2
(a). In a T-graph, each node is a curve and each edge is
a topological adjacency between two curves. The nodes
in a T-graph can be classified into two types:

Definition 4 (A-node (A-curve)) An A node (A-
curve) is an articulation node ' in a T-graph.

Definition 5 (NA-node (NA-curve)) A NA-node
(NA-curve) is a non-articulation node in a T-graph.

A NA-curve can bound a region, together with the
boundary of the space if necessary. This is because a
NA-curve partitions a space into two parts such that
all other curves are in one part and none are in the

'An articulation node is a node of a connected graph
whose removal will disconnect the graph.

69

other. Therefore, the part contains no curves is a region
bounded by the NA-curve alone. On the other hand, an
A-curve cannot bound a region by itself because both
the two parts it partitions contain other curves. Exam-
ples of NA-curves and A-curves are given in Fig. 2.

A graph can be represented by all its largest cliques.
Next we show that the largest cliques of a T-graph have
some interesting properties.

Lemma 4 Let o and § be two different largest cliques
in a T-graph. Then o and 8 share at most one node,
and the node, if it ezists, is an A-node of the T-graph.

Proof: Omitted due to space limitation.

Theorem 1 Define a graph G = (V,E) using a T-
graph T, where V = {a : « is a largest clique of T},
and E = {(a,) : @ and (3 are in V and share a node}.
Then G is a tree.

Proof:

Since a T-graph is a connected graph, its clique graph
is also connected. Each edge in a clique graph corre-
sponds to an A-node in a T-graph, whose removal will
disconnect the T-graph. Hence, removing an edge of
the clique graph will also disconnect the clique graph.
Therefore, every edge of a clique graph is a bridge and
the graph is a tree. «

Each of the largest cliques in the T-graph represents
a connected region in the space which is bounded by
all the curves in the clique. The tree structure of a
clique graph can also be understood from the point of
view of regions. N separating, non-intersecting curves
divide a 2D space into N + 1 regions. On the other
hand, suppose there are M A-curves and N — M NA-
curves. Each NA-curve can bound a region by itself. So
N — M NA-curves produce N — M regions. M A-curves
correspond to the M edges in the clique tree, so there
are M -+ 1 largest cliques in the tree that bound M + 1
regions. The total number of regions counted from this
way is also (N — M) + (M +1) = N + 1. The clique
tree of the curves in Fig. 1 is given in Fig. 2 (b).

Corollary 1 A cycle in a T-graph is contained in one
and only one of the largest cliques of the T-graph.

Proof: Follows from Theorem 1.

Corollary 2 Let A and B be two nodes of a T-graph G,
TA(A,B). Then a path between A and B is contained
in the largest clique of G that contains both A and B.

Proof : Follows from Corollary 1.

Computing the Topological-Adjacency
Graph

In this section, we study how to compute the T-graph
of a group of separating, non-intersecting curves in a
convex 2D planar space. We first present an algorithm
for computing a sub-graph of a T-graph. We then de-
scribe how to use this sub-graph to compute the T-
graph. Finally, we present the entire algorithm and
study its complexity. The algorithm requires each curve

70

be represented as a sequence of points. This is not a
severe restriction since many contour charts in practice
are generated from numerical grid data.

The D-graph

<)

o My
o

(c) D-graph

Figure 3: A sample run of Algorithm 1. Input (a) is a
set, of iso-curves contoured from a 2D pressure dataset.
Each curve is represented as a sequence of points (dark
dots). A Delaunay triangulation of all the points of
the iso-curves is shown in (b). A D-graph (c¢) is then
computed by Algorithm 1. In (c), gray lines represents
iso-curves and dark lines curve adjacencies. A curve
adjacency is determined by the shortest Delaunay edge
between two curves.

A T-graph is a very useful neighborhood graph on a
group of curves. A curve is an aggregate object whose
constituent objects are points. We use a relation aggre-
gation approach (Huang & Zhao 1999) to build a neigh-
borhood graph of curves. In this approach, each edge
in a neighborhood graph is treated as a neighborhood
relation. The neighborhood relations between aggre-
gate objects are built by aggregating the neighborhood
relations between the constituent objects.

Algorithm 1 computes a neighborhood graph of
curves, We call such a neighborhood graph a D-graph.

Algorithm 1 The D-graph computing algorithm
e Input: a group of separating, non-intersecting curves,
each curve is represented as a sequence of points.

e Qutput: a graph whose nodes are all the curves.
e The algorithm:

— Build a Delaunay triangulation neighborhood
graph on all the points of the given curves.

— Relation aggregation:

* Examine every edge in the Delaunay neighbor-
hood graph, if a edge connects two points that
are on two different curves, establish an adjacency
between the two curves if such an adjacency has
not been established.

The algorithm first builds a Delaunay triangulation on
all the points of the given curves. It then checks ev-
ery Delaunay edge and builds an adjacency between
two curves if the edge checked connects the two curves.
The result is a D-graph. A run of the algorithm is
given in Fig. 3. The algorithm has a time complex-
ity of O(Mlog(M)), where M is the total number of
points. A Delaunay triangulation takes O(Mlog(M))
time (Lee & Shachter 1980), and the relation aggrega-
tion step takes only O(M) time since there are O(M)
edges in a Delaunay neighborhood graph, which is a
planar graph.

A D-graph is connected and has the same node-set
as its corresponding T-graph. Next we show that when
the points in each curve are dense enough, a D-graph
is a sub-graph of its corresponding T-graph.
Definition 6 (The closeness condition) Let e be
the minimum distance between any two points on differ-
ent curves and let d be the mazimum distance between
any two consecutive points on a same curve. The set of
points satisfies the closeness condition if \/2e > d.

Theorem 2 If the points of all given curves satisfies
the closeness condition, then the D-graph computed by
Algorithm 1 is a subgraph of the T-graph.

To prove Theorem 2, we only need to prove that two
points on two non-topologically-adjacent curves will not
be connected by a Delaunay edge. Since such an edge
will have to cross between two consecutive points on a
curve, when consecutive points are closer to each other,
the edge will be too close to both the two points it
crosses, and it will be excluded by Delaunay triangula-
tion. The formal proof of Theorem 2 is omitted.

Computing a T-graph using a D-graph
Since a D-graph is connected, any two nodes of the
graph can be connected by a path. According to Corol-
lary 2, when a D-graph is a sub-graph of a T-graph, all
the paths of the D-graph have the following properties:
1. If the two end nodes of a path are topologically ad-
jacent, then all the nodes in the path are topologi-
cally adjacent to each other because they are in the

Figure 4: Determining which side of a curve C' another
curve A is on. Curves A and C are adjacent in the
D-graph. P;(is a Delaunay edge between them. P,
and Py are the next and previous points of P in curve
C, following the default traversing direction of C. This
figures shows the configuration when curve C is turning
right at point P;. @ as drawn is on the right side of
curve C'. The three gray dots are the other three possi-
ble positions of point () with respect to lines Py P, and
Py Py, in which @ would be on the left side of curve C.

same largest clique. Further more, for every three
consecutive nodes P;, Piyq and Piis in the path,
SS8(P;, Piy2, Pit1)-

2. If the two end nodes of a path are not topologically
adjacent, then there exist three consecutive nodes in
the pa.th Pi;PH-l and P,'.'.g, s.t. ﬁSS(R, PH.g, P‘f+1).

Therefore, whether two curves are topological ad-
jacent can be decided by finding a path that con-
nects their corresponding nodes in the D-graph, and
checking whether any three consecutive nodes P, P4,
and P;is in the path have the same-side relation:
SS(P;, Piys, Pir1). We have developed a clique-
building algorithm to compute all largest cliques of a
T-graph from a D-graph by building depth-first-search
trees of a D-graph and examining the same-side rela-
tions between a node, its parent and its grandparent
in the trees. The algorithm has a time complexity of
O(N?), where N is the number of curves. The details
of the algorithm are omitted here.

Determining the Same-Side Relation

The clique-building algorithm requires the computation
of SS(A, B,C) when A and B are both adjacent to C'
in the D-graph. This can be done by selecting a default
traversing direction of curve C, and using this travers-
ing direction to determine which side (left or right) of
the curve C the curves A and B are on.

When two curves A and C are adjacent in the D-
graph, there exists a Delaunay edge connecting them.
This edge can be used to determine the side of curve
C on which curve A is located, as illustrated in Fig. 4.
The side of curve C' on which point @@ (and curve A)
is located can be determined by examining the spatial
configurations between the four points Py, Py, P> and Q).

71

Fig. 4 shows the configuration when curve C' is turning
right at point P;. In this configuration, if @ is on the
right side of both lines Fy; P, and P, P, then @ is on the
right side of curve C; if @ is on the left side of either
line Py P, or line Py P (i.e., positioned as the three gray
dots in the figure), @ is on the left side. Likewise, the
configuration when Curve C is turning left at point P;
can be similarly solved.

The above method of determining side requires that
the Delaunay edge P;() between two curves does not
intersect the two curves at points other than P; and (.
This means there should be no cross edges — Delaunay
edges that cross between two consecutive iso-points on
a same curve. To guarantee no cross edges, a higher
sampling density than the one specified in the closeness
condition is required. One property of Delaunay trian-
gulation proved in (Amenta, Bern, & Eppstein 1998)
is that when a set of sample points S r-samples ? a
group of smooth curves, r < 1, then the Delaunay tri-
angulation of S contains the polygonal reconstruction of
the curves. So if the iso-points 1-sample the iso-curves,
there will be no cross edges and the above method of
determining side can guarantee correct result.

Complexity Analysis

Combining the D-graph algorithm and the clique-
building algorithm, we obtain an algorithm for con-
structing a T-graph. The algorithm has a time com-
plexity of O(Mlog(M) + N?), where M is the number
of points and N is the number of curves. In real ap-
plications such as computing the topological adjacency
relations of iso-contours in a weather chart, N is usu-
ally a small number (typically less than 100) and the
term N? can be ignored.

Results and Comparison

Fig. 5 and Fig. 6 give two T-graphs computed by our
algorithm from the iso-contours of two pressure charts.
The curves in Fig. 5 are the same as the curves in Fig. 3.
The iso-contours are obtained by contouring pressure
datasets using a 2D version of the marching-cube algo-
rithm (Lorenson & Cline 1987).

The topological adjacency relation can also be com-
puted using the coloring algorithm for computing the
inside/outside relation described by Ullman (Ullman
1984). The curves are first mapped into a binary im-
age, where curve pixels are set as black and other pixels
white. Then all white pixels are activated to form con-
nected regions. Two curves are topologically adjacent
if they are the boundaries of a same region. The color-
ing algorithm is scale-dependent. Its time complexity is
O(H-V), where H and V are the horizontal and verti-
cal resolutions of the binary image used. Our algorithm

2 A set of sample points r-sample a curve if for each point
p on the curve, the distance from p to its nearest sample
point is less than r *+ LFS(p), where LFS(p) is the local
feature size of p, i.e., the distance from p to the medial axis
of the curve.

(a) D-graph

Py

(b) T-graph
Figure 5: The D-graph (a) and T-graph (b) of the
curves in Fig. 3(a) computed by our algorithm. Nodes
of a graph are drawn as dark dots located on the central
points of their corresponding curves. Edges of a graph
are drawn as lines between the dots. The D-graph in
(a) is the same as the D-graph in Fig 3 (c) but drawn
in a different format for better comparison with the T-
graph.

Figure 6: The T-graph computed by our algorithm us-
ing another group of iso-curves in a contoured chart.

is not scale-dependent and does not require curves be-
ing mapped to a binary image. Its time complexity
is O(Mlog(M)), where M is the number of points on
curves. It can be much more efficient than the coloring
algorithm when M has the same magnitude as H and
V.

Our T-graph algorithm does not check the close-
ness condition, neither does it check if the iso-points
r-sample (r=1) the iso-curves. So the Delaunay trian-
gulation computed may contain cross edges to corrupt
the T-graph computation. This problem rarely occurs
(in fact never occurred during our experimentations of
the algorithm on tens of weather datasets). It also can
be eliminated by modifying Algorithm 1 in the follow-

(b)

Figure 7: Labeling high/low pressure centers. A high
pressure center is labeled by a “H”, and a low pressure
center is labeled by a “L”. The NA-curves are drawn in
dark and A-curves in gray. The numbers besides curves
are their contour levels. A high (low) pressure center is
identified by a local maximum (minimum) NA-curve in
the T-graph.

ing way. After a Delaunay triangulation is built, check
whether there is a Delaunay edge between every two
consecutive points on every curve. If there is no such
an edge for two consecutive points P and @ of curve C,
subsample C' by adding the midpoint of segment PQ
into the curve, and build a new Delaunay triangulation
incrementally. Repeat this step until every two con-
secutive points of every curves have a Delaunay edge.
Now the Delaunay triangulation is guaranteed to have
no cross edges and Algorithm 1 is guaranteed to output
correct results.

Weather Applications

T-graphs can be used to label high/low pressure centers
in a pressure chart. A high (low) pressure center is a
region of local maximum (minimum) pressure values
compared with its neighbor regions in a pressure chart.
It can be identified by a local maximum (minimum)
NA-curve ® in a T-graph . Fig. 7 shows the results of
the labeling on the two pressure charts used in previous
sections.

Conclusion

This paper describes a novel algorithm for building an
important spatial relation on a group of curves. It uses

20Only an NA-curve can encompass a region by itself.

both local spatial relations (among points) and higher-
level knowledge about graph structures to build more
global spatial relations (among curves). The algorithm
is scale-independent and efficient. We give a simple
application of the topological adjacency relation to ex-
tracting high/low pressure centers for illustration. The
topological relation, as well as the relation aggrega-
tion mechanism for building global relations using local
ones, have been used in identifying more complicated
weather patterns such as pressures troughs and weather
fronts from spatial weather datasets (Huang & Zhao
2000b; Huang 2000).

Acknowledgment

The work is supported in part by FZ’s NSF NYI grant
CCR-9457802, ONR YT grant N00014-97-1-0599, and a
Sloan Foundation Fellowship.

References

Amenta, N.; Bern, M.; and Eppstein, D. 1998. The
crust and the g-skeleton: Combinatorial curve recon-
struction. Graphical Models and Image Processing
60:125-135.

Bennett, B. 1994. Spatial reasoning with propositional
logic. In Proc. 4th Int. Conf. on Knowledge Represen-
tation and Reasoning, 51-62.

Cohn, A.; Bennett, B.; Gooday, J.; and Gotts, N.
1997. Qualitative spatial representation and reasoning
with the region connection calculus. Geolnformatica
1:275-316.

Egenhofer, M. 1991. Reasoning about binary topolog-
ical relations. In Proc. 2nd Symposium on Large Spa-
tial Databases, SSD-91, Lecture Notes in Computer
Science 525, 143-160. Berlin: Springer.

Engenhofer, M., and Mark, D. 1995. Modeling con-
ceptual neighborhoods of topological line-region rela-
tions. International Journal of Geographical Informa-
tion Systems 9:555-565.

Hadzilacos, T., and Tryfona, N. 1992. A model
for expressing topological integrity constraints in ge-
ographic databases. In Theories and Methods of
Spatial-Temporal Reasoning in Geographic Space, Lec-
ture Notes in Computer Science 639, 252-268. New
York:Springer-Verlag.

Huang, X., and Zhao, F. 1999. Seeing “objects” in spa-
tially distributed datasets. In Proceedings of the Third
International Symposium on Intelligent Data Analy-
sis, Lecture Notes in Computer Science (1642), 111
122. Springer.

Huang, X., and Zhao, F. 2000a. Computing topologi-
cal adjacency relations between iso-contours. Techni-
cal Report OSU-CISRC-1/00-TR04, CIS Department,
The Ohio State University.

Huang, X., and Zhao, F. 2000b. Relation-based ag-
gregation: Finding objects in large spatial datasets.
Inter. J. of Intelligent Data Analysis ,To appear.

73

Huang, X. 2000. RelSA: Automatic Analysis of Spatial
Data Sets Using Visual Reasoning Techniques with an
Application to Weather Data Analysis. Ph.D thesis,
CIS dept., The Ohio State University.

Lee, and Shachter. 1980. Two algorithms for con-
structing delaunay triangulations. Int’l J. Comput.
and Info. Sci. 18.

Lorenson, W., and Cline, H. 1987. Marching cubes:
a high resolution 3d surface construction algorithm.
Computer Graphics 21:163-169.

Randell, D.; Cui, Z.; and Cohn, A. 1992. A spatial
logic based on regions and connection. In Proc. 3rd
Int. Conf. on Knowledge Representation and Reason-
ing, 165-176.

Renz, J., and Nebel, B. 1999. On the complexity
of qualitative spatial reasoning: A maximal tractable

fragment of the region connection calculus. Artificial
Intelligence 108:69-123.

Svensson, P., and Zhexue, H. 1991. Geo-sal: A query
language for spatial data analysis. In Advances in
Spatial Databases — Second Symposium, SSD‘91, Lec-
ture Notes in Computer Science 525, 119-140. New
York:Springer-Verlag,

Ullman, S. 1984. Visual routines. Cognition 18:97-159.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

