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Abstract

This paper presents an initial work towards the develop -
ment of a technique for compositional modelling of eco -
logical systems . A knowledge representation framewor k
is devised to suit system dynamics - the underlying mod-
elling paradigm adopted . Model fragment selection an d
composition is achieved by means of dynamic flexibl e
constraint satisfaction problem (DFCSP) solution tech -
niques . A method for automatically translating a scen-
ario and a model fragment library into a dynamic con-
straint satisfaction problem (DCSP) is proposed . Fro m
this DCSP all consistent scenario models can be derive d
through a hierarchy of subproblems and different mode l
evaluation criteria can be imposed through specific set s
of constraints . A technique is then suggested to order
the modelling choices within each of the DCSP subprob -
lems, in terms of the degree of model detail, and henc e
the preferences associated with these choices . The res-
ult is a compositional modeller in which the tasks of
maintaining model consistency, selecting model bound -
ary, evaluating model suitability are accomplished by
resolving a single DFCSP .

Introduction
The present work aims at a compositional modelling
(Falkenhainer, B . & Forbus, K.D. 1991) approach fo r
ecological systems . This application domain poses sev-
eral new challenges to compositional modelling . Eco-
logical systems consist of an overwhelming amount o f
components and processes . Yet, ecologists are mostly
interested in aggregate concepts and aggregate interac-
tions within an eco-system . Therefore, ecological model s
consist of abstract processes representing aggregate phe-
nomena of interest . In certain problem domains, such a s
hydro-ecology (Heller, U . & Struss, P . 1996), these ag-
gregate processes are equivalent to the combined effec t
of the relevant first principles and in other domains, suc h
as population dynamics, the aggregate processes merely
attempt to approximate behaviour associated with cer-
tain phenomena .

Conventional compositional modellers derive the re-
quirements for an adequate model from an initial stat e
specification or some task specification (Keppens, J . &
Shen, Q. 2000) . Approaches such as (Farquhar 1993) ,
aim at extrapolating all possible states of a model fro m
the initial state and do not take alternative modelling as-
sumptions into account . A task specification or query de-
termines which variables must be related to one another

and some compositional modellers, such as (Levy, A .Y . ,
Iwasaki, Y ., & Fikes, R . 1997 ; Nayak, P.P . & Joskowicz ,
L . 1996), search for the simplest model that establishes
this relation . However, these approaches are geared to -
wards engineering applications and use knowledge tha t
is specific to that domain, e .g . topological device struc-
tures .

Alternatively, the scope of the model and the require d
level of detail may be computed in terms of the under -
lying factors, such as the granularity of the time scal e
at which significant changes occur (Rickel, J . & Porter ,
B . 1997) . However, in many domains of ecology, such a s
population dynamics, concise first principles and the as-
sumptions underlying any approximations are not read-
ily available due to the intrinsic complexity of the phe-
nomena. For example, there are no known mathematica l
laws underlying the phenomenon of predation betwee n
two populations . Instead, an empirical or artificial rela-
tion that is assumed to approximate the unknown un-
derlying first principles is used . Unfortunately, the as-
sumptions on which such approximations are based, e .g .
adequate time scale, are not completely understood .

This paper proposes an alternative approach to com-
positional modelling that addresses these issues . A
knowledge representation framework is introduced that
enables the representation of a space of ecological mod-
els for a given scenario and that allows phenomena
and modelling alternatives to be distinguished and com-
posed. The problem of model composition is describe d
as a dynamic flexible constraint satisfaction proble m
(DFCSP) . A set of requirements of models to be con-
structed are translated into a combination of hard an d
preference constraints imposed over emerging partial
models . The modified local repair techniques (Miguel,
I . & Shen, Q. 2000) are adopted to guide the search for
finding a solution to such DFCSPs, i .e . an adequat e
composed ecological model .

Background
Ecological modelling with system dynamic s
Many different kinds of modelling approach are use d
in ecology. A most common paradigm is system dy-
namics (Forrester 1961) . In system dynamics, the phe-
nomena of interest are represented as levels and flow s
between them . The change per time unit in a level equal s
the total of inflows minus the total of outflows . Ad-
ditional variables and influences describe the relations
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Figure 1 : A system dynamics model of predatio n

between the levels and flows . As such, system dynam-
ics provides an interface to modelling with differentia l
equations and allows features of other paradigms to b e
integrated (Robertson, D . et al . 1991) .

To illustrate the system dynamics approach to ecolo-
gical modelling in the present work, the following scen-
ario is used :

population(predat or) A population(prey_l) A
population(prey_2) A feeds-on(predator, prey_i) A

feeds-on(predator, prey_2) A competition(prey_l, prey_2 )

It describes a world consisting of three populations - a
predator population that feeds on the other populations
prey_1 and prey_2 . The latter two populations compete
with one another over scarce resources .

The concepts representing ecological systems do no t
normally play one of a few well-defined roles in a model .
Instead, depending on the scenario and the problem a t
hand, various phenomena are considered with respec t
to the concepts . In the present scenario, reproductio n
within both populations, the predation behaviours o f
predator with respect to the prey population and com-
petition between prey_i and prey_2 may be of relevance .
In other scenarios, different phenomena such as infectio n
of diseases may also have to be considered .

Many models of these different phenomena exist . Con-
sider the predation phenomena involving prey_l, o f
which figure 1 shows one possible model . A kind of
growth phenomenon conceptualising changes in popu-
lation size is necessary for both populations . This is
because predation affects the change in the level of th e
prey population since predation kills prey, as well as th e
change in the level of the predator population since th e
total amount of available prey affects the sustainabl e
population .

In figure 1, the growth phenomenon is represented by
a level, an inflow and an outflow for both populations .
If more information were available about the populatio n
(e .g . a more specific type of population) a more pre-
cise growth phenomenon would be modelled . Based o n
these concepts of population growth, the specific models
of growth can be added . In this case a simple linear re -
production model is used that is limited by a maximal

sustainable population level . The model of the predatio n
behaviour, limits the capacity of the predators based o n
the available prey. The total consumed prey is added t o
the total outflow of prey. This description is represente d
in figure 1 by variables and influences between them . I f
necessary, new exogenous variables could be added t o
explain the current exogenous variables .

Dynamic and flexible constraint satisfaction
The simplest of constraint satisfaction problems (CSP )
can generally be specified as a triplet (X, D, C) where X
is a set of attributes {x l , . . . , xn}, D is a set of domains
{ DI,— ' DO describing the potential values of the at -
tributes and C is a set of constraints relating some o f
the attributes . Each attribute xi E X must be assigned
a single value d E D i . Such attribute assignments wil l
be denoted as x i : d . Each c(xi , . . . ,x3 ) E C specifie s
a subset D c of Di x . . . x D 3 such that H(di , . . . ,d,) E
D c , c(d i , . . . , di ) is consistent with c . The purpose o f
solving a CSP is to find a tuple (d l , . . . , d n ) such that
the attribute assignments x i : dr, . . . , xn : do cause al l
constraints in C to hold .

Although CSPs have been studied in great detail ,
they are not sufficiently equipped to deal with two fea-
tures that are frequently present in real-world problems .
On the one hand, the problem specification can be dy-
namic in nature . This implies that the CSP specifica-
tion changes over time (Miguel, I . & Shen, Q . 1999) o r
with respect to other attribute assignments (Mittal, S . &
Falkenhainer, B . 1990) . On the other hand, constraint s
do not necessarily impose hard requirements . For ex-
ample, certain attribute assignments may be preferre d
over others . The former type of CSP is referred to as
dynamic CSP (DCSP) and the latter to flexible CSP
(FCSP) .

Similar to the work presented in (Mittal, S . & Falken-
hainer, B . 1990), this work requires the handling of DC-
SPs in which the set of relevant attributes is defined b y
other attributes . In order to solve such CSPs, activit y
predicates are introduced such that :

Vx0 E X : active(xi)

	

VdEDcxi : d

,From this it follows that -,active(xi ) implies that no at -
tribute assignment is considered for xi . The traditional
CSP constraints, termed compatibility constraints, ar e
still applicable in these DCSPs . A compatibility con-
straint c(xi, . . . , x 3 ) is translated as c(x i , . . . ,xi ) V
-,active(x i ) V . . . V -active(x i ) . As a result, the determ-
ination of the truth of an activity predicate implicitl y
results in a set of constraints as well . In addition t o
compatibility constraints, the dynamic CSP also con-
tains so-called activity constraints . These come in the
form of implications where the consequent consists o f
a literal containing the activity predicate of one of th e
attributes .

When flexible constraints are allowed, the satisfactio n
of a constraint becomes a matter of degree . The degree
of satisfaction (of attribute assignments) with respec t
to a constraint, say, c(x i , . . . , x3 ) may be defined by a n
elastic relation R : D i x . . . x D3 I-- L : (di , . . . , d~) —>
s R (di , . . . , d~), where L is a satisfaction scale (e .g . [0, 1] )
(Miguel, I . & Shen, Q . 2000) . In this way, the original
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notions of constraint satisfaction and violation is exten-
ded such that the degree to which different assignments
satisfy a constraint can be ordered. In the present work ,
a method is proposed to define such an ordering of pref-
erences for alternative attribute assignments depending
on their underlying role in model composition .

Knowledge representation
The representation of model fragments in this work
mainly follows the general framework of the Com-
positional Modelling Language (CML) (Bobrow, D . e t
al . 1996), apart from certain syntactical differences .
The system being modelled is described by a scen-
ario . A scenario is denoted by a pair (0,4)) wher e
O = {( ) I , . . . , on} is a set of object constants, called the
scenario objects, and 1 is a set of relations 0(ot , . . . , off )
over the object constants . An example of an ecologica l
scenario is provided above . The required compositiona l
modeller should translate a scenario into a system dy-
namics model, given a knowledge base and a task spe-
cification .

The knowledge bas e
The knowledge base used by a compositional modelle r
largely consists of a model fragment library which is a
collection of predefined model fragments . Each mode l
fragment represents a way of modelling a particular fea-
ture of some system or subsystem under certain con-
ditions. By selecting and instantiating a set of mode l
fragments, a compositional modeller constructs models
of a system satisfying the prescribed task specification .

A model fragment µ is a tuple (Ps Pt (D s ■I) t A )
where P'(tc) = {A, . . . pm} is a set of variables, calle d
source-participants, Pt (A) = {pi, . . . , pn} is a set of vari-
ables, called target-participants, V(p) _ {01, . . . , ~ v }
is a set of relations, called structural conditions, whos e
free variables are elements of Ps , i t (µ) = { 4, . . . ,Os }
is a set of relations, called postconditions, whose fre e
variables are elements of Ps U Pt , A(p) = {a l , . . . , a t }
is a set of relations, called assumptions, such that fo r
i=1, . . .,s :

dpi, . . . , epin, ]pi, . . . , 3pn 01 A . . . A et,
(al A . . . A at

The source and target participants in a model frag-
ment are variables representing domain objects . These
objects may be entities or subsystems of the real-world
system of interest . Alternatively, they may be concep-
tual entities that, when instantiated, assume the rol e
of variables within a scenario model, thus representin g
significant properties of the system . Instantiated parti-
cipants of the latter type are called model variables . The
relations existing between the objects represented b y
participants are defined by the conditions in the mode l
fragments . For each participant, at least one unary rela-
tion is defined that specifies the type of the participant .

The structural conditions of a model fragment de -
scribe the subsystem setting to which that model frag-
ment is applicable . A model fragment µ with Ps (,u) =
{A, . . . p;, } is said to be applicable with respect to the
set of object constants o l , . . . , o n,, of a database A if for

each 0 E 4 s (µ), 0o1 ~rl

	

holds in A . Here, a data-
base stands for a collection of domain object constant s
and known relations between them .

The assumptions in the above definition are relation s
on source-participants and object constants and they are
used to represent specific features of the models that in-
clude the associated model fragments . For example, as-
sumptions may indicate the inclusion of certain phenom-
ena or distinguish between alternative ways of modellin g
these phenomena. Their truth depends on the specific
requirements of the model and hence, they can not b e
deduced merely from the scenario .

In this work, the assumptions come in two types . A
relevance assumption, denoted as relevant(h,p l , . . . , pq ) ,
states that the associated model fragment describe s
a phenomenon h, which applies to the participant s
p t , . . . , pj . They are considered with respect to certai n
object constants o l , . . . , o q that instantiate p i , . . .
The tuple (h, o l , . . . , oq ) is called the subject of a relev-
ance assumption . If the entity type of a participant p
is denoted by T(p), then the specificity of a relevance
assumption can be defined as (T(p j ), . . . ,T(pq )) . Rel-
evance assumptions with the same subject, but different
specificity are inconsistent with one another .

Consider,

	

for

	

example,

	

the

	

model

	

frag -
ment :

	

population(p) A relevant(growth(p) )
level(l) A unit-of(l, population) A rate(r) A size-of(p, l) A
flow(r, source-sink, l) . This fragment introduces all
objects that are required to represent the phenomeno n
growth(p) : the growth rate r and the population leve l
1, which represents the size of p, and a relation betwee n
them flow(r,source-sink,l), which can be translate d
as dt 1 = r . An alternative model fragment could be
defined for a specific type of population for which a
model of population growth exists that is more suitabl e
than the default . For example, the growth of a popula-
tion of holometabolous insects should be modelled b y
four levels instead of one, representing the appropriat e
stages of growth : egg, larva, pupa and adult .

A model assumption model(q, t) states that the asso-
ciated model fragment represents the source-participan t
or structural condition 0 in a specific way described b y
t . For each database that contains model( . t) it is sai d
that the model type of 0 is t . Such assumptions are used
to distinguish between different ways of describing (o r
explaining) object constants or relations between objec t
constants . The object constant or relation 0 betwee n
object constants to which the model assumption is in-
stantiated is called the subject of the model assumption .
Model assumptions with different model types and th e
same subject are inconsistent with one another .

Consider,

	

for

	

example,

	

the

	

model

	

frag -
ment :

	

rate(r) A level(l) A unit-of(l, population) A
flow(r, source-sink, 1) model (exponential , r )
birth-rate(ro) A (r = ro x 1) . This fragment con-
tains the "exponential" model type for the number o f
births per time unit r of a population (being r = ro x 1) .
Another model fragment could contain an alternativ e
model type, say " logistic " (Roughgarden 1996), mode l
type for r .

The target-participants represent new objects tha t
should be added to the scenario model when the model
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fragment is applicable and the assumptions are deeme d
true . The postconditions define new relations betwee n
source-participants, target-participants or a combina-
tion of both . They are either an assignment or a predic-
ate .

Assignments are only defined for model variables . An
assignment pi = I (p k , . . . , pl ) defines participant p i as a
function of participants p k , . . .

	

, l} . This
function may be composed of standard arithmetic op-
erations or may be the compositional operators (se e
(Bobrow, D . et al. 1996)) . In the latter case, the post -
conditions are partial definitions that can be combine d
with other postconditions that describe other assign-
ments to the same model variable for pi .

A predicate R(pk, . . . , p i ) either adds new informatio n
about the scenario model or represents a predefined se t
of assignments . The latter case is called an assignment
predicate . An example of this is flow(r, 1 1i l 2 ), where r i s
a participant of the rate type and l l and 1 2 are source-
participants of the level type, and which represents tha t

dill = —r and dtl2 = r .

Additional representation formalisms
Most other supportive representation formalism . of
CML exist in the proposed compositional modeller as
well . Some participants belong to predefined types . En-
tity type definitions are used to specify these . Each en-
tity has a number of entity attributes representing fea-
tures of particular importance (e .g . population size) .

The entity types are organised in a type hierarchy.
A subclass inherits all entity attributes and other fea-
tures of its superclasses and may add new ones . For
instance, the holometabolous-insect-population type i s
a subclass of the population type. In applications of
ecological modelling, the entity attributes specific to th e
more specialised classes may be related to entity attrib-
utes introduced in its parent classes . In particular, cer-
tain aggregation relations are currently defined in thi s
way.

In order to compare between different emerging mod-
els, alternative model assumptions may be assigned pref-
erences . In the absence of any preference order, th e
model types are considered to be equally suitable (as-
suming that all other features are equal) . Further pref-
erence orders may be assigned for certain subtypes o f
the participants in the subject of the model assumptions .
For example, in addition to a preference order between
model types of the reproduction of a population, an al-
ternative order can be defined for a subpopulation, o f
which the behaviour should differ from that normally
seen by default . Relevance assumptions with the same
subject are not explicitly ordered in the knowledge bas e
as the specificities of the individual assumptions alread y
form a preference ordering .

Task specification
A range of ecological models can be specified using th e
knowledge representation formalisms discussed above.
Which of the possible models is most appropriate de-
pends on the requirements of the task at hand . These
are prescribed in the task specification . Because, in the
general case, ecological models do not entirely follow

from first principles, little knowledge on the adequacy
of partial models can be derived from a knowledge base .
Therefore, the task specification must impose additiona l
criteria on the model . In the present version of this work ,
the following criteria are contained in the task specific-
ation :

• The objectives that establish the features that mus t
be included in the model . In system dynamics, cer-
tain domain variables are required to be simulated t o
show their potential behaviour . Hence, these variable s
must be included as entity attributes of entity typ e
definitions . In what follows such variables, explicitl y
required as the modelling objectives, are called object-
ive variables.

• The maximal level of model complexity, which is herein
expressed in terms of the total number of variable s
because this is one of the simplest ways of comparing
model complexity between models covering differen t
sets of phenomena (Rickel, J . & Porter, B . 1997) .

• The specific requests which dictate certain model vari-
ables to be exogenous or to be simply excluded fro m
any resulting model . Such model variables are name d
requested variables .

The compositional modelling approach presente d
herein aims at constructing a model that represents th e
phenomena that affect the objective variables in as muc h
detail as possible given the constraint on model complex-
ity and the specific requests .

Model composition
Inference from a scenari o
Through the implications represented by the model frag-
ments in the knowledge base, new information can b e
derived from the given scenario description . The set of
relations 1 in a database A = (O, cl)) may be patter n
matched with the structural conditions of some mode l
fragment µ by a substitution a that maps each source-
participant in P s(µ) onto an object constant of O. Also ,
a instantiates the assumptions A(µ) = {a l , . . . , at } to
a set of ground relations . If aa l A . . . A aat is consistent
with A, a new database A' = (O', logically follow s
from A . 0' contains every o E 0 and a new objec t
constant for each p E P t (µ), thereby forming a new sub-
stitution a ' . is the union of I , the instantiated as-
sumptions a 'A(µ) and the instantiated postconditions o f
µ Q '~ t (µ) . The pseudo-code in figure 2 illustrates how a
knowledge base of model fragments is instantiated base d
on a given scenario .

Such a model space is represented as a hypergraph B .
The nodes of 0 are objects or relations between objects .
Each hyperarc links a set of nodes nl , . . . , ri P to another
node n 9 , representing n l A . . . A nr, —> n 9 . Initially, the
nodes are those objects and object relations provide d
in the given scenario . For each model fragment whos e
source-participants and structural conditions match the
objects and relations already in 0, a set of new nodes and
hyperarcs are created as the results of such matches an d
these are added to B . Overall, this procedure is similar t o
the approach presented in (Falkenhainer, B . & Forbus ,
K.D. 1991) .
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8 : =new hypergraph ;
foreach o E scenario do

add-node (B, o) ;
foreach match(p,0)
justf :=empty set ;

foreach a E A(p) do
newnode : =add-node (0, a) ;

justf :=justfU{newnode} ;

end-f oreach ;
foreach p E P"s(p) do

justf :=justfU{f ind-node (B ,p)} ;

foreach 0 E 4)"s(p) d o
justf :=just fU{find-node(B,c)} ;

foreach p E P"t(p) do

o : =add-node (0, p) ;
add- justification(H,o,justf) ;

end-f oreach ;
foreach 0 E (D -t(p) do

o : =add-node (0, c) ;
add- justification(B,o,justf) ;

end-f oreach ;

end ;

Figure 2 : Generation of a model spac e

The model space in the running example will at leas t
contain parts of models representing natural reproduc-
tion in the absence of other species for the predator ,

prey_1 and prey_2 species, parts of models describin g
the predation of prey_i and the predation of prey_2

by predator and parts of models on the competition
between prey_i and prey_2 . Figure 3 shows part of the
model space that is generated from this sample scen-
ario . From this partial model space, two types of model s
of natural reproduction of the predator species can b e
generated . Figure 3 also illustrates part of the possible
predation models involving the predator and one of the
prey species .

Construction of a dynamic CS P

Having derived a model space from a given scenario, in-
dividual models can be created by selecting a set of as-
sumptions . To support this selection, information con-
tained in this model space is translated into the descrip-
tion of a DCSP. This translation allows the use of th e
solution techniques developed for DCSPs to be employe d
for the selection of a consistent model . The next sub-
section will then show how preference orderings can be
added to such DCSPs and explain how this aids in guid-
ing the search for an adequate model .

A model is selected from the model space, presuming
that a certain number of assumptions be true and tha t
all others be false . Within the model space, each as-
sumption represents one modelling decision from a se t
of mutually exclusive options . This is syntactically equi-
valent to an attribute and its unary domain constraint i n
a CSP. Hence, an attribute is created for each assump-
tion subject in B .

In addition to the assumptions, information on the
variables that have been included in the model is als o
important . Any given task specification may restric t
which variables are included in the model and whethe r
they can be exogenous or endogenous, or may limit the

total number of variables . Therefore an attribute is in-
cluded for each instantiation of each participant tha t
is a model variable . The domains of these attributes
are {exogenous, endogenous}, representing the differen t
roles the associated variables may play in the scenario
model . In what follows, acsp (B) denotes the substitution
that maps the assumption subjects and model variables
to attributes and that maps the specificities, model types
and variable roles to attribute assignments .

Activity constraints define the conditions under which
attributes are active . The relevance of a phenomenon
at a certain specificity can only be considered with re-
spect to a set of objects to which the phenomenon i s
applied . Also, a model type of a certain object constant
or relation can only be considered under the condition s
that the object constant or the relation exists . There-
fore, an attribute representing an assumption is activ e
only if its associated subject is instantiated . The con-
ditions under which an attribute x i is instantiated ar e
hereafter denoted by 'y (x i ) . If xi represents an assump-
tion with a subject that contains the relations or parti-
cipants 01, . . . , On then, ^y(x i ) = 7(01) A . . . A -y (On) .

The 7(00 can be computed with respect to four dif-
ferent cases . Firstly, if qi is an object constant or rela-
tion given in the scenario, then 7(0 i ) = T . Secondly,
if qi is mapped onto an attribute - more specificall y
acsp ( 0 )Oi = - then 7y(00 = active(xj ) . Thirdly,
if 0i is mapped onto an attribute assignment - that is
acsp(0 )Oi = x, :

	

- then y(0i) = x i : d2k . And fi -
nally, in all other situations, 7y(0i ) can be derived from
the model space by tracing back each of the hyperarc s
leading to ci . Each hyperarc introduces a new conjunc-
tion of assumption participants and/or relations 0 for
which -y(c) can be computed in one of the other thre e
ways just described .

The conjunctions produced for the different hyperarc s
are disjoined . Suppose that the resulting expression is
denoted as F(x i ) . The following activity constraint can
then be constructed for xi : active(x i ) -~ F(x i ) . F(x i) is
only a necessary constraint because none of associate d
assumptions have to be selected for the purpose of mode l
construction . If x i represents a model variable, then
F(xi ) is computed in much the same way, except tha t
the aforementioned fourth case is checked first .

The compatibility constraints dictate what combina-
tions of individual assumptions are consistent, and what
are not . Certain combinations of assumptions may res-
ult in inconsistent relations . Inconsistent relations ar e
caused by the instantiation of non-composable postcon-
ditions . A set of postconditions are said to be non-
composable if they are assignment postconditions wit h
the same assignee and the assigned mathematical rela-
tions cannot be combined by means of composable op-
erators . Hence, for each pair 0i, 0, of non-composable
postconditions instantiated in the model space, a com-
patibility constraint -, (7(ocsp 0i) A -y(acsp0i)) is cre-
ated .

Additional constraints govern whether a model vari-
able is exogenous or endogenous . If {0 1 , . . . , On} is
the set of all assignments in the model space that have
the variable v as their assignee, the following two con-
straints are added to the DCSP : acsp endogenous(v)
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relevan t
growth p i object

population po p ulation p i

relevan t
growth p i
population,population

predation(p 1 ,P 2 )

model

	

model

	

participant participant 11\4 = R model

	

mode l
R:exponential R :logistic repr p i = Mize p i = Ni

	

predation( p i 432

	

predation(p i , P2 )

Lotka-Volterra

	

Holling

=roNi(1 K)

param r1, param a

V
R = rN1 participant participant participant

	

participant participant R = rPNi — aN1N2
param r param K param ro

Figure 3 : Partial model space for the predator prey scenario

ac tive (acspv ) A (acspOl V . . . V ucspq5n) and
acspexogenous(v) <— active(acspv) A -endogenous(v) .
Restrictions on the activity or roles of a model variabl e
in the task specification now map straightforwardly t o
the DCSP. Finally, a special purpose attribute is adde d
that counts the total number of active model variables .
This attribute is constrained by an upper limit, which i s
the maximal model complexity as specified in the tas k
specification .

Using this method, the model space of figure 3 ca n
be translated into a DCSP. A graphical representatio n
of the constraints resulting from the partial model spac e
given in figure 3 is shown in figure 4 . Assumptions wit h
the same subject are grouped into a single attribute .
For example, the assumptions "model R:exponential"
and "model R:logistic" of figure 3 are grouped into th e
attribute x 2 with domain {"exponential", "logistic"} .
The activity constraints over the attributes represent-
ing assumptions are defined by the conditions that ac-
tivate the subject . The activity constraints of attribute s
are defined by tracing the necessary justification in th e
model space . For example, x 2 represents a set of assump-
tions and therefore depends on its subject, which is i n
this case a model variable that has another CSP variabl e
associated with it . Hence, the activity of the latter CS P
variable is a necessary condition for the activity of x 2 a s
illustrated in figure 4 .

The causal relations between the model variables ar e
captured by the assignment postconditions . For in-
stance, the relation R = rN1 results in a compatibil-
ity constraint that states that if r is active, R must be
endogenous .

Non-composable postconditions are prohibited b y
compatibility constraints . For example, figure 3 show s
that the assignments x 4 : Lotka-Volterra and x2 : logisti c
in the CSP both result in an assignment postcondition
with respect to R, which has been prohibited by a com-
patibility constraint in figure 4 .

Now, each consistent assignment in the DCSP ca n
then be translated into a scenario model . For example ,
the assignment (x i : population, R : endogenous, N1 :
endogenous, x 2 : logistic, ro : exogenous, K : exogenous )
is consistent with the CSP of figure 4 . By considering

the assumptions associated with these attribute assign-
ments as facts, and by following the justifications define d
through the hyperarcs in the model space, a model is
then constructed . In particular, the following state-
ments can be inferred : do N1 = R, R = roN i (1 — K ) ,
exogenous(ro), exogenous(K) .

Model selection and preference orderings

The CSP solution algorithm used is very similar to tha t
presented in (Miguel, I . & Shen, Q . 2000) . Initially, only
the attributes that are not restricted by activity con-
straints may be active and can be assigned . Certain
assignments may cause the necessary conditions for th e
activation of other attributes to be met, which yields a
new assignment problem (essentially a new CSP) wit h
respect to the newly added variables . The construction
of such new CSPs continues until no additional necessar y
conditions for activation are met or until no consisten t
assignment is possible . In the latter case, the algorithm
tries to re-assign the attributes of the previous subprob-
lem that have led to the inconsistency . An existing loca l
repair technique is used to perform the re-assignment ,
such that consistency is regained .

In this way, the DCSP is organised into a hierarchy
of smaller CSPs. Each attribute assignment leads t o
the construction of a new CSP (if new attributes can be
activated), to a solution for the DCSP or to an inconsist-
ency. Each assignments corresponds to a set of modellin g
choices that affect the resulting scenario model and it s
level of detail . It is required that this level of detail b e
sufficient, yet, formal knowledge to evaluate this is no t
readily available in ecological modelling . As they are not
related to the mechanics that caused these observation s
in the first place, it is, in general, difficult to deduce when
adding certain features has a significant impact to the
behaviour that is extrapolated from the scenario model .

The approach taken herein is that additional detai l
consisting of relevant model variables and relations is
generally preferred as long as it does not conflict wit h
the other requirements . Attribute assignments are there -
fore evaluated with respect to the amount of detail as-
sociated with the respective set of assumptions that i s
instantiated according to the attribute assignment . As
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explained earlier, the knowledge base may contain order-
ings of assumptions with the same subject in terms of the
level of detail, and hence an ordering of the preference
for the associated attribute assignments .

The available preference orderings apply to the do-
mains of individual attributes, assuming that model vari-
ables and relations whose existence depends upon the as-
sociated assumptions add relevant detail to the scenario
model . These model variables and relations are regarde d
to adding relevant detail if they causally explain one o r
more of the objective variables given in the task specific-
ation .

A preference ordering is assigned to the alternative as-
signments within a single CSP in the DCSP hierarchy,
by combining the preference orderings for individual at -
tributes extracted from the knowledge base with the ob-
jective variables of the task specification and the causal
relations between model variables . In what follows ,
II(x : di ) represents a preference range [i31, /32 1 within
which the preference of the entire assignment is con-
tained and p(x i : d ii ) denotes the maximal number o f
objective variables that can be causally explained by on e
of the attribute assignments which is enabled by the as-
signment xi : dii .

Given a set of attributes x i , . . . , xn, two assignments
: di = (x i : d11, . . . , xn : di-a) and x

	

d2 =
(x i : d12i . . . , xn : dn2 ) are compared in terms of de -
tail . Because relevance assumptions normally have a
far greater impact on the scenario model than mode l
assumptions (as model assumptions reflect modellin g
decisions with respect to a part of a phenomenon in -
stead of an entire phenomenon), attribute assignment s
are first compared solely in terms of relevance assump-
tions . Suppose that the attributes x i , . . . , xi repres-
ent relevance assumptions and that the CSP variables
xi+r, . . . , xn represent model assumptions . If p(x i
dii ) + . . . + p(xi : dii ) > p(x i : d i2 ) + . . . + p(xi : d~ 2 )
then 11( — di ) > II(x : d2 ) . That is, the lower

bound of H(x : d) is greater than the upper bound o f
II( : d2 ) . Otherwise, if p(x i : d11)+ . . .+p(xi : di1 ) _
p(x i : d12)+ . . .+p(x3 : di2), the preference orderings of
the individual assignments of x 1i . . . , xi are compared .
In case dii is an assignment that is preferred over di2 (in
other words, x i : d i1 represents a relevance assumption
of higher specificity than x i : di2 ) for i = 1, . . . , j, then
11(a --2 : di ) > H(x : d2 ) .

If no total order can be established between two as-
signments based on the relevance assumptions (suc h
that one's lower bound is greater than another's up -
per bound), a preference ordering is established based
on the assignments of the attributes representing mode l
assumptions . The maximal number of objective vari-
ables affected by each CSP variable x i that represent s
a model assumption (i .e . i = j + 1, . . . , n) is computed
as p(x i ) = maxd,,k ED,(p(x i : d ik )) . This reflects the in-
tuition that model assumptions on subjects that affec t
more of the objective variables should be awarded a re-
latively higher priority . Consider again two attribute
assignments that need to be compared, over individua l
variables . Those individual variable assignments wit h
the highest p(x i ) are compared first . If no order is es-
tablished on this basis, the assignments with the next
highest p value are compared, and so on .

Using the task specification, the most appropriat e
model is searched . For example, suppose that the ob-
jective variables are the population sizes of predator
and prey_l, that the scenario model may not contai n
the reproduction rate r of these two populations as a n
exogenous variable (both size and reproduction rate be-
ing entity attributes specified in the entity definition )
and that there is a restriction on the maximum numbe r
of variables in the resulting model (although this las t
requirement is not actually useful for the present simple
example) .

This is achieved by assigning preference orderings t o
alternative sets of assumption assignments . Initially, 6
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attributes representing relevance assumptions may b e
activated . These represent the following phenomena :
growth of predator, prey_1 and prey2, predation o f
prey_1 and prey_2 and competition between the pre y
species. The preferred assignment is the one whic h
activates all 6 attributes, because such an assignment
will lead to the highest p value possible . The result-
ing p value is 6, contributed by the fact that the relev-
ance of the growth phenomena of predator and prey_1
each affect one objective variable, the predation phe-
nomena between both affects two objective variable s
and the competition phenomenon and predation betwee n
predator and prey_2 each affect a single objective vari-
able .

All resulting models containing the competition
phenomenon or the predation phenomenon between
predator and prey_2 require the growth phenomenon
of prey_2 . Therefore they involve many additional vari-
ables . If the number of additional variables is too high ,
the next best alternative excluding either of those phe-
nomena is the assignment which renders the phenomena
including prey_2 inactive . This assignment still has a p
value of 4 .

Suppose that the latter (i .e . the growth phenom-
ena of predator and prey_1 and the predation phe-
nomenon between the two are considered relevant) i s
chosen . Then, a new assignment problem is formulate d
with three attributes : two representing model assump-
tions for reproduction of predator and prey_1 and one
representing model assumptions for the predation rela-
tion. In this new CSP, not all attribute assignments ca n
be combined. For example, none of the assignments of x 2
can be combined with assignment x4 : Lotka-Volterra
as demonstrated in figure 4 . The preference orderin g
method will first evaluate the assignment of x4 because ,
as opposed to the other attributes, the consequence s
of this assignment will result in model variables that
causally explain the two objective variables . Therefore ,
variable assignments for the current CSP that includ e
an assignment to x4 (the model type for predation )
are preferred over those that do not . The assignment
x2 : exponential would be prohibited anyway since i t
can only lead to the assignment r : exogenous which was
restricted in the task specification .

Conclusion and future wor k
This paper has presented an initial work towards the de-
velopment of a technique for compositional modelling o f
ecological systems . A knowledge representation frame -
work is devised that supports system dynamics, whic h
is commonly adopted for eco-modelling, and its typica l
modelling assumptions . The work allows a more elab-
orate task specification than conventional compositiona l
modelling approaches, for the use of explicit criteria fo r
model evaluation . Currently, the task specification can
take a set of model objectives, restrictions on the exo-
genous and endogenous variables involved in the scen-
ario model and the limit on the overall complexity o f
the model.

Dynamic flexible constraint satisfaction technique s
are used to guide the search for a model that meets
prescribed specifications . A method for automatically

translating a given scenario, task specification and a
model fragment library into a dynamic constraint satis-
faction problem is proposed . From the resulting DCS P
description all consistent scenario models that meet the
task specification can be derived via a hierarchy o f
subproblems . Information on the preference ordering s
between modelling choices can be exploited to order the
CSP variable assignments in these subproblems . An ex-
isting solution technique is applied to resolve such DFC-
SPs, in order to obtain an adequate and consistent scen-
ario model .

A number of issues concerning ecological systems mod -
elling remain, however . A common feature of ecological
models in system dynamics is the disaggregation of a
model variable, representing a population of individuals ,
into a set of model variables, each representing a subpop-
ulation . Currently, each possible disaggregation has t o
be modelled explicitly by a model fragment and distin-
guished by a specific model type for the model variabl e
in question . However, the knowledge of how to mode l
disaggregation could be generalised, depending on the
entity attributes (e .g . age, sex, social status) that define
the subpopulations and on the factors that affect migra-
tion between subpopulations . It is very interesting to
extend the DFCSP-based work to allow the representa-
tion of and reasoning with such knowledge .

The DFCSP solution techniques currently employe d
are based on the conventional local repair technique to
solve DCSPs . This technique has the advantage of bein g
able to compute a new solution based on an existing one
when the constraints of the problem change . However ,
its use in the present work focuses only on the revision
when resulting models of different complexity, or of dif-
ferent boundary, are required . If a problem may involve
further complicated modifications to a given scenario or
task specification (such as changes to model objectives) ,
how to exploit this technique to repair the existing scen-
ario model, without the need to resolve a new DFCS P
from scratch, remains as an important future work . Last ,
but not least, the important issues of space and tim e
complexity of the proposed approach to DFCSP base d
compositional modelling need to be studied in detail .
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