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Abstract

This paper presents an initial work towards the develop-
ment of a technique for compositional modelling of eco-
logical systems. A knowledge representation framework
is devised to suit system dynamics - the underlying mod-
elling paradigm adopted. Model fragment selection and
composition is achieved by means of dynamic flexible
constraint satisfaction problem (DFCSP) solution tech-
niques. A method for automatically translating a scen-
ario and a model fragment library into a dynamic con-
straint satisfaction problem (DCSP) is proposed. From
this DCSP all consistent scenario models can be derived
through a hierarchy of subproblems and different model
evaluation criteria can be imposed through specific sets
of constraints. A technique is then suggested to order
the modelling choices within each of the DCSP subprob-
lemns, in terms of the degree of model detail, and hence
the preferences associated with these choices. The res-
ult is a compositional modeller in which the tasks of
maintaining model consistency, selecting model bound-
ary, evaluating model suitability are accomplished by
resolving a single DFCSP.

Introduction

The present work aims at a compositional modelling
(Falkenhainer, B. & Forbus, K.D. 1991) approach for
ecological systems. This application domain poses sev-
eral new challenges to compositional modelling. Eco-
logical systems consist of an overwhelming amount of
components and processes. Yet, ecologists are mostly
interested in aggregate concepts and aggregate interac-
tions within an eco-system. Therefore, ecological models
consist of abstract processes representing aggregate phe-
nomena of interest. In certain problem domains, such as
hydro-ecology (Heller, U. & Struss, P. 1996), these ag-
gregate processes are equivalent to the combined effect
of the relevant first principles and in other domains, such
as population dynamics, the aggregate processes merely
attempt to approximate behaviour associated with cer-
tain phenomena.

Conventional compositional modellers derive the re-
quirements for an adequate model from an initial state
specification or some task specification (Keppens, J. &
Shen, Q. 2000). Approaches such as (Farquhar 1993),
aim at extrapolating all possible states of a model from
the initial state and do not take alternative modelling as-
sumptions into account. A task specification or query de-
termines which variables must be related to one another

and some compositional modellers, such as (Levy, A.Y.,
Iwasaki, Y., & Fikes, R. 1997; Nayak, P.P. & Joskowicz,
L. 1996), search for the simplest model that establishes
this relation. However, these approaches are geared to-
wards engineering applications and use knowledge that
is specific to that domain, e.g. topological device struc-
tures.

Alternatively, the scope of the model and the required
level of detail may be computed in terms of the under-
lying factors, such as the granularity of the time scale
at which significant changes occur (Rickel, J. & Porter,
B. 1997). However, in many domains of ecology, such as
population dynamics, concise first principles and the as-
sumptions underlying any approximations are not read-
ily available due to the intrinsic complexity of the phe-
nomena. For example, there are no known mathematical
laws underlying the phenomenon of predation between
two populations. Instead, an empirical or artificial rela-
tion that is assumed to approximate the unknown un-
derlying first principles is used. Unfortunately, the as-
sumptions on which such approximations are based, e.g.
adequate time scale, are not completely understood.

This paper proposes an alternative approach to com-
positional modelling that addresses these issues. A
knowledge representation framework is introduced that
enables the representation of a space of ecological mod-
els for a given scenario and that allows phenomena
and modelling alternatives to be distinguished and com-
posed. The problem of model composition is described
as a dynamic flexible constraint satisfaction problem
(DFCSP). A set of requirements of models to be con-
structed are translated into a combination of hard and
preference constraints imposed over emerging partial
models. The modified local repair techniques (Miguel,
1. & Shen, Q. 2000) are adopted to guide the search for
finding a solution to such DFCSPs, i.e. an adequate
composed ecological model.

Background
Ecological modelling with system dynamics

Many different kinds of modelling approach are used
in ecology. A most common paradigm is system dy-
namics (Forrester 1961). In system dynamics, the phe-
nomena of interest are represented as levels and flows
between them. The change per time unit in a level equals
the total of inflows minus the total of outflows. Ad-
ditional variables and influences describe the relations
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Figure 1: A system dynamics model of predation

between the levels and flows. As such, system dynam-
ics provides an interface to modelling with differential
equations and allows features of other paradigms to be
integrated (Robertson, D. et al. 1991).

To illustrate the system dynamics approach to ecolo-
gical modelling in the present work, the following scen-
ario is used:

population(predator) A population(prey_1) A
population(prey_2) A feeds-on(predator, prey-1) A

feeds-on(predator, prey_2) A competition(prey_1, prey_2)

It describes a world consisting of three populations - a
predator population that feeds on the other populations
prey_1 and prey_2. The latter two populations compete
with one another over scarce resources.

The concepts representing ecological systems do not
normally play one of a few well-defined roles in a model.
Instead, depending on the scenario and the problem at
hand, various phenomena are considered with respect
to the concepts. In the present scenario, reproduction
within both populations, the predation behaviours of
predator with respect to the prey population and com-
petition between prey_1 and prey_2 may be of relevance.
In other scenarios, different phenomena such as infection
of diseases may also have to be considered.

Many models of these different phenomena exist. Con-
sider the predation phenomena involving prey.1, of
which figure 1 shows one possible model. A kind of
growth phenomenon conceptualising changes in popu-
lation size is necessary for both populations. This is
because predation affects the change in the level of the
prey population since predation kills prey, as well as the
change in the level of the predator population since the
total amount of available prey affects the sustainable
population.

In figure 1, the growth phenomenon is represented by
a level, an inflow and an outflow for both populations.
If more information were available about the population
(e.g. a more specific type of population) a more pre-
cise growth phenomenon would be modelled. Based on
these concepts of population growth, the specific models
of growth can be added. In this case a simple linear re-
production model is used that is limited by a maximal
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sustainable population level. The model of the predation
behaviour, limits the capacity of the predators based on
the available prey. The total consumed prey is added to
the total outflow of prey. This description is represented
in figure 1 by variables and influences between them. If
necessary, new exogenous variables could be added to
explain the current exogenous variables.

Dynamic and flexible constraint satisfaction

The simplest of constraint satisfaction problems (CSP)
can generally be specified as a triplet (X, D, C') where X
is a set of attributes {z1,... ..}, D is a set of domains
{Dy,...,Dy} describing the potential values of the at-
tributes and C is a set of constraints relating some of
the attributes. Each attribute z; € X must be assigned
a single value d € D;. Such attribute assignments will
be denoted as ; : d. Each e(zi,...,r;) € C specifies
a subset D€ of D; x ... x D; such that V(d;,... ,d;) €
D¢, e(d;,. .. ,d;) is consistent with e. The purpose of
solving a CSP is to find a tuple (dy,... ,d,) such that
the attribute assignments = : dy,... .z, : d, cause all
constraints in C' to hold.

Although CSPs have been studied in great detail,
they are not sufficiently equipped to deal with two fea-
tures that are frequently present in real-world problems.
On the one hand, the problem specification can be dy-
namic in nature. This implies that the CSP specifica-
tion changes over time (Miguel, 1. & Shen, Q. 1999) or
with respect to other attribute assignments (Mittal, S. &
Falkenhainer, B. 1990). On the other hand. constraints
do not necessarily impose hard requirements. For ex-
ample, certain attribute assignments may be preferred
over others. The former type of CSP is referred to as
dynamic CSP (DCSP) and the latter to flexible CSP
(FCSP).

Similar to the work presented in (Mittal, S. & Falken-
hainer, B. 1990), this work requires the handling of DC-
SPs in which the set of relevant attributes is defined by
other attributes. In order to solve such CSPs, activity
predicates are introduced such that:

YV, € X 1 active(x;) «+ Vaep, @i+ d

;From this it follows that —active(x;) implies that no at-
tribute assignment is considered for x;. The traditional
CSP constraints, termed compatibility constraints. are
still applicable in these DCSPs. A compatibility con-
straint e(z;,...,z;) is translated as c(z,...,z;) V
—active(z;) V ...V —active(z;). As a result, the determ-
ination of the truth of an activity predicate implicitly
results in a set of constraints as well. In addition to
compatibility constraints, the dynamic CSP also con-
tains so-called activity constraints. These come in the
form of implications where the consequent consists of
a literal containing the activity predicate of one of the
attributes.

When flexible constraints are allowed, the satisfaction
of a constraint becomes a matter of degree. The degree
of satisfaction (of attribute assignments) with respect
to a constraint, say, ¢(z;,... ,z;) may be defined by an
elastic relation R : D; x ... x Dj v L: (di,... ,d;j) —
sr(di, ... ,d;), where L is a satisfaction scale (e.g. [0,1])
(Miguel, 1. & Shen, Q. 2000). In this way, the original
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notions of constraint satisfaction and violation is exten-
ded such that the degree to which different assignments
satisfy a constraint can be ordered. In the present work,
a method is proposed to define such an ordering of pref-
erences for alternative attribute assignments depending
on their underlying role in model composition.

Knowledge representation

The representation of model fragments in this work
mainly follows the general framework of the Com-
positional Modelling Language (CML) (Bobrow, D. et
al. 1996), apart from certain syntactical differences.
The system being modelled is described by a scen-
ario. A scenario is denoted by a pair (O, ®) where
O = {o1,... ,0n} is a set of object constants, called the
scenario objects, and ® is a set of relations ¢(o;, ... , 05)
over the object constants. An example of an ecological
scenario is provided above. The required compositional
modeller should translate a scenario into a system dy-
namics model, given a knowledge base and a task spe-
cification.

The knowledge base

The knowledge base used by a compositional maodeller
largely consists of a model fragment library which is a
collection of predefined model fragments. Each model
fragment represents a way of modelling a particular fea-
ture of some system or subsystem under certain con-
ditions. By selecting and instantiating a set of model
fragments, a compositional modeller constructs models
of a system satisfying the prescribed task specification.

A model fragment u is a tuple (P° P! &5 &' A)
where P*(p) = {p}....p3,} is a set of variables, called
source-participants, Pt(p) = {p}.... ,p%} is a set of vari-
ables, called target-participants, ®%(u) = {¢5,...,¢5}
is a set of relations, called structural conditions, whose
free variables are elements of P*, ®'(u) = {¢},... . ¢%}
is a set of relations, called postconditions, whose free
variables are elements of P* U P!, A(u) = {a1,... ,a:}
is a set of relations, called assumptions, such that for
fi= Ly 35

Vpi, ... VpS, 308, ... 3L BE N A —
(a1 A... Aoy — @)

The source and target participants in a model frag-
ment are variables representing domain objects. These
objects may be entities or subsystems of the real-world
system of interest. Alternatively, they may be concep-
tual entities that, when instantiated, assume the role
of variables within a scenario model, thus representing
significant properties of the system. Instantiated parti-
cipants of the latter type are called model variables. The
relations existing between the objects represented by
participants are defined by the conditions in the model
fragments. For each participant, at least one unary rela-
tion is defined that specifies the type of the participant.

The structural conditions of a model fragment de-
scribe the subsystem setting to which that model frag-
ment is applicable. A model fragment p with P¥(u) =
{p},...ps,} is said to be applicable with respect to the
set of object constants oy, ... , 0,; of a database A if for

each ¢ € ®°(u), dos/p, ... 0z, /b, DOlds in A. Here, a data-
base stands for a collection of domain object constants
and known relations between them.

The assumptions in the above definition are relations
on source-participants and object constants and they are
used to represent specific features of the models that in-
clude the associated model fragments. For example, as-
sumptions may indicate the inclusion of certain phenom-
ena or distinguish between alternative ways of modelling
these phenomena. Their truth depends on the specific
requirements of the model and hence, they can not be
deduced merely from the scenario.

In this work, the assumptions come in two types. A
relevance assumption, denoted as relevant(h, p1,... ,pg).
states that the associated model fragment describes
a phenomenon h, which applies to the participants
Piy- .. ,pj. They are considered with respect to certain
object constants o1,...,0, that instantiate py,...,p,.
The tuple (h,o1,... ,04) is called the subject of a relev-
ance assumption. If the entity type of a participant p
is denoted by T'(p), then the specificity of a relevance
assumption can be defined as (T'(p1),... ,T(p,)). Rel-
evance assumptions with the same subject, but different
specificity are inconsistent with one another.

Consider, for  example, the model frag-
ment;: population(p) A relevant(growth(p)) —
level(l) A unit-of(l, population) A rate(r) A size-of(p, 1) A
flow(r, source-sink, ).  This fragment introduces all
objects that are required to represent the phenomenon
growth(p): the growth rate r and the population level
I, which represents the size of p, and a relation between
them flow(r,source-sink,l), which can be translated
as %1 = r. An alternative model fragment could be
defined for a specific type of population for which a
model of population growth exists that is more suitable
than the default. For example, the growth of a popula-
tion of holometabolous insects should be modelled by
four levels instead of one, representing the appropriate
stages of growth: egg, larva, pupa and adult.

A maodel assumption model(¢,t) states that the asso-
ciated model fragment represents the source-participant
or structural condition ¢ in a specific way described by
t. For each database that contains model(g, t) it is said
that the maodel type of ¢ is t. Such assumptions are used
to distinguish between different ways of describing (or
explaining) object constants or relations between object
constants. The object constant or relation ¢ between
object constants to which the model assumption is in-
stantiated is called the subject of the model assumption.
Model assumptions with different model types and the
same subject are inconsistent with one another.

Consider, for  example, the model frag-
ment:  rate(r) A level(l) A unit-of(l, population) A
flow(r, source-sink, [)model(exponential, r) =
birth-rate(rg) A (r = 19 x l). This fragment con-
tains the “exponential” model type for the number of
births per time unit r of a population (being r = rg x [).
Another model fragment could contain an alternative
model type, say “logistic” (Roughgarden 1996), model
type for r.

The target-participants represent new objects that
should be added to the scenario model when the model



fragment is applicable and the assumptions are deemed
true. The postconditions define new relations between
source-participants, target-participants or a combina-
tion of both. They are either an assignment or a predic-
ate.

Assignments are only defined for model variables. An
assignment p; = I(pk, ... ,p) defines participant p; as a
function of participants pk,...,pi, ¢ € {k,...,1}. This
function may be composed of standard arithmetic op-
erations or may be the compositional operators (see
(Bobrow, D. et al. 1996)). In the latter case, the post-
conditions are partial definitions that can be combined
with other postconditions that describe other assign-
ments to the same model variable for p,.

A predicate R(pg, ... ,p) either adds new information
about the scenario model or represents a predefined set
of assignments. The latter case is called an assignment
predicate. An example of this is flow(r, l1,l2), where r is
a participant of the rate type and [; and Iy are source-
participants of the level type, and which represents that
%h = —r and E‘%!g xS

Additional representation formalisms

Most other supportive representation formalism. of
CML exist in the proposed compositional modeller as
well. Some participants belong to predefined types. En-
tity type definitions are used to specify these. Each en-
tity has a number of entity attributes representing fea-
tures of particular importance (e.g. population size).

The entity types are organised in a type hierarchy.
A subclass inherits all entity attributes and other fea-
tures of its superclasses and may add new ones. For
instance, the holometabolous-insect-population type is
a subclass of the population type. In applications of
ecological modelling, the entity attributes specific to the
more specialised classes may be related to entity attrib-
utes introduced in its parent classes. In particular, cer-
tain aggregation relations are currently defined in this
way.

In order to compare between different emerging mod-
els, alternative model assumptions may be assigned pref-
erences. In the absence of any preference order, the
model types are considered to be equally suitable (as-
suming that all other features are equal). Further pref-
erence orders may be assigned for certain subtypes of
the participants in the subject of the model assumptions.
For example, in addition to a preference order between
model types of the reproduction of a population, an al-
ternative order can be defined for a subpopulation, of
which the behaviour should differ from that normally
seen by default. Relevance assumptions with the same
subject are not explicitly ordered in the knowledge base
as the specificities of the individual assumptions already
form a preference ordering.

Task specification

A range of ecological models can be specified using the
knowledge representation formalisms discussed above.
Which of the possible models is most appropriate de-
pends on the requirements of the task at hand. These
are prescribed in the task specification. Because, in the
general case, ecological models do not entirely follow
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from first principles, little knowledge on the adequacy
of partial models can be derived from a knowledge base.
Therefore, the task specification must impose additional
criteria on the model. In the present version of this work,
the following criteria are contained in the task specifie-
ation:

e The objectives that establish the features that must
be included in the model. In system dynamics, cer-
tain domain variables are required to be simulated to
show their potential behaviour. Hence, these variables
must be included as entity attributes of entity type
definitions. In what follows such variables, explicitly
required as the modelling objectives, are called object-
ive variables.

e The maximal level of model complexity, which is herein
expressed in terms of the total number of variables
because this is one of the simplest ways of comparing
model complexity between models covering different
sets of phenomena (Rickel, J. & Porter, B. 1997).

e The specific requests which dictate certain model vari-
ables to be exogenous or to be simply excluded from
any resulting model. Such model variables are named
requested variables.

The compositional modelling approach presented
herein aims at constructing a model that represents the
phenomena that affect the objective variables in as much
detail as possible given the constraint on model complex-
ity and the specific requests.

Model composition
Inference from a scenario

Through the implications represented by the model frag-
ments in the knowledge base, new information can be
derived from the given scenario description. The set of
relations @ in a database A = (O, ®) may be pattern
matched with the structural conditions of some model
fragment p by a substitution ¢ that maps each source-
participant in P*(u) onto an object constant of 0. Also,
o instantiates the assumptions A(p) = {a1,..., 04} to
a set of ground relations. If oy A ... A oa; is consistent
with A, a new database A’ = (0, &) logically follows
from A. O' contains every 0 € O and a new object
constant for each p € P!(u), thereby forming a new sub-
stitution ¢’. ®' is the union of ®, the instantiated as-
sumptions o’ A(p) and the instantiated postconditions of
i, o' ®' (). The pseudo-code in figure 2 illustrates how a
knowledge base of model fragments is instantiated based
on a given scenario.

Such a model space is represented as a hypergraph 6.
The nodes of # are objects or relations between objects.
Each hyperarc links a set of nodes ny,... ,n, to another
node ng, representing ny A ... A ny, — ng. Initially, the
nodes are those objects and object relations provided
in the given scenario. For each model fragment whose
source-participants and structural conditions match the
objects and relations already in €, a set of new nodes and
hyperarcs are created as the results of such matches and
these are added to #. Overall, this procedure is similar to
the approach presented in (Falkenhainer, B. & Forbus,
K.D. 1991).
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f:=new hypergraph;
foreach ¢ € scenario do
add-node(#, 0) ;
foreach match(u, )
justf:=empty set;
foreach a € A(u) do
newnode :=add-node (4, a) ;
justf:=justfU{newnode};
end-foreach;
foreach p€ P a(u) do
justf:=justfU{find-nede(#,p) };
foreach ¢ € @ s(u) do
justf:=justfU{find-node(f,c)};
foreach p€ P7t(u) do
o:=add-node(f, p) ;
add-justification(f, o,justf);
end-foreach;
foreach ¢p € @7t(u) do
0:=add-node(f, c) ;
add-justification(f, o,justf);
end-foreach;
end;

Figure 2: Generation of a model space

The model space in the running example will at least
contain parts of models representing natural reproduc-
tion in the absence of other species for the predator,
prey.l and prey.2 species, parts of models describing
the predation of prey_1 and the predation of prey.2
by predator and parts of models on the competition
between prey_1 and prey_2. Figure 3 shows part of the
model space that is generated from this sample scen-
ario. From this partial model space, two types of models
of natural reproduction of the predator species can be
generated. Figure 3 also illustrates part of the possible
predation models involving the predator and one of the
prey species.

Construction of a dynamic CSP

Having derived a model space from a given scenario, in-
dividual models can be created by selecting a set of as-
sumptions. To support this selection, information con-
tained in this model space is translated into the descrip-
tion of a DCSP. This translation allows the use of the
solution techniques developed for DCSPs to be employed
for the selection of a consistent model. The next sub-
section will then show how preference orderings can be
added to such DCSPs and explain how this aids in guid-
ing the search for an adequate model.

A model is selected from the model space, presuming
that a certain number of assumptions be true and that
all others be false. Within the model space, each as-
sumption represents one modelling decision from a set
of mutually exclusive options. This is syntactically equi-
valent to an attribute and its unary domain constraint in
a CSP. Hence, an attribute is created for each assump-
tion subject in 8.

In addition to the assumptions, information on the
variables that have been included in the model is also
important. Any given task specification may restrict
which variables are included in the model and whether
they can be exogenous or endogenous, or may limit the

total number of variables. Therefore an attribute is in-
cluded for each instantiation of each participant that
is a model variable. The domains of these attributes
are {exogenous, endogenous}, representing the different
roles the associated variables may play in the scenario
model. In what follows, ocgp(6) denotes the substitution
that maps the assumption subjects and model variables
to attributes and that maps the specificities, model types
and variable roles to attribute assignments.

Activity constraints define the conditions under which
attributes are active. The relevance of a phenomenon
at a certain specificity can only be considered with re-
spect to a set of objects to which the phenomenon is
applied. Also, a model type of a certain object constant
or relation can only be considered under the conditions
that the object constant or the relation exists. There-
fore, an attribute representing an assumption is active
only if its associated subject is instantiated. The con-
ditions under which an attribute z; is instantiated are
hereafter denoted by v(z,). If z; represents an assump-
tion with a subject that contains the relations or parti-
cipants ¢1,... ,¢n then, y(z;) =y(¢1) A... A y(¢n)-

The (¢:) can be computed with respect to four dif-
ferent cases. Firstly, if ¢; is an object constant or rela-
tion given in the scenario, then v(¢;) = T. Secondly,
if ¢ is mapped onto an attribute - more specifically
ocsp(f)¢i = x; - then ~(¢:) = active(x;). Thirdly,
if ¢; is mapped onto an attribute assignment - that is
chpte)d‘é =Ty . dj'k - then ')/((,'bl) = Iy djk. And fi-
nally, in all other situations, vy(¢,) can be derived from
the model space by tracing back each of the hyperarcs
leading to ¢;. Each hyperarc introduces a new conjunc-
tion of assumption participants and/or relations ¢ for
which (¢) can be computed in one of the other three
ways just described.

The conjunctions produced for the different hyperarcs
are disjoined. Suppose that the resulting expression is
denoted as I'(z;). The following activity constraint can
then be constructed for z;: active(z;) — I'(z;). I'(z,) is
only a necessary constraint because none of associated
assumptions have to be selected for the purpose of model
construction. If @; represents a model variable, then
I(x;) is computed in much the same way, except that
the aforementioned fourth case is checked first.

The compatibility constraints dictate what combina-
tions of individual assumptions are consistent, and what
are not. Certain combinations of assumptions may res-
ult in inconsistent relations. Inconsistent relations are
caused by the instantiation of non-composable postcon-
ditions. A set of postconditions are said to be non-
composable if they are assignment postconditions with
the same assignee and the assigned mathematical rela-
tions cannot be combined by means of composable op-
erators. Hence, for each pair ¢;,¢; of non-composable
postconditions instantiated in the model space, a com-
patibility constraint —(y(ocspdi) A v(ocspdi)) is cre-
ated.

Additional constraints govern whether a model vari-
able is exogenous or endogenous. If {¢1,...,¢n} is
the set of all assignments in the model space that have
the variable v as their assignee, the following two con-
straints are added to the DCSP: gcgp  endogenous(v)
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Figure 3: Partial model space for the predator prey scenario

— a.ctive(acgpv) A (Jcspt;b] V...V G'(jspgf)n) and
ocgpexogenous(v) — active(ocgpv) A —endogenous(v).
Restrictions on the activity or roles of a model variable
in the task specification now map straightforwardly to
the DCSP. Finally, a special purpose attribute is added
that counts the total number of active model variables.
This attribute is constrained by an upper limit, which is
the maximal model complexity as specified in the task
specification.

Using this method, the model space of figure 3 can
be translated into a DCSP. A graphical representation
of the constraints resulting from the partial model space
given in figure 3 is shown in figure 4. Assumptions with
the same subject are grouped into a single attribute.
For example, the assumptions “model R:exponential”
and “model R:logistic” of figure 3 are grouped into the
attribute z, with domain {“exponential”, “logistic”}.
The activity constraints over the attributes represent-
ing assumptions are defined by the conditions that ac-
tivate the subject. The activity constraints of attributes
are defined by tracing the necessary justification in the
model space. For example, 2 represents a set of assump-
tions and therefore depends on its subject, which is in
this case a model variable that has another CSP variable
associated with it. Hence, the activity of the latter CSP
variable is a necessary condition for the activity of z; as
illustrated in figure 4.

The causal relations between the model variables are
captured by the assignment postconditions. For in-
stance, the relation R = rN; results in a compatibil-
ity constraint that states that if r is active, R must be
endogenous.

Non-composable postconditions are prohibited by
compatibility constraints. For example, figure 3 shows
that the assignments x4 : Lotka-Volterra and x5 : logistic
in the CSP both result in an assignment postcondition
with respect to R, which has been prohibited by a com-
patibility constraint in figure 4.

Now, each consistent assignment in the DCSP can
then be translated into a scenario model. For example,
the assignment (z; : population, R : endogenous, N; :
endogenous, T : logistic, 7p : exogenous, K : exogenous)
is consistent with the CSP of figure 4. By considering

the assumptions associated with these attribute assign-
ments as facts, and by following the justifications defined
through the hyperarcs in the model space, a model is
then constructed. In particular, the following state-
ments can be inferred: £N; = R, R = roNy(1 — 33),
exogenous(rp), exogenous(K).

Model selection and preference orderings

The CSP solution algorithm used is very similar to that
presented in (Miguel, I. & Shen, Q. 2000). Initially, only
the attributes that are not restricted by activity con-
straints may be active and can be assigned. Certain
assignments may cause the necessary conditions for the
activation of other attributes to be met, which vields a
new assignment problem (essentially a new CSP) with
respect to the newly added variables. The construction
of such new CSPs continues until no additional necessary
conditions for activation are met or until no consistent
assignment is possible. In the latter case, the algorithm
tries to re-assign the attributes of the previous subprob-
lem that have led to the inconsistency. An existing local
repair technique is used to perform the re-assignment,
such that consistency is regained.

In this way, the DCSP is organised into a hierarchy
of smaller CSPs. Each attribute assignment leads to
the construction of a new CSP (if new attributes can be
activated), to a solution for the DCSP or to an inconsist-
ency. Each assignments corresponds to a set of modelling
choices that affect the resulting scenario model and its
level of detail. It is required that this level of detail be
sufficient, yet, formal knowledge to evaluate this is not
readily available in ecological modelling. As they are not
related to the mechanics that caused these observations
in the first place, it is, in general, difficult to deduce when
adding certain features has a significant impact to the
behaviour that is extrapolated from the scenario model.

The approach taken herein is that additional detail
consisting of relevant model variables and relations is
generally preferred as long as it does not conflict with
the other requirements. Attribute assignments are there-
fore evaluated with respect to the amount of detail as-
sociated with the respective set of assumptions that is
instantiated according to the attribute assignment. As
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Figure 4: Graphical representation of a sample CSP for model composition

explained earlier, the knowledge base may contain order-
ings of assumptions with the same subject in terms of the
level of detail, and hence an ordering of the preference
for the associated attribute assignments.

The available preference orderings apply to the do-
mains of individual attributes, assuming that model vari-
ables and relations whose existence depends upon the as-
sociated assumptions add relevant detail to the scenario
model. These model variables and relations are regarded
to adding relevant detail if they causally explain one or
more of the objective variables given in the task specific-
ation.

A preference ordering is assigned to the alternative as-
signments within a single CSP in the DCSP hierarchy,
by combining the preference orderings for individual at-
tributes extracted from the knowledge base with the ob-
jective variables of the task specification and the causal
relations between model variables. In what follows,
(= : d_;) represents a preference range 3, 3] within
which the preference of the entire assignment is con-
tained and p(x; : di;) denotes the maximal number of
objective variables that can be causally explained by one
of the attribute assignments which is enabled by the as-
signment x; : dy;.

Given a set of attributes z1,... ,z,, two assignments
T c'i? = (z1 : di1y...,Zn : dn1) and T : d_g =
(z1 : dizy... ,Zn © dnp) are compared in terms of de-
tail. Because relevance assumptions normally have a
far greater impact on the scenario model than model
assumptions (as model assumptions reflect modelling
decisions with respect to a part of a phenomenon in-
stead of an entire phenomenon), attribute assignments
are first compared solely in terms of relevance assump-
tions. Suppose that the attributes 1,...,z; repres-
ent relevance assumptions and that the CSP variables
Tj41,-.- ,Tn represent model assumptions. If plx
d1_1_) + .. +p(.‘l‘3' : dj]) > p(:.-:l 1 du) i +,O(.’Bj 5 djg)
then I(Z : d1) > (T : ds). That is, the lower

bound of II{ 7T : dy ) is greater than the upper bound of
I(Z : d3). Otherwise, if p(zy : d11)+. .. +p(zy 1 dj) =
plzy  dig)+ ...+ p(z; ¢ dja), the preference orderings of
the individual assignments of xq,... ,z; are compared.
In case dy; is an assignment that is preferred over d;» (in
other words, z; : d;j; represents a relevance assumption
of higher specificity than =, : dyo) for i =1,... .7, then
H(a7 : di) > (2 : dy).

If no total order can be established between two as-
signments based on the relevance assumptions (such
that one’s lower bound is greater than another's up-
per bound), a preference ordering is established based
on the assignments of the attributes representing model
assumptions. The maximal number of objective vari-
ables affected by each CSP variable z; that represents
a model assumption (i.e. ¢ = j+ 1,...,n) is computed
as p(x;) = maxq,ep,(p(z; : dir)). This reflects the in-
tuition that model assumptions on subjects that affect
more of the objective variables should be awarded a re-
latively higher priority. Consider again two attribute
assignments that need to be compared, over individual
variables. Those individual variable assignments with
the highest p(x;) are compared first. If no order is es-
tablished on this basis, the assignments with the next
highest p value are compared, and so on.

Using the task specification, the most appropriate
model is searched. For example, suppose that the ob-
jective variables are the population sizes of predator
and prey.1, that the scenario model may not contain
the reproduction rate r of these two populations as an
exogenous variable (both size and reproduction rate be-
ing entity attributes specified in the entity definition)
and that there is a restriction on the maximum number
of variables in the resulting model (although this last
requirement is not actually useful for the present simple
example).

This is achieved by assigning preference orderings to
alternative sets of assumption assignments. Initially, 6



attributes representing relevance assumptions may be
activated. These represent the following phenomena:
growth of predator, prey.l and prey.2, predation of
prey.1 and prey_2 and competition between the prey
species. The preferred assignment is the one which
activates all 6 attributes, because such an assignment
will lead to the highest p value possible. The result-
ing p value is 6, contributed by the fact that the relev-
ance of the growth phenomena of predator and prey_1
each affect one objective variable, the predation phe-
nomena between both affects two objective variables
and the competition phenomenon and predation between
predator and prey_2 each affect a single objective vari-
able.

All resulting models containing the competition
phenomenon or the predation phenomenon between
predator and prey_2 require the growth phenomenon
of prey.2. Therefore they involve many additional vari-
ables. If the number of additional variables is too high,
the next best alternative excluding either of those phe-
nomena is the assignment which renders the phenomena
including prey_2 inactive. This assignment still has a p
value of 4.

Suppose that the latter (i.e. the growth phenom-
ena of predator and prey.1 and the predation phe-
nomenon between the two are considered relevant) is
chosen. Then, a new assignment problem is formulated
with three attributes: two representing model assump-
tions for reproduction of predator and prey.1 and one
representing model assumptions for the predation rela-
tion. In this new CSP, not all attribute assignments can
be combined. For example, none of the assignments of x5
can be combined with assignment x4 : Lotka-Volterra
as demonstrated in figure 4. The preference ordering
method will first evaluate the assignment of x4 because,
as opposed to the other attributes, the consequences
of this assignment will result in model variables that
causally explain the two objective variables. Therefore,
variable assignments for the current CSP that include
an assignment to T4 (the model type for predation)
are preferred over those that do not. The assignment
zo : exponential would be prohibited anyway since it
can only lead to the assignment r : exogenous which was
restricted in the task specification.

Conclusion and future work

This paper has presented an initial work towards the de-
velopment of a technique for compositional modelling of
ecological systems. A knowledge representation frame-
work is devised that supports system dynamics, which
is commonly adopted for eco-modelling, and its typical
modelling assumptions. The work allows a more elab-
orate task specification than conventional compositional
modelling approaches, for the use of explicit criteria for
model evaluation. Currently, the task specification can
take a set of model objectives, restrictions on the exo-
genous and endogenous variables involved in the scen-
ario model and the limit on the overall complexity of
the model.

Dynamic flexible constraint satisfaction techniques
are used to guide the search for a model that meets
prescribed specifications. A method for automatically
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translating a given scenario, task specification and a
model fragment library into a dynamic constraint satis-
faction problem is proposed. From the resulting DCSP
description all consistent scenario models that meet the
task specification can be derived via a hierarchy of
subproblems. Information on the preference orderings
between modelling choices can be exploited to order the
CSP variable assignments in these subproblems. An ex-
isting solution technique is applied to resolve such DFC-
SPs, in order to obtain an adequate and consistent scen-
ario model.

A number of issues concerning ecological systems mod-
elling remain, however. A common feature of ecological
models in system dynamics is the disaggregation of a
model variable, representing a population of individuals,
into a set of model variables, each representing a subpop-
ulation. Currently, each possible disaggregation has to
be modelled explicitly by a model fragment and distin-
guished by a specific model type for the model variable
in question. However, the knowledge of how to model
disaggregation could be generalised, depending on the
entity attributes (e.g. age, sex, social status) that define
the subpopulations and on the factors that affect migra-
tion between subpopulations. It is very interesting to
extend the DFCSP-based work to allow the representa-
tion of and reasoning with such knowledge.

The DFCSP solution techniques currently employed
are based on the conventional local repair technique to
solve DCSPs. This technique has the advantage of being
able to compute a new solution based on an existing one
when the constraints of the problem change. However,
its use in the present work focuses only on the revision
when resulting models of different complexity, or of dif-
ferent boundary, are required. If a problem may involve
further complicated modifications to a given scenario or
task specification (such as changes to model objectives),
how to exploit this technique to repair the existing scen-
ario model, without the need to resolve a new DFCSP
from scratch, remains as an important future work. Last,
but not least, the important issues of space and time
complexity of the proposed approach to DFCSP based
compositional modelling need to be studied in detail.
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