Reinterpretation of Causal Order Graphs Towards Effective Explanation
Generation Using Compositional Modeling

T.K. Satish Kumar
Knowledge Systems Laboratory
Stanford University
tksk @ksl.stanford.edu

Abstract

Compositional modeling provides a number of advantages
over conventional simulation software in explanation genera-
tion mainly because of its causal interpretation of data. How-
ever, little work was done with regard to a supporting algo-
rithm that can generate cogent explanations from the simula-
tion values and causal graphs of model parameters. Earlier
attempts did not solve the problem of irrelevant details intro-
duced by using compositional modeling; as a result of which
misleading references resulted in atterpting explanation of
device behavior. This was mainly because they were based
merely on equation tracing and did not try to infer anything
about the working phenomena from the causal order graph.
We present a domain independent algorithm that interprets
causal order graphs in terms of working template phenom-
ena rather than in terms of quantities defined in the equation
model. A byproduct of this is in capturing the user’s psychol-
ogy in terms of phenomena rather than in terms of mathemat-
ical equations defined by some other person. The explanation
is in the form of natural language rather than graphs of nu-
merical variables. We also describe a number of extensions
of the algorithm to handle issues such as scalability and rank-
ing by significance.

Introduction

We present an algorithm for generating explanations of de-
vice behavior characterized by systems of mathematical
constraints over model parameters and quantities; without
using domain-specific knowledge. Such models are widely
used in engineering for dynamical systems, such as elec-
tromechanical and thermodynamic control systems. Con-
ventional simulation software can predict and plot the val-
ues of these quantities over time given the mathematical
equations describing the model. However, this mass of data
would be difficult to interpret without any correlation to the
structure of the modeled system or the working physical
laws.

In engineering tasks requiring design and diagnosis,
causal and functional interpretations of data, rather than
graphs of numerical variables would prove very useful in
anticipating and understanding system behavior. In this pa-
per, we focus on causal interpretations and how we can pro-
duce explanations without using knowledge of the domain;
interpreting causal order graphs in terms of active template
physical phenomena.

The CML (Compositional Modeling Language) (Falken-
hainer and Forbus 1991) provides formalisms for integrat-
ing models from modular pieces called model fragments,
and the DME (Device Modeling Environment) (Iwasaki and
Low 1993) provides the environment for their qualitative
and numerical simulation along with explanation capabili-
ties. A separate report introduces the intended explanation
architecture and describes the text generation and human
interface techniques (Gruber and Gautier 1993). Compo-
sitional modeling and causal ordering (Kumar 2000), are ef-
fective in providing the formalism for capturing much of the
knowledge that typically resides in the mind of the designer
and is otherwise never communicated to the user. However,
the formalism is not complete in itself unless it has a sup-
porting algorithm that extracts the encoded knowledge back
to a human-consumable form.

The algorithm presented, works independently of domain
knowledge and tries to infer template phenomena of muta-
tion and evolution from causal order graphs which are them-
selves inferred at run time (Kumar 2000) during simulation.
This approach is natural and fits perfectly with the psychol-
ogy of the user who would be concerned only with the active
phenomena and not with the actual equations and intermedi-
ate quantities defined in the equation model of the designer.
The users can remain oblivious of the peculiarities and par-
ticulars in the lines of thought of the designer and the inter-
mediate parameters used in the equation model. This would
help them understand and predict the system behavior with-
out any knowledge of the design issues involved in compos-
ing the model.

In the next section, we describe two running examples
to which we will apply our algorithm and try to illustrate
the usefulness of the explanations produced. In the follow-
ing two sections, we analyze why it works, explaining how
combining the techniques of compositional modeling and
causality with the supporting algorithm makes it possible
to achieve the desired requirements. The final two sections
provide a summary and compare related work. The actual
algorithm along with other motivating ideas and extensions
are described progressively in intermediate sections.

Running Examples

We choose to illustrate the algorithm with the help of two
physical settings which are both simple. We choose them in



Flow

Vi=(l-a-b-c)Flow + EFlow
¥2=VI1+aFlow
VYi=VZ+hFlow
Y4 =V3+cFlow

EFlow Flow
Vi
v2
Vi
V4

FIG 1: Interconnected Pipelines

particular because they are examples where earlier attempts
fail but the new algorithm succeeds. Readers can also con-
vince themselves why the algorithm would apply to any ar-
bitrary scenario.

Interconnected Pipelines

In this scenario [Fig 1], pipes are interconnected in a way
that flow at a point is related to flow at other points through
equations of conservation. We may want to be able to query
why the flow at a particular point changed.

Mass and Spring

In this scenario [Fig 2], the mass is connected to a spring
hanging from a horizontal rigid structure. The dynamics of
the system would be defined in terms of the gravitational
constant, force constant of the spring etc. We will consider
the case in which the gravitational constant depends on the
distance from the surface of the earth (i.e. related to x).

Compositional Modeling and Explanation

Engineering models used to describe and predict the behav-
ior of systems are typically mathematical models specified
by constraints over continuous variables. The world out-
side the system’s abstraction is captured in terms of exoge-
nous quantities and approximations. Model formulation is
the task of constructing a model from available primitives
to answer some query. Typically, engineering models are
constructed by hand by an expert in that domain from back-
ground knowledge of physics and engineering.

In the compositional modeling approach (Falkenhainer
and Forbus 1991) to model formulation, engineering mod-
els are constructed from modular pieces, called model frag-
ments. It is an attempt to relegate the expertise and intelli-
gence required on the side of the designer to a system which

R A A
%
=

MD/DtDDtx=-kx+Mg

FIG 2: Mass and Spring

can compose sophisticated models from model fragments. A
model fragment is an abstraction of some physical domain,
mechanism, structure, or other constituent of a model that
contributes constraints and partial descriptions to the over-
all behavior description of a model. Model fragments can
represent idealized components such as resistors, transistors,
logical gates, electrical junctions, and pipes, and physical
processes such as flows.

Each model fragment has a set of activation conditions
that specify when an applicable model holds in a given sim-
ulation. (e.g. the model of flow of current in an electrical
circuit can only hold when there is a voltage source and a
closed loop of conductors). Each model fragment has con-
sequences specified in the form of algebraic and logical con-
straints on the values of simulation variables. The composi-
tional modeling approach assembles a mathematical model
from a library of model fragments. Model formulation and
simulation are interleaved. During a simulation, the activa-
tion conditions of model fragments are monitored; at each
state, the system combines the equations of active model
fragments into a set called the equation model which it uses
to derive a numerical simulation. An equation model char-
acterizes a qualitative state which is a period during which
the equation model remains unchanged. Within a qualitative
state, the numeric values of quantities can change within a
certain boundary. When a quantity crosses a boundary, the
system triggers the proposal of a new equation model un-
der a new qualitative state. Boundary values are determined
by a particular set of model fragments which get activated
in that region because of their activation conditions getting
satisfied. An equation model changes when new model frag-
ments not originally present in the working model, get acti-
vated or some of the already present model fragments get
deactivated by virtue of their activation conditions getting
satisfied or not respectively. Changes in equation models
mark the transitions in qualitative states. These transitions
are kept track of by DME and used towards explanation gen-
eration.



Interpreting the data produced in simulation requires an
understanding of the knowledge used in formulating the
model, such as physical mechanisms and component struc-
tures underlying the equations. If the engineer looking at
the output is not the person who built the model, or if the
model is complex and contains hidden assumptions, then it
can be difficult for the engineer to make sense of the sim-
ulation output. DME’s explanation services are intended to
address this problem by relating predicted data to the un-
derlying modeling choices and qualitative state transitions
which are associated with the formulation of new equation
models.

CML and DME play an essential role for explanation by
providing the derivation of the equations from the model
fragments. This derivation information is exploited in sev-
eral ways by the algorithm presented in this paper for causal
explanation of events occurring in the system.

Causal Ordering and Explanation Generation

DME infers the causal ordering at run time. We use an adap-
tation of the procedure (developed by the Author) (Kumar
2000) which performs a topological sort on the PreCondi-
tion graphs over active model fragments. Here, a partial
order is created over active model fragments based on the
relation of subsumption of preconditions and defining quan-
tities of model fragments. We make use of a number of prin-
ciples of meta-physics like the principle of modularity in in-
ferring the causal edges from the topology of the graph. This
algorithm is unlike the procedure developed by Simon and
Iwasaki (Iwasaki and Simon 1986) which makes simplistic
assumptions and therefore does not scale well to complex
scenarios. The major defeating assumption that it makes is
that the causal order graphs are acyclic and that relationships
among model parameters always occur in a way such that we
never need to solve simultaneous equations. A complete de-
scription of the algorithm developed by the Author appears
in a separate research paper (Kumar 2000).

Interpretation of the Causal Order Graph - from
Quantities to Phenomena

In the causal order graph that results, each arc represents an
influence. We use this graph for generating explanations for
the behavior of a physical system. The following thoughts
and observations inspire us to come up with the algorithm
presented later:

o If there are cycles in the graph, then the system evolves
along those cycles; each quantity influencing the others
continuously.

e If aconsidered path is not a cycle, then it represents a flow
of influence from an exogenous quantity controlled by a
discrete event Lo the other quantities in that path.

e The observation that (1) exhibits a continuous flow of in-
fluence and (2) reflects a discrete flow of influence is sim-
ilar to the reproduction and mutation stages in evolution
with simulation states corresponding to generations.

e As in the case of biological theories which try to answer
the queries related to a generation of individuals by refer-

85

ences to their ancestors in previous generations and possi-
ble mutations in that generation, we try to explain obser-
vations about quantities in a simulation state by references
of the continuous phenomena to the previous simulation
states and the discrete phenomena to the present simula-
tion state. Thus, the algorithm reasons across different
simulation states.

Apart from these inspirations, the user psychology is cap-
tured in a way that translates into ideas that fit well with this.
This part is introduced at a later stage after the explanation
of the notion of Causal Colorings.

The Algorithm

The algorithm proceeds in phases each of which tries to cap-
ture some crucial notions towards producing cogent expla-
nations.

Causal Colorings

Our first task in explanation generation is to characterize
how a quantity is influenced. There are two ways possible
for anything to affect a quantity.

e The cycles with which it is involved.

e Other exogenous quantities that have reachability to this
quantity along a directed path of causal influences. A
quantity g is reachable from a quantity p if there exists
a directed path from p to g.

In what follows, the terms quantity and node are used inter-
changeably. We imagine a bag at each node in the causal
order graph that is eventually going to contain information
about how that quantity is influenced. At this point, let us
define a color to be a characteristic of an influence of a con-
tinuous or a discrete happening. There are colors associated
with each cycle in the graph as well as with each exogenous
quantity. We assume that each color is distinct.

In the first step of this phase of the algorithm, all the ex-
ogenous quantities add their colors to the bags of all the
nodes that are reachable along directed edges from that
quantity. In the second step, whenever a cycle is detected,
each member of that cycle gets a color characterizing that
cycle in its bag. Cycles can be detlected easily as a side-
effect of finding reachability graphs. At the end of it all,
each quantity ends up having a bag of colors which charac-
terize what phenomena affect its changes.

Causal Frontiers and Incremental Explanation -
Capturing the Psychology of the User

This is the part of the algorithm that tries to capture the psy-
chology of the user in the sense that when a user queries
about what caused the changes in a quantity at a given sim-
ulation state, he does not expect mere equation tracing. For
example, previous attempts (Gruber and Gautier 1993) tried
to report each of its causal parents and tried to skip a parent if
it had just one other parent. This is too naive an idea because
it fails in very simple settings such as the one described in
the interconnected pipelines scenario [Fig 1]. If nothing else
has changed except for Flow and the user queries about the
cause for the change in vy, he is made to go through all the



86

potentially many intermediate flow points vz, v .. etc. This
can be very misleading and confusing to the user. This is
precisely the drawback of working with quantities that are
used in equations, rather than trying to infer something about
the physical phenomena that the designer is trying to encode
through those equations. The following idea based on the
assignment of colors to each bag obtained after the Causal
Coloring phase, captures these expectations of the user.

e set S = {Parents of query node}

e Until there is no change to S do
for tin S such that all parents of t are either in S or are of
the same colour bag as that of t, set S =8 - {t} U Parents(t)

e Maintain a list so that once a node is considered and
deleted, we rule out the possibility of adding it again. This
is just to avoid infinite loops.

The above procedure defines a causal frontier for each
query; which is the set S which results from the above al-
gorithm. Finally, the explanation is attributed to some sim-
ulation state (which will be decided later) of all the nodes in
this causal frontier.

There is a psychological reason behind why the user will
expect explanations attributed to the causal frontier that gets
defined as above - the reason is that the user thinks in terms
of what phenomena may have caused the change; nol in
terms of what equations might have affected the quantity,
Also, if the user expects incremental explanations in a step
by step fashion, then he would expect an explanation or a
reference to the set of phenomena that got added or deleted
from the set which he presently imagines to be in the work-
ing model. The colors rightly capture the different phe-
nomena that cause influence flows and the causal frontier
just described, rightly captures the psychology of incremen-
tal explanations. The property that we are ensuring during
deletion of a node from the set S is that the set of phenom-
ena remains the same in the working model; but at the same
time, we are maximizing the depth of the reference. It is the
trade-off between the dual goals of incremental explanation
and removing irrelevance.

Causal Stages - Deciding Simulation States

As was explained earlier, as to why we would like to asso-
ciate continuous changes with previous simulation states and
discrete changes with the current simulation state, we now
find for each quantity in the causal frontier, the correspond-
ing cycles and paths involving itself and the query quan-
tity; and generate the appropriate references (text strings) for
each such cycle or path. Any straightforward text generation
procedure to produce an interface similar to the one shown
in the examples may be used. The assumption is that the
equations associated with edges in the graph are kept track
of, so that we could retrieve that information during actual
explanation text outpul.

Behavior on Running Examples

In the interconnected pipelines scenario, earlier attempts 10
query for what changed flow at v4 ? caused explanations
attributed o v3 vs..etc and then this whole chain of poten-
tially many such points had to be traversed; even though the

Bag(x) = [K, M, <y.x>, <x,y.g>, <x.g>]
Bag(y) = (K, M, <y.x>, <x.y.g>|
Bag(g) = [<x.y,g>, <x.g>|
Bag(K) = {K}
Bag(M) = (M}

y =D/Dt D/DL

FIG 3: Causal Order Graph and Bags for
Mass and Spring Scenario

actual cause might have been just the change in Flow. It is
easy to verify that this algorithm identifies that easily. The
causal order graph for this scenario is shown in [Fig 1]. Ini-
tially, the parents of v4 are vy and Flow. However, v3 can
be removed from S and replaced by v2 because of vy having
the same color bag as that of v; ({Flow, EFlow}) and the
other parent of vz, namely Flow, already being in S. Sim-
ilarly, vo can be eliminated and replaced by v;. However,
vy cannot be eliminated because its parent £ Flow is neither
already in S nor has the same color bag as v; (color bag of
EFlow = {EFlow}). Therefore, the causal frontier for vy
would consist of Flow and v,. An intermediate explanation
point directly at v; is produced for further querying because
it is only here that there is a possibility of EFlow having
caused the change too. An extension of the algorithm de-
scribed under a later section, introduces the idea of Ranking
and Significant Changes with which we can directly attribute
the change in value of vy to Flow if we know that EFlow has
not changed over the concerned time interval.

The corresponding bag assignments for the spring and
mass scenario is shown in [Fig 3]. Notice here that we have
ignored the dependence of g on R, (radius of the earth) and
go. Itis trivial and inconsequential to add them in. The read-
ers can verify the relevance of the explanations produced
upon querying a simulation value of a quantity. For ex-
ample, the references combined with a few straightforward
NLP techniques might produce something like:

Q: What changed the value of the length of the spring ??

A: In the previous state it had a value [] and its second
derivative had a value [] which affected it in this state be-
cause of the fact that it is the second derivative.

[In The Previous State]

Q: What changed the value of the second derivative 7?

A: In the state before, x had a value [] which affected it
through the equations [] along the evolutionary cycle [].
Also, in the state before, g had a value [] which affected
x through the equations [] along the evolutionary cycle [].
In this state however, it was also affected by the new values
of K = [] mutating it through the equations [] and M = []



mutating it through the equations [].

It is possible for the system to use more domain specific
strings called pretty strings (Gruber and Gautier 1993), in-
stead of the words evolutionary and mutating when these are
provided by the user. This information can be incorporated
at different levels of modularity during model composition.

Extensions

Ranking and Significant Changes An important exten-
sion of the algorithm is that of ranking the explanations pro-
duced in terms of their importance. For example, although
many quantities might have a causal influence on a given
quantity, it is not wise to treat these causal influences stat-
ically. We might be interested in giving references to the
quantities that have varied significantly over the period of in-
terest as our primary explanation and giving the other static
references as an aside to the user. For example, in Q2, where
K and M usually do not vary, the references to them are
produced last or perhaps only upon user request. This ap-
proach requires the definitions for specifying quantitatively,
how much a quantity has varied in its recent history. Also,
analysis of how much a small variation in one quantity af-
fects the other, should be made. A perturbation analysis can
be done over the quantities; at least approximately, from the
equations provided.

Incorporation of this feature in the algorithm would be
reflected as an ordering on the nodes of the causal frontier
based on a measure of the variation of quantities depend-
ing upon their simulation values across different simulation
states. The metric of variation may be something similar
to the adjustment of process priorities in operating systems
(solaris) where we give more importance to variations in the
near past. The system can be given parameters for defining
thresholds towards ignoring quantities that rarely change.
For example, we may not want any references to K or M
if we know that they are not going to change throughout the
simulation. Typically, such quantities fall under the through-
out conditions specified in the definition of scenarios using
CML. However, explicit requests for actual equation trac-
ing can also be made. Sometimes, it may be difficult to get
a total ordering on the quantities in the causal frontier. In
practice however, a partial order is good enough for signifi-
cantly improving the quality of explanations produced.

Incremental Version Since causal order graphs are dy-
namic; in the sense that new quantities and dependencies
may get established, depending upon new model fragments
getting activated, we feel the necessity of an incremental
algorithm. An incremental step upon the addition of extra
nodes or edges in the graph can be taken towards develop-
ing an incremental version of the algorithm that copes with
the requirements. If the new node is an exogenous quantity,
we just construct its reachability graph and add its color to
the bag of colors at all those nodes. If it is not an exoge-
nous quantity, then we first cater to its incoming edges by
letting its bag of colors to be the union of all the colors of
its in-neighbors and then we construct its reachability graph
and add to all reachable nodes, all the colors in its bag. If
the addition of the node creates cycles, which we can de-

87

tect in computation of its reachability graph, we add a cycle
characteristic color to each member of the cycle. Creation of
multiple cycles is also detected in the same way. Incremen-
tal addition of edges have a very similar treatment excepl
that no new colors by virtue of exogenous nodes enter the
system. Similarly, deletion of edges and nodes can be done
by imagining the notion of anti-colors which cancel out the
presence of a particular color when added to a bag that con-
tains the color; and which have no effect on a bag that does
not contain the color.

Summary and Analysis

The use of compositional modeling and causal ordering
techniques is responsible for several desired properties of
the explanation approach we have presented.

First, it is possible to generate causal interpretations of
models that are designed for engineering analysis and sim-
ulation, rather than being crafted specially for explanation.
Because explanation is integrated with compositional mod-
eling, explanations of the causes of changes in qualitative
state can be determined by an analysis of the logical pre-
conditions of model fragments that are activated and deacti-
vated. The set of conditions to report need not be anticipated
in advance, and it can change as the model fragment library
evolves.

Second, the explanations can be presented in a suitable
format for human consumption. Ultimately, this is the fea-
ture that is the most required and crucial. This is ensured
by the algorithm described in this paper which makes use
of the formalisms that CML provides in inferring the active
phenomena that the designer is attempting to model. The
approach taken in doing this independently of the domain,
is to characterize phenomena as falling under templates of
evolution and mutation and inferring them from the causal
order graph (which is itself inferred at run time from the Pre-
Condition graph over active model fragments; using general
principles of meta-physics (Kumar 2000)). This provides
great advantages in generating explanations of device behav-
ior which are cogent enough to the user who knows nothing
about the design issues or the internal parameters and quan-
tities the designer used in building the equation model.

The explanation module can reason across different sim-
ulation states and relate present behavior of the system to its
past, allowing the user to query and know about the com-
plete history of the system and understand why it followed
a particular course of behavior. Since explanation is in the
form of natural language and not graphs of numeric vari-
ables, the user can be provided with a causal interpretation
of the events occurring in the system. None of the explana-
tion code knows anything about flows, or junctions. It knows
only about the structure of model fragments-activation con-
ditions, behavior constraints, quantity variables, and some
algorithms for extracting knowledge captured in these model
fragments towards text generation for explanation of system
behavior. Furthermore, the model builder may add textual
annotations incrementally which the system would compose
to more informative labels. This capability is possible be-
cause of the modularity and compositionality enabled by the
compositional modeling.



88

Related Work

Much of the work in explanation has concentrated on the
generation of high-quality presentations in natural language
based on discourse planning and user modeling ((Feiner and
McKeown 1990), (Forbus 1984), (Suthers, Woolf and Cor-
nell 1992)). There have been various efforts in the past to-
wards the task of giving a causal interpretation to device
behavior ((de Kleer and Brown 1986), (Iwasaki and Simon
1986), (Top and Akkermans 1991)). Some of the approaches
include context sensitive causality (Lee, Compton and Jan-
son 1992), bond graphs (Top and Akkermans 1991) etc.
These methods differ in the information they require and the
class of models they accept. The algorithm described in this
paper can be coupled with any of these techniques; it is not
tailored specifically for the causal order graphs produced in
DME alone.

In QUALEX (Douglas and Liu 1989), a causal graph is
computed from a set of confluences (de Kleer and Brown
1984), and the graph is interpreted by the propagation of
qualitative perturbations, However, the confluence equa-
tions can only predict the sign of the first derivative and do
not scale well with dynamically changing models. Although
in general, Qualitative models do not scale well, they have
been used to generate explanations in tutoring and training
systems (White and Frederiksen 1990). DME uses QSIM
(Kuipers 1986) for simulation of Qualitative models.

SIMGEN ((Falkenhainer and Forbus 1992), (Falken-
hainer and Forbus 1990)) employs compositional modeling
approach 1o build parallel qualitative and quantitative model
libraries, analyze the possible qualitative state transitions for
a given scenario description, and compile out an efficient
numeric simulator. While DME determines model fragment
activation and assembles equation models at run time, SIM-
GEN precomputes and stores the information relating the
quantitative model and the qualitative model. SIMGEN rea-
sons only across single-step influences and does not summa-
rize chains of influences.

The algorithm described in this paper, has been imple-
mented (by the Author) at the Knowledge Systems Labora-
tory, Stanford University and applied in a number of sce-
narios involving physical systems and devices (much more
complicated than those illustrated in this paper), and suc-
cessful explanations for system behavior produced.

Acknowledgements

The DME (Iwasaki and Low 1993) system is the work
of multiple researchers, including Richard Fikes, Yumi
Iwasaki, James Rice, Adam Farquhar and Tom Gruber; who
are (were) the key members of the How Things Work Project
at the Knowledge Systems Laboratory, Stanford University.
We also thank Richard Fikes and Sheila Mcllraith for their
guiding comments on the paper.

References

[1] Crawford, J.; Farquhar, A.; and Kuipers, B. 1990. QPC:
A Compiler from Physical Models into Qualitative Differ-
ential Equations. AAAI-91, pp. 365-371.

[2] de Kleer, J.; and Brown, J. S. 1984. A Qualitative Physics

Based on Confluences. Artificial Intelligence, 24:7-83.

[3] de Kleer, J.; and Brown, J. S. 1986. Theories of Causal
Ordering. Artificial Intelligence, 29(1):33-62.

[4] Douglas, S. A.; and Liu, Y. 1989. Generating Causal Ex-
planation from a Cardio-vascular Simulation. IJCAI-89, pp.
489-494.

[5] Falkenhainer, B.; and Forbus, K. 1992. Self-explanatory
Simulations: Scaling up to Large Models. AAAI-92, pp.
685-690.

[6] Falkenhainer, B.; and Forbus, K. 1991. Compositional
Modeling: Finding the Right Model for the Job. Artificial
Intelligence, 51:95-143,

(7] Feiner, S. K.; and McKeown, K. R. 1990. Coordinating
Text and Graphics in Explanation Generation. AAAI-90, pp.
442-449.

[8] Forbus, K. 1984. Qualitative Process Theory. Artificial
Intelligence, 24:85-168.

[9] Falkenhainer, B.; and Forbus, K. 1990. Self-explanatory
Simulations: An Integration of Qualitative and Quantitative
Knowledge. AAAI-90, pp. 380-387.

[10] Gruber, T. R.; and Gautier, P. O. 1993. Machine-
generated Explanations of Engineering Models: A Compo-
sitional Modeling Approach. IJCAI-93.

[11] Iwasaki, Y.; and Low, C. M. 1993. Model Generation
and Simulation of Device Behavior with Continuous and
Discrete Changes. Intelligent Systems Engineering, 1(2).
[12] Iwasaki, Y.; and Simon, H. 1986. Causality in Device
Behavior. Artificial Intelligence, 29:3-32.

[13] Keuneke, A. M.; and Tanner, M. C. 1991. Explanations
in Knowledge Systems: The Roles of the Task Structure and
Domain Functional Models. IEEE Expert, 6(3):50-56.

[14] Kuipers, B, 1986. Qualitative Simulation. Artificial In-
telligence, 29:289-388.

[15] Lee, M.; Compton, P.; and Jansen, B. 1992. Modeling
with Context-Dependent Causality. In R. Mizoguchi, Ed.,
Proceedings of the Second Japan Knowledge Acquisition for
Knowledge-Based Systems Workshop, pp. 357-370.

[16] Paris, C. 1987. The Use of Explicit User Models in Text
Generation: Tailoring to a User’s Level of Expertise. PhD
Thesis, Columbia University.

[17] Suthers, D.; Woolf, B.; and Cornell, M. 1992. Steps
from Explanation Planning to Model Construction Dia-
logues. AAAI-92, pp. 24-30.

[18] Top, J.; and Akkermans, H. 1991. Computational and
Physical Causality. [JCAI-91, pp. 1171-1176.

[19] White, B.; and Frederiksen, J. 1990. Causal Model Pro-
gressions as a Foundation for Intelligent Learning. Artificial
Intelligence, 42(1):99-1550.

[20] Kumar, T. K. S. 2000. A Compositional Approach to
Causality. Proceedings of the Symposium on Abstraction,
Reformulation and Abstraction, 2000. To appear in Lecture
Notes in Artificial Intelligence.




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

