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Abstract

Automating the generation of qualitative models at a level
that is tailored to support a particular task is crucial to th e
deployment of model-based systems technologies i n
practical applications, because reusability of models is o f
vital importance . If this task cannot be solved, models in a
library will either be ineffective, because they are too coarse
for solving a particular problem, or inefficient, because the y
are too fine-grained . The key question to be answered is ,
"what are the distinctions in the domains of the syste m
variables that are both necessary and sufficient to achieve a
particular goal in a certain context and under give n
conditions?" . In our approach, the goal is defined by a set o f
target partitions of the domains of selected variables (e .g .
output variables), the context is given by the structure of th e
modeled system, and the conditions are represented by a se t
of initial variables and their possible distinctions (e.g .
possible observations) . The task includes problems such a s
determining the appropriate qualitative values of variables i n
order to enable prediction at the desired level o r
discrimination for diagnosis, deciding whether or no t
changes can be modeled as discontinuous ones, and
determining when a deviation of a parameter can b e
considered significant . We have analyzed and formalized th e
task for relational behavior models, implemented a n
(incomplete) algorithm, and carried out first experiments .
The paper first elaborates on previous theoretica l
foundations, defining the goal and the specification o f
algorithmic solutions . We then outline the implemented
algorithm and present and discuss some experimental results
of applying this prototype . We conclude with some open
problems and discuss alternative approaches .

Introduction

Automated modeling, model abstraction and mode l
composition has been studied in the area of qualitativ e
modeling for quite some time (e .g . [Addanki et al . 91] ,
[Iwasaki 92], [Falkenhainer Forbus 91], or [Struss 92]) .
Very often, the motivation for this work was mainl y
academic, and there are hardly any tools that are designed
and implemented to serve serious applications . With

model-based systems technology intruding industrial
applications, the creation of appropriate models gain s
practical importance, and strong support to this task o r
automating it may well be decisive to the success of model -
based systems .
For instance, in our work on applying model-base d
diagnosis, prediction, and fault analysis to industria l
problems (prominently car subsystems, see [Sachenbache r
et al . 00]), we are thrown back to very fundamental task s
and theoretical problems the closer we get to the stage o f
actual use of the technology in industry .
Where do the models come from? is the most frequently
asked question, because most of our solutions are based o n
qualitative models which look quite different from th e
existing (differential) equation models used in engineering ,
e .g . for numerical simulation . Can't we use these models or,
at least, start from them? Our answer is, in principle, yes ,
because qualitative models are abstractions of th e
equations . But, "in principle" is not enough for convincin g
management - it has to be for real, well-supported, an d
preferably automated .
What is the appropriate level of a qualitative model? is a
second question, which we often ask ourselves, an d
experience says "it depends" . It depends on what you nee d
the model for, and what problem you want to solve . This i s
anything but surprising, but it is very critical : Much of the
feasibility and economic attractiveness of model-base d
solutions stems from the extensive re-use of mode l
fragments taken from a domain-specific library acros s
different systems and tasks . The contradiction between the
genericity of models (to be re-usable) and their task -
dependent specificity (to be effective and efficient) can be
fatal for the industrial success of model-based systems. If
we use too coarse-grained models (e .g . with signs only), a
diagnostic system may be unable to detect certain
symptoms. On the other hand, if the model is too fine -
grained, it may be inefficient w.r .t . time and space
requirements . For instance, the real-time performance o f
our on-board diagnosis system described in [Sachenbache r
et al . 00] crucially depends on the qualitative abstraction o f
the models and the observed signals . Consequently, unles s
we find ways to automatically transform a generic mode l
from a library into a model tailored to a particular task, the
applicability of model-based techniques will be limited .
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A Tiny Exampl e

In order to illustrate the problem and the key ideas of ou r
work, we introduce a simple example . The system
comprises a reservoir (which is assumed to be never empt y
and not shown in the figure), filled with liquid with
pressure T, .p. It is connected via a valve with maximal
diameter Amax to an outlet pipe that fills a container with
bottom area B and vertical walls (see Figure 1) . The task i s
to use a model in order to design the control scheme that
opens and closes the valve in order to fill the container u p
to a given height h with a precision of Ah > O .
The example does not appear to be an industrial applicatio n
at first glance . However, consider it to be a simplification
of a controlled injector (i .e . a valve) that is to supply a
certain amount of diesel fuel to the combustion chamber
(i .e. a container) of a car engine . Below h, the fuel mixture
will be too lean, above Ah + h, there will be too much fue l
in the cylinder to burn it completely, a situation whic h
should be avoided in any case .

Figure 1: Filling a container

All the components in the system are fairly standard, an d
we expect to find their behavior model fragments in a
library in order to compose a model of the example system .
For instance, the valve model will have to associate the
obvious equatio n

T, .q = A . sgn(T, .p - T„,•p) (I Tr ') - T, .p j) 0 5

with the states open and closed of the valve . But what abou t
the transitions between the states? Do we have to explicitl y
model the opening and closing state, during which som e
amount of liquid is pouring into the container? Or can w e
model the transition from A = Amax to A = 0 as a
discontinuous change, i .e . neglect the duration of the valve
closing operation? The answer, of course, depends on th e
targeted precision Ah and on the characteristics of the entir e
configuration, namely T, .p, T, .p, Amax , and B . Perhaps, th e
container is so large that the increase of the height during
closing of the valve is negligible . Perhaps, the tim e
required for closing the valve is quite significant, becaus e
the required precision Al is tight and/or because th e
pressure difference T, .p - T,.p is high . Given the contextua l
conditions of the task, we are able to compute a boundary
for durations of the opening that are insignificant w .r.t . the
required precision Ah . Based on the result, we can decid e
whether or not it is appropriate to approximate the valve
model by one with discontinuous transitions . Note that the
result will be influenced by another factor : the precision of

the inputs to the calculation . For instance, if we just know
that the diameter is between zero and Amax during openin g
of the valve, we obtain a boundary on the duration which i s
smaller than the one calculated for an opening that i s
described as linear within a certain tolerance . In the same
way, the precision of the pressure values influences the
distinctions on the duration . Finally, note that the decision
about the appropriate distinctions in the valve model affect s
other component models as well . If the opening has to be
modeled in a detailed way, then this requires the pip e
model and the container model to include certain
distinctions of the flow value and of the volume and th e
level, respectively .
Let us summarize the key insights from this example tha t
form the starting point for our work :

• The distinctions to be made within a (component )
model (w .r .t . system variables, time, and states) depen d
on the task, the context, and conditions on the inputs .

• The task was characterized by some target distinctions
to be made (in our case, Ah) .

• The context is given by the structure of the system (e .g.
a second valve and inlet would influence the model of
the first one) .

• The conditions appear as certain initial distinction s
that are possible (reflecting, for instance, how precisel y
certain variables can be measured).

• Resulting from this are certain induced distinctions on
other variables (in our example, whether the finit e
duration of the opening has to be distinguished from a
zero duration) .

The thrust of the work reported here is to turn thes e
intuitions into a formal theory and algorithms in order t o
automate the task of goal-dependent qualitative abstraction .
Although our results are still preliminary, they extend ,
refine, and partially correct the theoretical foundation s
presented in [Struss Sachenbacher 99], including now a
prototype system and results carried out based on it s
implementation .
The following section summarizes the formal foundation s
and extends the notion in [Struss Sachenbacher 99] by
including the role of initial distinctions and by analyzing
the impact of different purposes of the model (consistenc y
check vs . prediction), the uniqueness of solutions, and
completeness of proposed algorithms . Then we describ e
our current implementation (of an approximatio n
algorithm) and present experimental results on the
introductory example and the pedal position senso r
example that was outlined in [Struss Sachenbacher 99] .
Finally, we discuss possible modifications and extension s
of the current algorithms as well as alternative approaches .

Foundations

Basic Definitions and Concepts

In this section, we present the theoretical foundations of ou r
work, trying to turn the intuitive ideas extracted from the
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example into formal concepts . The theory we presented i n
[Struss Sachenbacher 99] will be summarized as briefly a s
possible . We will indicate when we omit the repetition of a
formal definition from that paper, and we try to highligh t
the extensions and modifications .

Behavior Models . Our theory is based on relational
models, i .e. the behavior of a component or system, S, i s
given by a relatio n

Rs c DOM(_v5) ,

where vs = v, x v2 x . . . x v is the vector of all parameters
and variables in the system . This allows us to treat
symbolic values, discrete states, behavior modes, and non -
deterministic models rather than only real-valued functions
which are subsumed as a special case . The relation Rs can
be given implicitly as the composition of severa l
component models, as in our example .

Domains . We assume that there exists a base domain
DOM o (v ;) for each variable v ; , from which the desired task -
specific domains can be obtained by means of abstraction ,
and a base mode l

Rso c DOM o (v_ s) = DOM 0(v,) x . . . x DOM0(v „ ) .

Distinction . This central concept of the problem is defined
as a partition of the base domain, i .e . a set of non-empty
disjoint subset s

II ; ={P k } c P(DOM 0 (v ;) )

that together cover the entire domain (P(X) is the power se t
of X) . Each P . k is a qualitative value which represents a se t
of values that are not distinguished from each other .

Target distinctions . As pointed out in the discussion of the
introductory example, the target distinctions characterize
the goal of a particular task to be performed based on a
model and are represented as a set of target partition s

II„rg ; ={Ptrg ;k } cP(DOM o (v,) )

If we are not interested in any distinctions of a variable vi ,
then we can express this by the trivial partitio n

H arg ; ={DOM 0 (v)} .

Initial Distinctions . Analogously, the conditions of the
model-based task are expressed as a set of initial partition s

Hobs,; . They represent what will be the granularity of input s
to the model, e.g . observations or partially described
hypothetical situations . All the other variables receive the
trivial partition as their initial one .

Qualitative Domain Abstraction . Finding qualitative
values for all variables which can then replace the original ,
fine-grained domain is the goal of our enterprise . Given a
set of qualitative values (i .e . a partition), each value of the
fine grained domain can be mapped to its respective

1 We changed terminology compared to [Struss Sachenbacher 99] ,
because we felt that the term "primary partitions" used in this paper i s
misleading as it suggests they would be the starting point of the task .

qualitative value . We call such a mappin g

ti : DOM o (v ;) -4 DOM a(v; ) c P(DOM 0(v ;) )

a domain abstraction. Dependent on the kind of partitio n
that induces a domain abstraction, we will give 't an inde x
"targ" for target distinctions or "obs" for initial distinctions .
There is a dualism between the domain partitions an d
qualitative abstractions, because each domain abstractio n
that produces mutually exclusive values induces a partition ,
which is given by

= 't(DOMo(v;)) .

We can apply the concepts of refinement of a partition (i .e .
a partition that makes further distinctions compared to th e
elements of another partition) and merge of partitions (i .e .
the maximal partition which is a refinement of both) to
domain abstractions, as well . For a rigorous treatment and
definitions of these operations, see [Struss Sachenbache r
99] .
In this formalism, we can define our goal precisely .
Whatever model we use, the only thing that matters is th e
information it can infer about the target partitions from th e
possible initial partitions . We can express this interest by
abstracting each result of inference to the level of targe t
partitions by the respective domain abstraction . Let

Ttarg = (ttarg,l , 'targ,2' "' 'Lta7rg.n) :

	

i~--77DOMo (_s ) -4 FL, := Tjitarg,l x ilL,,rg,2 x . . . x Ih rg.n .

If we supply the base model, Rs o , with some information ,
i .e . some restrictions on system variables expressed in
terms of initial partitions ,

Robs C l iob, ' i lobs,l X 7 llobs,2 X "' X TTl l obs,n >

then we are interested i n
2

'ttarg(R ob., n Rs.)

and our goal is to find qualitative domain abstractions tha t
do not change this result . Hence, we obtain the followin g
definition of our goal concept :

Definition (Distinguishing Qualitative Domain
Abstraction )

Let Rs o c DOMo(vs) be the base model of a system S, an d

Iltarg and slobs the target partitions and initial partitions ,
respectively . A qualitative domain abstractio n

t : DOM o (_v s) - P ( DOMo(ys) )

is distinguishing w .r .t. {II arg , IIob,} iff it is a refinement o f
'c g and

V Robs C nob, :

' g ('t ( Robs) n ti(Rs ,o)) = Ttarg( Robs n Rs .o) . (1 )

2 To simplify the notation, here and in the following we implicitly ma p
the initial partitions to DOM 0 whenever necessary, i .e. we identify Robs c
IIobs with Robs = ti l obs (Robs) . Furthermore, we implicitly extend eac h
mapping, ti, defined on some set, S, to the power set P(S) by defining VX
cS 'r(X) :=u('r(x)IxE X) .
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A distinguishing abstraction, T, is maximal iff there exist s
no other distinguishing abstraction, t', that is a refinemen t
of T .

Condition (1) requires that the abstraction preserve s
information about the tuples of target partitions . However ,
a weaker and often sufficient goal for some applications i s
to postulate that for each single target variable, the
possible distinctions are maintained under the abstraction .
If proj(v,, v2 , . . ., vk) denotes projection on a set of variable s
v,, v 2 , . . .,

vk,,

then this can be expressed a s

V Robs c nobs VV tazg
proj(v ,,g) (ti, , g ('r ( R obs) n 'r(Rs. o))) =

proj ( v ,. g ) (t ,g (Robs n Rs,o)) . (1' )

The Scope of Rob s

In contrast to the corresponding definition in [Strus s
Sachenbacher 99], we will capture the set of initial
restrictions, i .e . the starting point of the model-based
computation, and their impact on the resulting qualitative
abstractions in a more rigorous and appropriate way. In that
paper, we allowed arbitrary initial restrictions R obs c
DOM o (v s ), called "Re%," . But in practice, the initia l
restrictions are limited in basically two ways :
• only a subset of the variables form a potential input to

the model (e .g . because only certain variables are
observable) ,

• the input values usually have limited precision which
can be coarser than DOM, . This may be due to the
precision of a sensor or a partial specification of som e
input to the model (e .g . when analyzing a circuit' s
behavior "with a voltage source of more than 6V") .

Uniqueness Properties of Maximal Distinguishin g
Abstractions
It turns out that without further restrictions on Rob,, maximal
distinguishing abstractions are not uniquely defined .
Consider a very simple example that consists of two
equality constraint s

x=y=z .

Let us assume that for all variables, the base domain is the
set of integers, that x and z are observable at thi s
granularity, and that the only target distinction is t o
determine the sign of y :

fI,

	

= { {( -oo, 0)}, {0}, {(0, oo )} } .

For unique initial distinctions (i .e . there is always a value
given for both x and z), there are obviously two maximal
distinguishing abstractions, given by the partition s

Ihx = {{(-°°,0)}, {0}, {(0, oo)}} , Hti,y= {{(-oo, oo)} }

and

= {{(-~, .0)}} ,fI'ti,y= {{(-09,0)}, {0}, {(C, 00)}} ,

which simply reflects the fact that one of x and z is not

needed for determining the target distinction . In contrast, if
the initial restrictions of x and y are made independently o f
each other, this includes situations in which one of the
variables is not restricted, leading to a unique
distinguishing abstractio n

fit),

	

{ {( - oo, 0)}, {0}, {(0, 00)11 ,
H'ti,y = 1R- co, 0)1, 101, t (o, oo) } } .

To reflect this difference w .r .t . restrictions on Robs, we
further refine our definition . A distinguishing abstraction T
is called maximal for independent initial restrictions, i f
R ob, in (1), (1') is of the form

	

7
Robs = Robs,l X Robs.z x . . . X Robs. . c Thobs •

The case of independent initial restrictions captures a ver y
common case of model-based reasoning, namely t o
perform prediction (or consistency checking) after
restricting a number of variables to a certain value (set )
independently of each other. This is the case, for instance ,
if the input is the result of measuring certain system
variables . The only important exception we can think of is
the case when time is included as a variable : if the input is
a time-stamped set of variable values, one has to use th e
general definition .
A still further specialization is obtained, when there ar e
unique initial distinctions, i .e . each Robs is a tuple of singl e
qualitative

7

values :

Robs e nobsj obs

An example is on-board diagnosis, where at each instanc e
in time, unique values (at the level of H obs ) are present for a
fixed set of variables . In contrast, the general case of
independent initial distinctions captures the situation where
there is a set of variables that are observable, but we are
looking for an abstraction that allows to draw the stronges t
conclusions also if only a subset of the variables hav e
actually been measured (the non-measured ones receive no
restriction) .

Different Tasks : Consistency Check vs . Prediction
The definition of distinguishing abstractions nicel y
expresses that we are looking for qualitative abstraction s
that do not reduce the information about the targe t
variables . In [Struss Sachenbacher 99], we have shown tha t
sometimes, every abstraction entails a loss, and one is stuc k
with the base domain . We discuss one fundamental reason
for this .
Condition (1) includes the case where Robs is inconsistent
with the model, R so . This could well be a situation in
practice; e.g . in model-based diagnosis or in design
verification, we are interested in determining whether o r
not a set of observations is in conflict with a behavio r
mod: :? . In this case ,

Rob ) Rso = 0
holds, ,d condition (1) implies

	

/ ~
ti(Robs) n 'r(Rs,o) = 0

	

Robs n Rs .0 = 0 .
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Note that this imposes a condition on r which i s
independent of the target partitions and reflects only Rs,o
and the initial distinctions, represented by Robs . If the latte r
have the granularity of the base domain, the very "shape "
of Rso may exclude an abstraction, because the abov e
implie s

Yoe Rs,o

	

T(Yo)

	

't(Rs,o )

and for any v_,E R s,o with

t(y' o) = ti(yo)

we obtain

you Rs .o

	

't (yo) C 't(R s,o)
f=> (y'0) C'r(Rs,o )
G=> y'"E Rs,o ,

This means all values that are mapped onto't(yo ) are in Rs,o,
and since ti(v_o ) contains exactly these values, we have

you RS 0

	

ti(y o) c R s,o .

Hence, a distinguishing abstraction can never "cross th e
boundaries" of Rso . Since

't(yo) ='t(v,) x . . . x 't(vo) E R s,o ,

't is limited by the existence of "rectangular building
blocks" within R so . Figure 2 provides an abstract
illustration : Rso allows an abstraction in case a), but not i n
case b) .

Figure 2: Different R s,o with different potential for
abstraction

In other applications, the model is not intended to be use d
for consistency check with Rso , but only to compute
consequences of the initial restrictions which are assume d
to be consistent with the model . Under this assumption ,
condition (1) can be weakened as follow s

V Robs C Hobs

Rob, n Rs,o � 0

	

't wrg ( 't(Rob,) n 't(Rs .o)) =

't ,a,g(Rob, n Rs .o ) . (2 )

This means that', based on initial values that are consisten t
with the model, manages to predict the target distinction s
properly, but it is also allowed to map certain inconsisten t
tuples to consistent ones . However, also in this case, w e
will sometimes not be able to move away from the rea l
numbers as a base domain, e .g . for a simple multiplication
constraint on real numbers, whereas we obtained a nic e
abstraction when starting with a discretized domain (see

[Struss Sachenbacher 99]) . This highlights the importanc e
of a definition and algorithms that reflect initial partition s
(e .g . granularity of observations), because they introduce a
discretization . Also discrete states and operating mode s
may induce partitions on continuous variables, as will b e
illustrated later by the examples .

Characterizing Distinguishing Domai n
Abstractions

While (2) defines the desired property of the abstractions ,
i .e . our goal, we need some constructive characterization a s
a starting point for designing algorithms to compute them .
Exploiting the duality between domain abstractions and
domain partitions pointed out in the previous section, w e
will characterize 'c by constructing the appropriate partitio n
of the observable domains .
To simplify the presentation, we restrict ourselves in th e
following to the special situation where the observed (o r
otherwise given) initial restrictions have a granularity equa l
to the base domain DOM 0 i .e . 11o, is the identical mapping .
We will return to the more general case later .
The question can be stated as "Which values can be joined
in a partition (i .e . abstracted to the same qualitative valu e
under r) without violating (2)?" . The intuitive answer ,
based on (2) is : If two values vi „ vi 2 , of a variable vi , when
combined with at least one consistent initial restriction fo r
other variables, are consistent with different sets of targe t
values, then we cannot join them without losing
information on the level of the target distinctions .
Otherwise, we can, because it is then guaranteed that there
exists no initial restriction that leads to different prediction s
on the level of target distinctions if we drop the distinctio n
between and vi Z . Formally, we can introduce an
equivalence relation for v i , vi z E proji (R S o) by :

:t
V R"bs,-; =

	

x . . . x

	

x Robs, -+i . x . . . x Rob,,0 C Rs o :

'r tor, (select (vi = v;,1) (Robs, ; n Rs,o)) =

ti ,0« (select (v =
v ;.2 ) (Robs,-; n Rs,o)) (3 )

Here, select(vi = vi ,)(R) is the restriction of a relation R t o
the set of tuples that satisfy the condition If, = vi , .

Definition (Induced Partitions)
Let =i be the equivalence relation on DOM o (vi ) defined b y
(3) . The sets of partitions fI owJ for DOMo (v) given by the
equivalence classes of the relations = i ,

H,oa,i := DOM o (vi ) j ,

are called the partitions induced by the target distinctions .

This defines a distinguishing domain abstraction 'c ,nd :

Lemma (Characterization of distinguishing domai n
abstractions )
The induced partitio n

II ;o , :=xII

V2 DOMo(_v) V2

a)
R s,o

b )

v,



defines a distinguishing qualitative abstraction ' t, nd w .r .t .
Tl i ,arg .

Conjecture (Maximality of the induced partition)
The induced partition is a maximal distinguishing
qualitative abstraction .

Analogously, we obtain a characterization of distinguishin g
qualitative abstractions under the weaker condition (1' )
which states that determining the distinctions for eac h
single target variable suffices :

v;,, =; v;.2 :<=>

V R Oba .; = Rnb,,, x . . . x Rob,.;-, x Rnb .; ~~ . x . . . x R.,. c R s, a
V v :
Proj( v ,) 'z,rg (select (vJ = v ; ., ) (Raba., n Rd) =
proj(v,) ti wrg (select (v = v

;2)
(Rob,

.;

	

R s .a)) (3' )

Approximations to Induced Partitions

Conditions (3) and (3') formulate that a distinction between
values of vi is made if and only if this leads to a target
distinction, potentially in conjunction with othe r
observations .
From a computational point of view, this is problematic ,
since it requires to consider mutual combinations of values ,
plus all the possible (combinations of) observations, to
determine if they have to be distinguished .
In this section, we develop a characterization that avoids
these difficulties by starting from the target distinction s
instead . As we will see, this characterization is mor e
amenable to computation, but at the price that the resultin g
partitioning represents only a subset of the necessary
distinctions .

Definition (Approximation of Induced Partitions )
For vi ,, vi 2 E proj(v) )(Rs a ), le t

.

	

:

V R,arg : = RLarg , x . . . x R,arg.n c ti,arg (R S .0) :
P roj ( vi )(R ,arg. n Rs .a) 4 v ;,2 E proj (vi )(R,arg, n Rs .0) ( 4 )

The partition defined by the equivalence relation (4) i s
called approximation of the induced partition, and 'c ow
denotes the corresponding domain abstraction .

Again, we can formulate a corresponding approximatio n
for the weaker conditions (1'), (3') .
The approximation -Cm, is not necessarily a distinguishing
abstraction . Since (4) is only a necessary condition of (3), i t
can fail to preserve all possible target distinctions .
However, the distinctions of the approximation ar e
necessary ones, and, hence, all distinguishing abstraction s
are refinements of the approximation . Formally, this i s
captured by the following proposition .

Proposition : ti, nd is a refinement of 't µ;nd .
Proof :
Assume that vi ,, vi 2 are distinguished in 't ;nd , i .e. vJ v

2

does not hold . Then, there exists at least one initial
restriction R, arg such that either vi E proj(vJ )(R,arg ) and vj2 e

ProJ(v)(R,arg .), or v , e Proj(v))(R,arg .) and vJ2 E P roj (v;)(R,arg .) .
Since R,a<g c 't,arg (R sa), vi , combined with R,arg yields a
restriction on the level of target distinctions that is different
from the restriction resulting from combining vJ2 with R,arg ,
i .e . ti, arg (select (v = vi ,) (R,arg n Rs,0)) ti,arg (select (vi = v 2 )
(R, arg n Rs a)) . From condition (3), it follows that vi , , vi 2
must also be distinguished in 'co. Ci

So far, we have assumed that all distinctions in DOM 0 can
be observed . Now, we consider the case that Hob, is not
given by the identical mapping .

Observable Distinctions

Obviously, what distinctions can be provided by the initial
(observable) distinctions crucially affects the distinction s
that can be derived for other variables . It does not make
sense to introduce distinctions for some intermediate
variables that would help to determine the targe t
distinctions, but that never become effective because th e
initial distinctions are not precise enough to obtain them .
Intuitively, two values of a variable vi cannot be
distinguished by the observable distinctions, if for an y
observable tuples, they are either both consistent or both
inconsistent with this tuple :

Definition (Induced observability )
For vi ,, vi , E proj(vv)(R s a ), le t

v = v :<=:>
V R,b ., : = R„ba,, x . . . x R obz c

	

(Rs,0) :

vj,, E P roj (vi )(Rn bs. n R s. a)

	

vi ., E P roj (v;)(Rnb,, n R s .) (5 )

Let 'cob, denote the domain abstraction corresponding t o
the partitions induced by (5) .

The abstraction 't,nd.oba captures all distinctions that can i n
principle be revealed by initial restrictions, for example, b e
observed. The general case of arbitrary initial partition s
IInb,o is thus captured by replacing R,o with ti,na,O,b,(RSO) i n
definitions (3) to (4) .

Note that (5) has the same form as (4), with R,arg replaced
by Rob, . The partition on vi that results from ti na and tod,oba
can be reformulated as a merge operation

merge (proj(vi ) (select(_!, = P )R S0 )

running over all tuple s

P : = P,arg., x . . . x Prarg.n E ti,arg(Rs .o )

in the case of ti` ,nd , an d

P : = Pobs., X . . . X Pobsn

	

tobs( R S,a )

in the case of ti, ndnh, . This means that both t ', nd and t,nd,obs can
be computed using the same basic algorithm, as just th e
different sets of tuples used in the select statement accoun t
for the difference .
Now, computing distinguishing domain abstractions under
a given granularity of initial distinctions has reduced t o
computing and intersecting projections . Yet, they are still
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described as global computations on the system relation
RS0 . This will be the topic of the following section .

Computing Induced Abstractions fo r
Composed Relation s

The problem of determining significant distinctions arises ,
in particular, due to composing generic behavior model s
taken from a library of model fragments . Therefore, we
extend the concepts of computing induced distinctions to
relations that are composed of several individual behavior
model fragments . In the following, the relation Rso i s
considered to be a composed relation of the form

R s,o = R ~) .o n Rdz,o n . . . n Rd0,o ,

where the R e o represent the relational model for componen t
C; . If necessary, the Rd, o include also mode variable s
representing different behavior modes or fault modes of th e
components .
The interaction between a variable v, and targeted or initia l
distinctions in other variables v . is then not direct, bu t
instead mediated by a sequence of variables in a set of
component relations . This leads to the idea of determinin g
the induced qualitative values from the primary distinction s
by propagation through the structure of the model . In
[Struss Sachenbacher 99], we described the foundations for
an approach to propagate distinctions to other parts of th e
system and then to compute the distinctions for on e
component relation locally .
For this, two problems have to be overcome that were no t
covered in detail in [Struss Sachenbacher 99] .
First, it is possible that tuples occuring in the relations R d;, ,,
are inconsistent with the aggregate system model Rso. The
problem is that the presence of inconsistent tuples can bot h
lead to results which are too coarse and to results which ar e
too fine-grained. Intuitively, inconsistent parts of th e
relation could make it appear either more "rectangular" o r
less "rectangular" (in the sense of Figure 2), which either
enables or blocks possibilities for domain abstractions .
Thus, in order to ensure correctness of the results , a
complete elimination of inconsistent tuples is required . Thi s
shows that determining significant distinctions is a n
inherently hard problem, because as a consequence of the
above, the problem of determining whether a given
distinction is significant or not w .r.t . the target distinction s
is as least as hard as checking satisfiability of the involved
behavior constraints, which is NP-hard in general .
The second issue is that the components C, have t o
exchange information about their distinctions, since a
distinction in the domain of one components' variable coul d
be necessary to make a desired distinction in anothe r
component. In order to avoid cycles in the loca l
computation (which would mean determining distinction s
in one variable which aim at target distinctions for the sam e
variable), it is necessary to provide additional information
about the origin of each propagated distinction . We
accomplished this by creating a label for each partition

element, which contains a reference the target partitio n
element it was introduced for . Propagation rules then
ensure that loops in the computation are eliminated and the
introduced induced distinctions reflect indeed only the
target distinctions (details are described in [Kutscha 00]) .
Furthermore, it is quite clear that the local propagatio n
algorithm is incomplete, with the consequence that it will i n
general not compute *, nd and 't;ndoh,, but approximation s
thereof. For the result, however, the proposition stated i n
the last chapter still holds : a distinction that has been
derived by the propagation algorithm is guaranteed to be a
necessary distinction, although not all such distinction s
might be found .
The next section describes the implemented prototype i n
more detail .

A Prototype System for Automate d
Qualitative Model Abstractio n

Following the theory outlined above, we implemented a
prototpyic system that automatically compute s
approximations of maximal distinguishing abstractions fo r
a given compositional system model .
The prototype (described in detail in [Kutscha 00]) use s
software components from the commercial model-base d
systems framework Raz'r ([OCC'M 00]) . The Raz'r
development system allows to compose a system mode l
from a library of model fragments . The prototype reads i n
the resulting system description, which consists of a
definition of domains, constraint types and behavio r
models .
The task-dependent initial and target partitions 1 -Ioh,, 1 ,g are
given as XML documents. Alternatively, they can be
defined interactively using a domain partition editor .
In a first step, tuples inconsistent with R so will be
eliminated from each component model . Based on this, th e
prototype uses the propagation algorithm outlined in th e
previous section to iteratively compute the abstractio n
ti)„d,,,h,(RSo) . In a third step, this result is used as a startin g
point for the computation of qualitative distinctions base d
on the definition of ti* i„d .
The local computation steps for the R d,,0 are based on a
constraint system that represents the relational behavio r
models (more precisely, their characteristic functions) a s
ordered binary decision diagrams (OBDDs, see [Bryan t
92]) . This data structure allows for fairly efficien t
realization of the required manipulations of the constraints ,
such as join or projection on a subset of variables .
However, this also results in the limitation that the syste m
can currently only transform behavior models that hav e
finite domains .
The resulting qualitative domain abstraction can b e
applied to the system model, leading to a transforme d
system description. Variables in the model that are found to
have no induced distinction after computation (i .e . whose
domain consists of one element only) can optionally b e
eliminated form the model . If all variables of a component
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have been eliminated, this may eventually lead to the
elimination of a component from the model .
The transformed system description can be fed back into
the Raz'r framework and be used for task such as behavio r
prediction, diagnosis, or test generation . Additionally, it i s
possible to specify domain abstractions that link the
elements of DOM, to finer domain, in particular to a subse t
of the real numbers . By concatenating such domai n
mappings, this allows to maintain a mapping to the rea l
numbers for the induced qualitative values. This
information is used by a signal transformation componen t
that accomplishes the transformation of (real-valued )
sensor readings to the abstraction level of the qualitative
model .
The next section presents results of running the
implementation on two small examples . Note that since ti
characterizes an upper approximation of the induced
partitions only, the computed sets of distinctions wil l
necessarily be incomplete .

Computational Results

Container Filling Example
We first present the application of our theory an d
implementation to an instance of the container fillin g
problem that was presented in the introduction .

Initial distinctions : The domain for all pressure, flow an d
parameter variables were chosen to be a 19-valued domai n
that consists of open intervals and points between them :

U oh9 = {( - co ,

	

{-4)}, {-4}, {(-4, -3)}, {-3}, . . ., {(3,4)}, {4} ,
{(4, -0)11 .

The model formulated in this domain consists of 1 2
variables and 2 mode variables, which means it has a tupl e
space (i .e . size of DOM o (v)) of 19 12 .2i* = 8 .9 . 10' .

Target distinction : There are two behavior modes for the
container component, one that captures the situation where
the container level is within the specified range (h + Ah )
and one that represents overflow. Thus, the target
distinction for the example can be stated by giving a
distinction for the mode variable of the tank component .

Induced distinctions : What we are after is an answer to
the question whether or not we have to include the
transition delay of the valve's closing operation, denoted At ,
in the model. The following result is obtained for
parameters A max , Ah, B, and T, .p set as

Amax = {(0,1)} ,
Ah = {(2,3)} ,
B={1} ,
T1 -P e {{(2,3)}, {3}, {(3,4)}} .

After computation of the composed relation Rso , 2103 6
tuples remain consistent for the valve component. The
algorithm determines the following induced distinctions for
the valve delay parameter :

'hd,vawc.0,,, _ {( 00 ,4), -4, (-4,-3), -3, (-3,-2), -2, (-2,-1) ,
-1, (-1,0), 0, (0,1), 1 1

= {( 1 , 2), 2, (2 ,3), 3, (3,4), 4, (4, °°) }

The first partition element corresponds to situations wher e
overflow is not possible . The second partiton elemen t
corresponds to situations where overflow of the container i s
possible (though will not necessarily occur) . This means
that all situations where the delay during closing the valve
is part of the first partition element (i .e . is equal to or
smaller than 1) are equivalent to no (zero) delay . In other
words, the transition delay can be neglected in the model of
the valve if it is part of the first qualitative value, and mus t
be considered in the model if it is part of the secon d
qualitative value .
To give an idea of the problem size, a multiplicatio n
constraint that uses the base domain consists of 713 tuple s
out of a tuple space of 1 9 ' = 6859 (which amounts to a rati o
of 10.4% consistent combinations of values ; for a domain
that consists just of signs, the respective constraint woul d
have had 9 tuples out of a tuple space of 3 3 = 27, i .e . a rati o
of 33 .3% consistent tuples) . The constraint describing th e
valve equation mentioned in the introduction, for instance ,
has 23075 tuples . Compared to IDOM0 (y))h 8 .9 . 10'= for the
original behavior model, the abstracted behavior model ha s
a tuple space IT „d (DOMO(v_)I of only 1 .2 . 104 .
We can also start with a given parameter for the delay an d
ask for a partition for the mode variable of the valv e
component, given the same target distinction for th e
container . Depending on the magnitude of the delay, it wil l
turn out to be necessary or unnecessary to explicitly
distinguish the two behavior modes of the valve ("closing ”
and "closed") . For the given parameters, we obtain on e
partition element ,

II, d.iade = (closing, closed }

i .e . the distinction between the two behavior modes
becomes irrelevant, if and only if the parameter for delay i s
restricted to the first qualitative value .

Pedal Position Sensor Exampl e
As a second example, we list results for a problem that wa s
originally presented in [Struss Sachenbacher 99] . The
device in Figure 3 shows a pedal position sensor in a
passenger car . Its purpose is to deliver information abou t
the position of the accelerator pedal to the electroni c
control unit (ECU) of the engine management system . The
position is sensed in two ways, via the potentiometer as an
analogue signal, v r., and via the idle switch as a binary
signal, The idle switch changes its state at a particular
value of the mechanically transferred pedal position . The
reason for the redundant sensing of the pedal position i s
that the signals from the potentiometer and the switch ar e
cross-checked for plausibility by the on-board control
software of the ECU . The two possible values of v ,w, , .h
correspond to two ranges of v~ separated by a particula r
voltage value .
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Figure 3 : The Pedal Position Sensor

If we use qualitative models which distinguish only e .g .
between voltage "gnd", "between" and "batt" as convenien t
for many applications, we are unable to perform tasks suc h
as diagnosis or design verification, because these task s
refer to the redundancy which purposefully has been
implemented in the system . The problem is that th e
particular distinction in the domain of v p,,, cannot b e
anticipated in a generic model of the potentiometer ,
because the voltage landmark would not make any sense i n
a different structure .
We would like to have a composition of component model s
that make just the right distinctions required by the othe r
components and the task the model is used for . To this end ,
we can use approach and the software component outline d
above to compute an approximation of the necessary
qualitative distinctions .

Initial distinctions : We chose

Hobs,*vohage= {{[0, .2)}, {[ .2, .4)}, {[ .4, .6)}, {[ .6, .8)} ,
([ .8,l .0)} }

for variables involving voltage and likewise to value s

H obs," .position = HO}, { .2}, { .4}, { .6}, { .8}, { 1 .01 }

for variables involving position . The switch-over parameter
of the idle switch component is specified as the value { .4} .

Target distinction : This is determined by the goal t o
distinguish between the ground voltage, corresponding t o
partition element { [0, .2) } , and the rest of the domain for
terminal variable vYW1Lch (termed switch .output .voltage in th e
model) of the control unit component :

larg, .switch .output .voltage, 1 = { [0, ' 2 }
i i targ, switch.output .voltage.2 = { [ .2, .4), [ .4, .6), [ .6, .8), [ .8,1 .0) }

Induced distinctions : The algorithm first determines tha t
it is necessary to distinguish between the two value s

H ind. swih;hstate ., = {right }

H ind, nwnchstate, 2 = { left }

for the state of the switch, and then induces two qualitativ e
values

H ied. pedai.positinn, 1 =

	

1 .01

ind, pedal.position, 2 = { 0, .2, .4 }

for the domain of the pedal position . The resulting partition
for v ,„ (termed potentiometer .output .voltage in the model )
consists of three partition elements :

T
Hind, potentiometer.output .voltage, 1 = { [0, .2), [ .2, .4) }

Hind, potentiomeler .owput .vollage, 2 = { ['4 ,
.

	

{[

	

' 6 ) }
H ind,potentiometer nulpuvoltage, 3 =

	

.6,8),

	

Q[•8,1 .0) }

The first qualitative value corresponds to the situatio n
where v,w ,tch equals ground voltage, the second qualitativ e
value corresponds to the situation where v ,W11eh equal s
battery voltage, and the third qualitative value correspond s
to the situations where the position of the switch and thu s
the voltage of vswituh is ambiguous .
The resulting abstracted behavior model that achieves th e
same target distinctions as the original model has a tupl e
space of 9216 . The original model, in contrast, had a tupl e
space of 5 .6 . 10' .

Discussion and Future Work

The work presented here has provided us with a theoretica l
foundation to analyze the fundamental problem o f
automated qualitative modeling in the context of model -
based systems, and a first implementation of an algorithm
to compute an approximate solution . The first experimenta l
results were encouraging, as even the incomplete algorithm
produced useful model abstractions . More experiments wil l
have to be done, and some will aim at producing models fo r
tasks and problems in our application domains of ca r
subsystems and process-oriented modeling and diagnosis .
Answering the question to what extent we can scale up
requires, on the one hand, analysis and improvement of th e
operations on the underlying OBDD encoding of th e
models . On the other hand, further improvements of the
propagation algorithm need to be explored . For instance ,
rather than starting with the granularity of the base domain ,
there could be an iterative, top-down approach fo r
determining qualitative distinctions which starts with som e
small set of partitions and refines them if there is evidenc e
for its utility . This evidence could be provided by the label s
of the induced qualitative values . They indicate whic h
partition elements might be the best candidates fo r
"splitting" (e .g . qualitative values with maximum label size ,
since this means that a large number of target partitio n
elements is consistent with this value, i .e . the value lacks
"discriminating power") .
Our deeper theoretical analysis compared to [Strus s
Sachenbacher 99] has shown that different tasks impos e
different requirements and definitions, e .g . consistenc y
check vs . prediction, independent observations vs . observed
tuples, and target distinctions vs . initial distinctions .
Another important technical aspect has not been discusse d
in this paper, namely the relation between an algorithm fo r
computing significant distinctions and the algorithm that
uses the resulting model for prediction or diagnosis . For
instance, if we had an algorithm that would actually obtain
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a maximal abstraction based on performing globa l
consistency checking, a run time system that is performing
value propagation on the resulting abstract model only i s
likely to be unable to take advantage of it and might miss
some distinctions .
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