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Abstract

Automating the generation of qualitative models at a level
that is tailored to support a particular task is crucial to the
deployment of model-based systems technologies in
practical applications, because reusability of models is of
vital importance, If this task cannot be solved, models in a
library will either be ineffective, because they are too coarse
for solving a particular problem, or inefficient, because they
are too fine-grained. The key question to be answered is,
“what are the distinctions in the domains of the system
variables that are both necessary and sufficient to achieve a
particular goal in a certain context and under given
conditions?". In our approach, the goal is defined by a set of
target partitions of the domains of selected variables (e.g.
output variables), the context is given by the structure of the
modeled system, and the conditions are represented by a set
of initial variables and their possible distinctions (e.g.
possible observations). The task includes problems such as
determining the appropriate qualitative values of variables in
order to enable prediction at the desired level or
discrimination for diagnosis, deciding whether or not
changes can be modeled as discontinuous ones, and
determining when a deviation of a parameter can be
considered significant. We have analyzed and formalized the
task for relational behavior models, implemented an
(incomplete) algorithm, and carried out first experiments.
The paper first elaborates on previous theoretical
foundations, defining the goal and the specification of
algorithmic solutions. We then outline the implemented
algorithm and present and discuss some experimental results
of applying this prototype. We conclude with some open
problems and discuss alternative approaches.

Introduction

Automated modeling, model abstracton and model
composition has been studied in the area of qualitative
modeling for quite some time (e.g. [Addanki et al. 91],
[Iwasaki 92], [Falkenhainer Forbus 91], or [Struss 92]).
Very often, the motivation for this work was mainly
academic, and there are hardly any tools that are designed
and implemented to serve serious applications. With
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model-based systems technology intruding industrial
applications, the creation of appropriate models gains
practical importance, and strong support to this task or
automating it may well be decisive to the success of model-
based systems.

For instance, in our work on applying model-based
diagnosis, prediction, and fault analysis to industrial
problems (prominently car subsystems, see [Sachenbacher
et al. 00]), we are thrown back to very fundamental tasks
and theoretical problems the closer we get to the stage of
actual use of the technology in industry.

Where do the models come from? is the most frequently
asked question, because most of our solutions are based on
qualitative models which look quite different from the
existing (differential) equation models used in engineering,
e.g. for numerical simulation. Can’t we use these models or,
at least, start from them? Qur answer is, in principle, yes,
because qualitative models are abstractions of the
equations. But, "in principle" is not enough for convincing
management - it has to be for real, well-supported, and
preferably automated.

What is the appropriate level of a qualitative model? is a
second question, which we often ask ourselves, and
experience says "it depends". It depends on what you need
the model for, and what problem you want to solve. This is
anything but surprising, but it is very critical: Much of the
feasibility and economic attractiveness of model-based
solutions stems from the extensive re-use of model
fragments taken from a domain-specific library across
different systems and tasks. The contradiction between the
genericity of models (to be re-usable) and their task-
dependent specificity (to be effective and efficient) can be
fatal for the industrial success of model-based systems. If
we use too coarse-grained models (e.g. with signs only), a
diagnostic system may be unable to detect certain
symptoms. On the other hand, if the model is too fine-
grained, it may be inefficient w.r.t. time and space
requirements. For instance, the real-time performance of
our on-board diagnosis system described in [Sachenbacher
et al. 00] crucially depends on the qualitative abstraction of
the models and the observed signals. Consequently, unless
we find ways to automatically transform a generic model
from a library into a model tailored to a particular task, the
applicability of model-based techniques will be limited.



A Tiny Example

In order to illustrate the problem and the key ideas of our
work, we introduce a simple example. The system
comprises a reservoir (which is assumed to be never empty
and not shown in the figure), filled with liquid with
pressure T,.p. It is connected via a valve with maximal
diameter A, to an outlet pipe that fills a container with
bottom area B and vertical walls (see Figure 1). The task is
to use a model in order to design the control scheme that
opens and closes the valve in order to fill the container up
to a given height h with a precision of Ah > 0.

The example does not appear to be an industrial application
at first glance. However, consider it to be a simplification
of a controlled injector (i.e. a valve) that is to supply a
certain amount of diesel fuel to the combustion chamber
(i.e. a container) of a car engine. Below h, the fuel mixture
will be too lean, above Ah + h, there will be too much fuel
in the cylinder to burn it completely, a situation which
should be avoided in any case.

Iah

Container

Figure 1: Filling a container

All the components in the system are fairly standard, and
we expect to find their behavior model fragments in a
library in order to compose a model of the example system.
For instance, the valve model will have to associate the
obvious equation

T,q=Asgn(T,.p-T,p)(T,.p-T,ph"

with the states open and closed of the valve. But what about
the transitions between the states? Do we have to explicitly
model the opening and closing state, during which some
amount of liquid is pouring into the container? Or can we
model the transition from A = A to A = 0 as a
discontinuous change, i.e. neglect the duration of the valve
closing operation? The answer, of course, depends on the
targeted precision Ah and on the characteristics of the entire
configuration, namely T,.p, T,.p, A, and B. Perhaps, the
container is so large that the increase of the height during
closing of the valve is negligible. Perhaps, the time
required for closing the valve is quite significant, because
the required precision Ah is tight and/or because the
pressure difference T,.p - T,.p is high. Given the contextual
conditions of the task, we are able to compute a boundary
for durations of the opening that are insignificant w.r.t. the
required precision Ah. Based on the result, we can decide
whether or not it is appropriate to approximate the valve
model by one with discontinuous transitions, Note that the
result will be influenced by another factor: the precision of
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the inputs to the calculation. For instance, if we just know
that the diameter is between zero and A during opening
of the valve, we obtain a boundary on the duration which is
smaller than the one calculated for an opening that is
described as linear within a certain tolerance. In the same
way, the precisicn of the pressure values influences the
distinctions on the duration. Finally, note that the decision
about the appropriate distinctions in the valve model affects
other component models as well. If the opening has to be
modeled in a detailed way, then this requires the pipe
model and the container model to include certain
distinctions of the flow value and of the volume and the
level, respectively.

Let us summarize the key insights from this example that
form the starting point for our work:

e The distinctions to be made within a (component)
model (w.r.t. system variables, time, and states) depend
on the task, the context, and conditions on the inputs.

e The task was characterized by some target distinctions
to be made (in our case, Ah).

* The context is given by the structure of the system (e.g.
a second valve and inlet would influence the model of
the first one).

* The conditions appear as certain initial distinctions
that are possible (reflecting, for instance, how precisely
certain variables can be measured).

® Resulting from this are certain induced distinctions on
other variables (in our example, whether the finite
duration of the opening has to be distinguished from a
zero duration).

The thrust of the work reported here is to turn these

intuitions into a formal theory and algorithms in order to

automate the task of goal-dependent qualitative abstraction.

Although our results are still preliminary, they extend,

refine, and partially correct the theoretical foundations

presented in [Struss Sachenbacher 99], including now a

prototype system and results carried out based on its

implementation.

The following section summarizes the formal foundations

and extends the notion in [Struss Sachenbacher 99] by

including the role of initial distinctions and by analyzing
the impact of different purposes of the model (consistency
check vs. prediction), the uniqueness of solutions, and
completeness of proposed algorithms. Then we describe
our current implementation (of an approximation
algorithm) and present experimental resulis on the
introductory example and the pedal position sensor

example that was outlined in [Struss Sachenbacher 99].

Finally, we discuss possible modifications and extensions

of the current algorithms as well as alternative approaches.

Foundations

Basic Definitions and Concepts

In this section, we present the theoretical foundations of our
work, trying to turn the intuitive ideas extracted from the
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example into formal concepts. The theory we presented in
[Struss Sachenbacher 99] will be summarized as briefly as
possible. We will indicate when we omit the repetition of a
formal definition from that paper, and we try to highlight
the extensions and medifications.

Behavior Models. Our theory is based on relational
models, i.e. the behavior of a component or system, S, is
given by a relation

R, © DOM(y,) ,

where v, = v, X v, X ... X v, is the vector of all parameters
and variables in the system. This allows us to treat
symbolic values, discrete states, behavior modes, and non-
deterministic models rather than only real-valued functions
which are subsumed as a special case. The relation R can
be given implicitly as the composition of several
component models, as in our example.

Domains. We assume that there exists a base domain
DOM,(v,) for each variable v, from which the desired task-
specific domains can be obtained by means of abstraction,
and a base model

R,, © DOM,(v,) = DOM (v,) X ... x DOM(v,).

Distinction. This central concept of the problem is defined
as a partition of the base domain, i.e. a set of non-empty
disjoint subsets

I1, =(P, } < POM(v))

that together cover the entire domain (P(X) is the power set
of X). Each P, is a qualitative value which represents a set
of values that are not distinguished from each other.

Target distinctions. As pointed out in the discussion of the
introductory example, the target distinctions characterize
the goal of a particular task to be performed based on a
model and are represented as a set of target partitions

IT,, ={P,...} € P(DOM(v))

If we are not interested in any distinctions of a variable vi,
then we can express this by the trivial partition

I, ={DOM,(v)}.

trgi

Initial Distinctions. Analogously, the conditions of the
model-based task are expressed as a set of initial partitions
I, . They represent what will be the granularity of inputs
to the model, e.g. observations or partially described
hypothetical situations. All the other variables receive the
trivial partition as their initial one.

Qualitative Domain Abstraction. Finding qualitative
values for all variables which can then replace the original,
fine-grained domain is the goal of our enterprise. Given a
set of qualitative values (i.e. a partition), each value of the
fine grained domain can be mapped to its respective

"Wwe changed terminology compared to [Struss Sachenbacher 99],
because we felt that the term "primary partitions” used in this paper is
misleading as it suggests they would be the starting point of the task.

qualitative value, We call such a mapping
7: DOM,(v)) = DOM,(v,) € P(DOM(v,))

a domain abstraction. Dependent on the kind of partition
that induces a domain abstraction, we will give T an index
"targ" for target distinctions or "obs" for initial distinctions.
There is a dualism between the domain partitions and
qualitative abstractions, because each domain abstraction
that produces mutually exclusive values induces a partition,
which is given by

I, = (DOM(v)) .

We can apply the concepts of refinement of a partition (i.e.
a partition that makes further distinctions compared to the
elements of another partition) and merge of partitions (i.e.
the maximal partition which is a refinement of both) to
domain abstractions, as well. For a rigorous treatment and
definitions of these operations, see [Struss Sachenbacher
99].

In this formalism, we can define our goal precisely.
Whatever model we use, the only thing that matters is the
information it can infer about the target partitions from the
possible initial partitions. We can express this interest by
abstracting each result of inference to the level of target
partitions by the respective domain abstraction. Let

Ttaq; =, (‘tnru.l L 1lars.2’ )

I
DOM,(vy) — 11, :=TT, XTI, , X ... XTI

g, | targ,2 g, "
If we supply the base model, R, with some information,
i.e. some restrictions on system variables expressed in
terms of initial partitions,

R, Il =T XTI, ,X..xII

obs,n?

then we are interested in
2
Tm(Rnbu m Rs,o) s

and our goal is to find qualitative domain abstractions that
do not change this result. Hence, we obtain the following
definition of our goal concept:

Definition (Distinguishing Qualitative Domain
Abstraction)

Let R, = DOM,(v,) be the base model of a system S, and
IT, and IT, the target partitions and initial partitions,

targ

respectively. A qualitative domain abstraction
T: DOM,(v) = P(DOM (v,))
is distinguishing w.r.t. {II
T and
VR, cIl,:
Ty (*R,) N T(Rs.u}) = Turg(Rnh: m Rs,u)' (1)

w » L} 1ff it is a refinement of

*To simplify the notation, here and in the following we implicitly map
the initial partitions to DOMg whenever necessary, i.e. we identify Rops ©
s With R’ obs = T obs (Robs). Furthermore, we implicitly extend each
mapping, T, defined on some set, S, to the power set P(S) by defining vX
cS uX)=u{tx)Ixe X}.



A distinguishing abstraction, T, is maximal iff there exists
no other distinguishing abstraction, ', that is a refinement
of T.

Condition (1) requires that the abstraction preserves
information about the tuples of target partitions. However,
a weaker and often sufficient goal for some applications is
to postulate that for each single target variable, the
possible distinctions are maintained under the abstraction.
If proj(v,, v,, ..., v,) denotes projection on a set of variables
V), Vy oo V,, then this can be expressed as

VR, cIl, Vv,:
Proj(V,,) (T,, (TR ) N T(Ry))) =
Proj(Vyy) (Tug Ry, MRyp). (17)

The Scope of R,

In contrast to the corresponding definition in [Struss

Sachenbacher 99], we will capture the set of initial

restrictions, i.e. the starting point of the model-based

computation, and their impact on the resulting qualitative
abstractions in a more rigorous and appropriate way. In that
paper, we allowed arbitrary initial restrictions R, <

DOM,(v,), called "R_". But in practice, the initial

restrictions are limited in basically two ways:

e only a subset of the variables form a potential input to
the model (e.g. because only certain variables are
observable),

¢ the input values usually have limited precision which
can be coarser than DOM,. This may be due to the
precision of a sensor or a partial specification of some
input to the model (e.g. when analyzing a circuit’s
behavior "with a voltage source of more than 6V"),

Uniqueness Properties of Maximal Distinguishing
Abstractions

It turns out that without further restrictions on R, , maximal
distinguishing abstractions are not uniquely defined.
Consider a very simple example that consists of two
equality constraints

X=Y=7:
Let us assume that for all variables, the base domain is the
set of integers, that x and z are observable at this

granularity, and that the only target distinction is to
determine the sign of y:

I, = [{(-2, 0)}, {0}, {(0, =)} } .

For unique initial distinctions (i.e. there is always a value
given for both x and z), there are obviously two maximal
distinguishing abstractions, given by the partitions

I, = {{(-e2, 0)}, {0}, {(0, )}} , IIT,y = {{ (=00, =)} }
and

T, = {{(-e0, )} } , IPTy = {{(-e=, 0)}, {O}, {(C, =)} },
which simply reflects the fact that one of x and z is not
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needed for determining the target distinction. In contrast, if
the initial restrictions of x and y are made independently of
each other, this includes situations in which one of the
variables is not restricted, leading to a unique
distinguishing abstraction

I_I!;: {{(-m‘ 0)}, {0}! {(0! m)}}l
H,T'yz {{(-m‘ 0}}: {0]! {(Os oo)l»} s

To reflect this difference w.r.t. restrictions on R, we
further refine our definition. A distinguishing abstraction T
is called maximal for independent initial restrictions, if

R, in (1), (1') is of the form
R, =R, xR, .x..xR, cII,..

The case of independent initial restrictions captures a very
common case of model-based reasoning, namely to
perform prediction (or consistency checking) after
restricting a number of variables to a certain value (set)
independently of each other. This is the case, for instance,
if the input is the result of measuring certain system
variables. The only important exception we can think of is
the case when time is included as a variable: if the input is
a time-stamped set of variable values, one has to use the
general definition.

A still further specialization is obtained, when there are
unique initial distinctions, i.e. each R is a tuple of single
qualitative values:

Ruhu € Hobﬁ i

An example is on-board diagnosis, where at each instance
in time, unique values (at the level of IT ) are present for a
fixed set of variables. In contrast, the general case of
independent initial distinctions captures the situation where
there is a set of variables that are observable, but we are
looking for an abstraction that allows to draw the strongest
conclusions also if only a subset of the variables have
actually been measured (the non-measured ones receive no
restriction).

Different Tasks: Consistency Check vs. Prediction

The definition of distinguishing abstractions nicely
expresses that we are looking for qualitative abstractions
that do not reduce the information about the target
variables. In [Struss Sachenbacher 99], we have shown that
sometimes, every abstraction entails a loss, and one is stuck
with the base domain. We discuss one fundamental reason
for this.

Condition (1) includes the case where R is inconsistent
with the model, R;,. This could well be a situation in
practice; e.g. in model-based diagnosis or in design
verification, we are interested in determining whether or
not a set of observations is in conflict with a behavior
mod:!, In this case,

Ry "Ry = @
holds, d condition (1) implies
MR NMR) =D <R, NR,=D.
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Note that this imposes a condition on T which is
independent of the target partitions and reflects only R,
and the initial distinctions, represented by R, . If the latter
have the granularity of the base domain, the very "shape"
of Ry, may exclude an abstraction, because the above
implies

veR, & 1(v) c TR, ,
and for any v e R, with
W) =Y,
we obtain

YER;, & Tv) C TRy,
&1V ) CTR,,)
& VERy,,

This means all values that are mapped onto t(v,) are in R,
and since 1t(v,) contains exactly these values, we have

Y& R?:,n = T(Eo) = Rs.u-

Hence, a distinguishing abstraction can never "cross the
boundaries" of Ry, Since

T(v,) =T(v,) X ... X TU(v,) € Ry,

T is limited by the existence of "rectangular building
blocks" within Rg,. Figure 2 provides an abstract
illustration: Ry, allows an abstraction in case a), but not in
case b).

v, DOM,(v) v DOMo(v)

a) b)

Figure 2: Different R, with different potential for
abstraction

In other applications, the model is not intended to be used
for consistency check with R, but only to compute
consequences of the initial restrictions which are assumed
to be consistent with the model. Under this assumption,
condition (1) can be weakened as follows

VR, cIl,:
R, M Rs;ﬁt D= T (UR,,) N TR, =
ngfRna,. NRy,). (2)

This means that T, based on initial values that are consistent
with the model, manages to predict the target distinctions
properly, but it is also allowed to map certain inconsistent
tuples to consistent ones, However, also in this case, we
will sometimes not be able to move away from the real
numbers as a base domain, e.g. for a simple multiplication
constraint on real numbers, whereas we obtained a nice
abstraction when starting with a discretized domain (see

[Struss Sachenbacher 99]). This highlights the importance
of a definition and algorithms that reflect initial partitions
(e.g. granularity of observations), because they introduce a
discretization. Also discrete states and operating modes
may induce partitions on continuous variables, as will be
illustrated later by the examples.

Characterizing Distinguishing Domain
Abstractions

While (2) defines the desired property of the abstractions,
i.e. our goal, we need some constructive characterization as
a starting point for designing algorithms to compute them.
Exploiting the duality between domain abstractions and
domain partitions pointed out in the previous section, we
will characterize T by constructing the appropriate partition
of the observable domains.

To simplify the presentation, we restrict ourselves in the
following to the special situation where the observed (or
otherwise given) initial restrictions have a granularity equal
to the base domain DOM, i.e. IT,,, is the identical mapping.
We will return to the more general case later.

The question can be stated as "Which values can be joined
in a partition (i.e. abstracted to the same qualitative value
under 1) without violating (2)7". The intuitive answer,
based on (2) is: If two values v, , v,,, of a variable v,, when
combined with at least one consistent initial restriction for
other variables, are consistent with different sets of target
values, then we cannot join them without losing
information on the level of the target distinctions.
Otherwise, we can, because it is then guaranteed that there
exists no initial restriction that leads to different predictions
on the level of target distinctions if we drop the distinction
between v,, and v, Formally, we can introduce an
equivalence relation for v, ,, v,, € proj(R;,) by:

AT
obsf — Rm.: XX Rnh:cJ-l X an..-w XX Rom,n < Rs.u:
T (SElECL V,=v) Ry, NRY) =

'l:m(select (vI = V,-,:) (R‘,N__J N R (3)

Here, selecl(vj = v,,)(R) is the restriction of a relation R to
the set of tuples that satisfy the condition v, = v, .

Definition (Induced Partitions)
Let = be the equivalence relation on DOM,(v,) defined by
(3). The sets of partitions IT,,; for DOM,(v)) given by the
equivalence classes of the relations =,

I1,,, == DOM,(v) | =j ,
are called the partitions induced by the target distinctions.
This defines a distinguishing domain abstraction T, :

Lemma (Characterization of distinguishing domain
abstractions)
The induced partition

IT . :=xII

i j



defines a distinguishing qualitative abstraction T, w.r.t.
I

tary "
Conjecture (Maximality of the induced partition)
The induced partition is a maximal distinguishing
qualitative abstraction.

Analogously, we obtain a characterization of distinguishing
qualitative abstractions under the weaker condition (1°)
which states that determining the distinctions for each
single target variable suffices:

Vj._!ﬁj ijz =

= Ry X X R‘M_l P4 R‘,M_H.
Vv

proj(v) T, (select (v, =v,)) (R, ,NR; ) =
proj(v)) T, (select (v,=v,,) {Rm_J N R, (3)

X.. xR, R,

Approximations to Induced Partitions

Conditions (3) and (3") formulate that a distinction between
values of v, is made if and only if this leads to a target
distinction, potentially in conjunction with other
observations.

From a computational point of view, this is problematic,
since it requires to consider mutual combinations of values,
plus all the possible (combinations of) observations, to
determine if they have to be distinguished.

In this section, we develop a characterization that avoids
these difficulties by starting from the target distinctions
instead. As we will see, this characterization is more
amenable to computation, but at the price that the resulting
partitioning represents only a subset of the necessary
distinctions.

Definition (Approximation of Induced Partitions)
Forv,,,v,, € proj(v)(Ry,), let

w

v ﬁ
4 j & i
Rurg : ur; - X R‘wg U] < Tlaru (RS n)

v, € proj(v, )(R ﬁ Ry & v, € proj(v)(R,, NR;,) (4)

The partition defined by the equivalence relation (4) is
called approximation of the induced partition, and T,
denotes the corresponding domain abstraction.

Again, we can formulate a corresponding approximation
for the weaker condmons (1", (3).

The approximation T, is not necessarily a distinguishing
abstraction. Since (4) i 1s only a necessary condition of (3), it
can fail to preserve all possible target distinctions.
However, the distinctions of the approximation are
necessary ones, and, hence, all distinguishing abstractions
are refinements of the approximation. Formally, this is
captured by the following proposition.

Proposition: T,
Proof:

Assume that v, , v,, are distinguished in T, , i.e. v, =, V,,
does mot hold. Then, there exists at least one’ mmal
restriction R such that either v, € proj(v)(R,,,) and v, &

is a refinement of 7,

proj(v))(R,,), or v,, € proj(v)(R, ) and v,, € proj(v)(R,,)
Since R, < 1,(R;), v,, combined with R, vyields a
restriction on the level of target distinctions that is different
from the restriction resulting from combining v , with R,
ie. T, (select (v, =v,) R,, "R #1 (select (v,=v z}
{R N Ry ). From condl!mn (3}, it follows that Viyos
must also be distinguished in T,

j2

So far, we have assumed that all distinctions in DOM, can
be observed. Now, we consider the case that T is not
given by the identical mapping.

Observable Distinctions

Obviously, what distinctions can be provided by the initial
(observable) distinctions crucially affects the distinctions
that can be derived for other variables. It does not make
sense to introduce distinctions for some intermediate
variables that would help to determine the target
distinctions, but that never become effective because the
initial distinctions are not precise enough to obtain them.
Intuitively, two values of a variable v, cannot be
distinguished by the observable distinctions, if for any
observable tuples, they are either both consistent or both
inconsistent with this tuple:

Definition (Induced observability)
For v, ,,v,, € proj(v)(Ry,), let
V) =V, e
ohe © Ry ¥ . XR, o1, (Rgy):
v, € proj(v)(R,, "R, = v, € proj(v)(R,, NRy) (5)

Let T, denote the domain abstraction corresponding to
the partitions induced by (5).

The abstraction 71, captures all distinctions that can in
principle be revealed by initial restrictions, for example, be
observed. The general case of arbitrary initial partitions
I1,,,; is thus captured by replacing Ry, with T (R;) in
definitions (3) to (4).

Note that (5) has the same form as (4), with Rm. replaced
by R,,. The partition on v, that results from 7, and 7,
can be reformulated as a merge operation

il e

merge (proj(v,) (select(vg=P)R;,)

running over all tuples

P:= Pms.l WanX P,,,!_,, € TL..;(Rs,o)
in the case of 7', , and
PimPg X X P, ETR, )

in the case of T,,,, . This means that both 7', and t,,,,, can
be computed using the same basic algorithm, as just the
different sets of tuples used in the select statement account
for the difference.

Now, computing distinguishing domain abstractions under
a given granularity of initial distinctions has reduced to
computing and intersecting projections. Yet, they are still
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described as global computations on the system relation
R, . This will be the topic of the following section.

Computing Induced Abstractions for
Composed Relations

The problem of determining significant distinctions arises,
in particular, due to composing generic behavior models
taken from a library of model fragments. Therefore, we
extend the concepts of computing induced distinctions to
relations that are composed of several individual behavior
model fragments. In the following, the relation R, is
considered to be a composed relation of the form

R,,=R,,nR,,m..NR

2,0 el Y

where the R, represent the relational model for component
C. If necessary, the R, include also mode variables
representing different behavior modes or fault modes of the
components.

The interaction between a variable v, and targeted or initial
distinctions in other variables v, is then not direct, but
instead mediated by a sequence of variables in a set of
component relations. This leads to the idea of determining
the induced qualitative values from the primary distinctions
by propagation through the structure of the model. In
[Struss Sachenbacher 99], we described the foundations for
an approach to propagate distinctions to other parts of the
system and then to compute the distinctions for one
component relation locally.

For this, two problems have to be overcome that were not
covered in detail in [Struss Sachenbacher 99].

First, it is possible that tuples occuring in the relations R,
are inconsistent with the aggregate system model Ry,. The
problem is that the presence of inconsistent tuples can both
lead to results which are too coarse and to results which are
too fine-grained. Intuitively, inconsistent parts of the
relation could make it appear either more "rectangular" or
less "rectangular” (in the sense of Figure 2), which either
enables or blocks possibilities for domain abstractions.
Thus, in order to ensure correctness of the results a
complete elimination of inconsistent tuples is required. This
shows that determining significant distinctions is an
inherently hard problem, because as a consequence of the
above, the problem of determining whether a given
distinction is significant or not w.r.t. the target distinctions
is as least as hard as checking satisfiability of the involved
behavior constraints, which is NP-hard in general.

The second issue is that the components C, have to
exchange information about their distinctions, since a
distinction in the domain of one components’ variable could
be necessary to make a desired distinction in another
component. In order to avoid cycles in the local
computation (which would mean determining distinctions
in one variable which aim at target distinctions for the same
variable), it is necessary to provide additional information
about the origin of each propagated distinction. We
accomplished this by creating a label for each partition

element, which contains a reference the target partition
element it was introduced for. Propagation rules then
ensure that loops in the computation are eliminated and the
introduced induced distinctions reflect indeed only the
target distinctions (details are described in [Kutscha 00]).
Furthermore, it is quite clear that the local propagation
algorithm is incomplete, with the consequence that it will in
general not compute T, and Toaae DUL approximations
thereof. For the result, however, the proposition stated in
the last chapter still holds: a distinction that has been
derived by the propagation algorithm is guaranteed to be a
necessary distinction, although not all such distinctions
might be found.

The next section describes the implemented prototype in
more detail.

A Prototype System for Automated
Qualitative Model Abstraction

Following the theory outlined above, we implemented a
prototpyic  system  that  automatically = computes
approximations of maximal distinguishing abstractions for
a given compositional system model.

The prototype (described in detail in [Kutscha 00]) uses
software components from the commercial model-based
systems framework RazTt ([OCCM 00]). The RazT
development system allows to compose a system model
from a library of model fragments. The prototype reads in
the resulting system description, which consists of a
definition of domains, constraint types and behavior
models.

The task-dependent initial and target partitions I, IT, are
given as XML documents. Alternatively, they can be
defined interactively using a domain partition editor.

In a first step, tuples inconsistent with R, will be
eliminated from each component model. Based on this, the
prototype uses the propagation algorithm outlined in the
previous section to iteratively compute the abstraction
TouanRsg). In a third step, this result is used as a starting
point for the computation of qualitative distinctions based
on the definition of T,

The local computation steps for the R,, are based on a
constraint system that represents the relational behavior
models (more precisely, their characteristic functions) as
ordered binary decision diagrams (OBDDs, see [Bryant
92]). This data structure allows for fairly efficient
realization of the required manipulations of the constraints,
such as join or projection on a subset of variables.
However, this also results in the limitation that the system
can currently only transform behavior models that have
tinite domains.

The resulting qualitative domain abstraction T, can be
applied to the system model, leading to a transformed
system description. Variables in the model that are found to
have no induced distinction after computation (i.e. whose
domain consists of one element only) can optionally be
eliminated form the model. If all variables of a component



have been eliminated, this may eventually lead to the
elimination of a component from the model.

The transformed system description can be fed back into
the Razr framework and be used for task such as behavior
prediction, diagnosis, or test generation. Additionally, it is
possible to specify domain abstractions that link the
elements of DOM, to finer domain, in particular to a subset
of the real numbers. By concatenating such domain
mappings, this allows to maintain a mapping to the real
numbers for the induced qualitative values. This
information is used by a signal transformation component
that accomplishes the transformation of (real-valued)
sensor readings to the abstraction level of the qualitative
model.

The next section presents results of running the
implementation on two small examples. Note that since T,
characlerizes an upper approximation of the induced
partitions only, the computed sets of distinctions will
necessarily be incomplete.

Computational Results

Container Filling Example

We first present the application of our theory and
implementation to an instance of the container filling
problem that was presented in the introduction.

Initial distinctions: The domain for all pressure, flow and
parameter variables were chosen to be a 19-valued domain
that consists of open intervals and points between them:

Hnbsz {{(-m, '4)}) {'4}! {('4) '3)}v {'3}} weey {(3)4)}: {4}3
{(4,02)}}.

The model formulated in this domain consists of 12
variables and 2 mode variables, which means it has a tuple
space (i.e. size of DOM(v)) of 192 = 8.9-10",

Target distinction: There are two behavior modes for the
container component, one that captures the situation where
the container level is within the specified range (h + Ah)
and one that represents overflow. Thus, the target
distinction for the example can be stated by giving a
distinction for the mode variable of the tank component.

Induced distinctions: What we are after is an answer 1o
the question whether or not we have to include the
transition delay of the valve’s closing operation, denoted At,
in the model. The following result is obtained for
parameters A__, Ah, B, and T,.p set as

Amax = {(0,1)},

Ah=((2,3)},

B={1},

Tl.pe {{(2,3)}, {3}, {B3.4)}}.

After computation of the composed relation Ry, 21036
tuples remain consistent for the valve component. The
algorithm determines the following induced distinctions for
the valve delay parameter:
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]'_‘[mal. valvedi 1 = {('m’-4)‘ -4’ (-4"3)> “31 (_3,_2}, _29 ('25"] )s
-1, (-1,0), 0, (0,1), 1}
Hind. valve.dy, 2 . {(] 92)1 29 {2'?3); 39 (3,4)1 45 (45 m)}

The first partition element corresponds to situations where
overflow is not possible. The second partiton element
corresponds to situations where overflow of the container is
possible (though will not necessarily occur). This means
that all situations where the delay during closing the valve
is part of the first partition element (i.e. is equal to or
smaller than 1) are equivalent to no (zero) delay. In other
words, the transition delay can be neglected in the model of
the valve if it is part of the first qualitative value, and must
be considered in the model if it is part of the second
qualitative value.

To give an idea of the problem size, a multiplication
constraint that uses the base domain consists of 713 tuples
out of a tuple space of 19° = 6859 (which amounts to a ratio
of 10.4% consistent combinations of values; for a domain
that consists just of signs, the respective constraint would
have had 9 tuples out of a tuple space of 3' = 27, i.e. a ratio
of 33.3% consistent tuples). The constraint describing the
valve equation mentioned in the introduction, for instance,
has 23075 tuples. Compared to [DOM,(v))l= 8.9:10" for the
original behavior model, the abstracted behavior model has
a tuple space It ,(DOM,(v)l of only 1.2-10".

We can also start with a given parameter for the delay and
ask for a partition for the mode variable of the valve
component, given the same target distinction for the
container. Depending on the magnitude of the delay, it will
turn out to be necessary or unnecessary to explicitly
distinguish the two behavior modes of the valve ("closing"
and "closed"). For the given parameters, we obtain one
partition element,

I1

i.e. the distinction between the two behavior modes
becomes irrelevant, if and only if the parameter for delay is
restricted to the first qualitative value.

nd, valve.mode o {CIOSInga CIOSCd}

Pedal Position Sensor Example

As a second example, we list results for a problem that was
originally presented in [Struss Sachenbacher 99]. The
device in Figure 3 shows a pedal position sensor in a
passenger car. Its purpose is to deliver information about
the position of the accelerator pedal to the electronic
control unit (ECU) of the engine management system. The
position is sensed in two ways, via the potentiometer as an
analogue signal, v, and via the idle switch as a binary
signal, v_, ... The idle switch changes its state at a particular
value of the mechanically transferred pedal position. The
reason for the redundant sensing of the pedal position is
that the signals from the potentiometer and the switch are
cross-checked for plausibility by the on-board control
software of the ECU. The two possible values of v,
correspond to two ranges of v, separated by a particular
voltage value.
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Figure 3: The Pedal Position Sensor

If we use qualitative models which distinguish only e.g.
between voltage "gnd", "between" and "batt" as convenient
for many applications, we are unable to perform tasks such
as diagnosis or design verification, because these tasks
refer to the redundancy which purposefully has been
implemented in the system. The problem is that the
particular distinction in the domain of v,, cannot be
anticipated in a generic model of the potentiometer,
because the voltage landmark would not make any sense in
a different structure.

We would like to have a composition of component models
that make just the right distinctions required by the other
components and the task the model is used for. To this end,
we can use approach and the software component outlined
above to compute an approximation of the necessary
qualitative distinctions.

Initial distinctions: We chose

Iy« oisee = {{L0.2D) ), {[.2,D)}, {[4,.6)}, {[.6,.8)},
{(.8,1.0)}}

for variables involving voltage and likewise to values
I ={{0}, {.2}, {4}, {.6}, (.8}, {1.0}}

obs, *.posinon

for variables involving position. The switch-over parameter
of the idle switch component is specified as the value {.4}.

Target distinction: This is determined by the goal to
distinguish between the ground voltage, corresponding Lo
partition element {[0,.2)}, and the rest of the domain for
terminal variable v, , (termed switch.output.voltage in the
model) of the control unit component:

I1 = {[0,.2}
= {[.2,4), [ 4,.6), [.6,.8), [.8,1.0)}

wrg, switch.output.voliage, 1

wrg, swich.oupulvolage, 2

Induced distinctions: The algorithm first determines that
it is necessary to distinguish between the two values

I = {right}

= {left}

i, switch.ssate, |

indl, swilch siate, 2

for the state of the switch, and then induces two qualitative
values

1 = (.6, .8, 1.0}

ind, pedal position, 1

I—Imu. pedal position, 2 {0, .2, 4}

for the domain of the pedal position. The resulting partition
for v, (termed potentiometer.output.voltage in the model)
consists of three partition elements:

=1{[0,.2), [.2,.4)}
= {[-4,.6)}
= {[.6,.8), [.8,1.0)}

The first qualitative value corresponds to the situation
where v, equals ground voltage, the second qualitative
value corresponds fo the situation where v, , equals
battery voltage, and the third qualitative value corresponds
to the situations where the position of the switch and thus
the voltage of v, is ambiguous.

The resulting abstracted behavior model that achieves the
same larget distinctions as the original model has a tuple
space of 9216. The original model, in contrast, had a tuple
space of 5.6- 10",

nd, prentiometer outpar voliage, 1
nil, pedentiomeser.outpot voltage, 2

ind, podentiometer.outputvoliage, 3

Discussion and Future Work

The work presented here has provided us with a theoretical
foundation to analyze the fundamental problem of
automated qualitative modeling in the context of model-
based systems, and a first implementation of an algorithm
to compute an approximate solution. The first experimental
results were encouraging, as even the incomplete algorithm
produced useful model abstractions. More experiments will
have to be done, and some will aim at producing models for
tasks and problems in our application domains of car
subsystems and process-oriented modeling and diagnosis.
Answering the question to what extent we can scale up
requires, on the one hand, analysis and improvement of the
operations on the underlying OBDD encoding of the
models. On the other hand, further improvements of the
propagation algorithm need to be explored. For instance,
rather than starting with the granularity of the base domain,
there could be an iterative, top-down approach for
determining qualitative distinctions which starts with some
small set of partitions and refines them if there is evidence
for its utility. This evidence could be provided by the labels
of the induced qualitative values. They indicate which
partition elements might be the best candidates for
"splitting" (e.g. qualitative values with maximum label size,
since this means that a large number of target partition
elements is consistent with this value, i.e. the value lacks
"discriminating power").

Our deeper theoretical analysis compared to [Struss
Sachenbacher 99] has shown that different tasks impose
different requirements and definitions, e.g. consistency
check vs. prediction, independent observations vs. observed
tuples, and target distinctions vs. initial distinctions.
Another important technical aspect has not been discussed
in this paper, namely the relation between an algorithm for
computing significant distinctions and the algorithm that
uses the resulting model for prediction or diagnosis. For
instance, if we had an algorithm that would actually obtain



a maximal abstraction based on performing global
consistency checking, a run time system that is performing
value propagation on the resulting abstract model only is
likely to be unable to take advantage of it and might miss
some distinctions.
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