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Abstract

In many situations a system is described by several
competing models . In order to distinguish among th e
proposed models, further information about the be-
havior of the system is required . One way to obtai n
such information is to perform suitably chosen pertur -
bation experiments . This paper introduces a metho d
for the selection of optimal perturbation experiment s
for discrimination among a set of competing dynamica l
models . The models are assumed to have the form of
semi-quantitative differential equations . The method
employs an optimization criterion based on the entropy
measure of information .

Introduction
Scientists and engineers are frequently faced with sit-
uations in which a given system can be described b y
several competing models. The predictions of the mod-
els match available observations about the system be-
havior obtained in one or more experiments . When
analyzing the synthesis rate of a product in a catalize d
chemical reaction as a function of the partial pressures
of the input substances, one often arrives at severa l
equations that all satisfy a set of measurements (Swaa n
1992) . For the mitotic clock of early embryos, a doze n
of models predicting the observed periodic behavior of
the concentrations of key proteins have been suggeste d
(Obeyesekere, Tucker, & Zimmerman 1992) .

In order to identify which of the proposed models
best describes the real setting, new observations have
to be made. These can be obtained by performing sup-
plementary perturbation experiments on the system . In
a perturbation experiment the structure of the system
and/or the experimental conditions are changed . An
experiment discriminates between the competing mod-
els, if the predictions of some of the candidates, whic h
have been properly modified to reflect the experimen-
tal change, fit the newly obtained data whereas others
show a lack of fit . The problem of experiment selec-
tion for model discrimination can then be defined as
the problem of selecting a perturbation that gives ris e
to observations matching the predictions of as few of
the proposed models as possible .

The imprecision of measurements in the experiments,

and the complexity of the system to be understood, d o
not always permit detailed quantitative analyses to b e
performed . Both the lack of accurate and reliable mea-
surements, and the approximate models of real world
systems, appeal to a qualitative or a semi-quantitativ e
approach to the model discrimination problem . We as-
sume that the models are given in the form of semi-
quantitative differential equations . Predictions, in the
form of intervals for the model variables, are derive d
by means of semi-quantitative simulation techniques .
Measurements are considered to be intervals as well .

This paper presents a method for the systemati c
choice of perturbation experiments for model discrimi-
nation. Experiments are selected on the basis of an en-
tropy criterion suggested by Box & Hill (1967), whic h
measures the information increment provided by each
of the experiments . The concept of entropy as a dis-
crimination criterion has also been used in the wor k
of Reilly (1970), and Fedorov (1972) in statistics, and
in the work of de Kleer & Williams (1987) and Strus s
(1994b) in model-based diagnosis . A novel aspect of
our work is that we extend this concept to the cas e
of perturbation experiments and to situations in whic h
experimental systems are described by nonlinear, dy-
namical models .

The in-principle applicability of our approach is illus -
trated on a set of competing models of an oscillatory ,
second-order system. We will consider six models of a
mass-spring system and illustrate the choice of suitabl e
perturbations to discriminate between the models . The
principles involved in this example are applicable to th e
investigation of more complex and less understood os-
cillating systems .

The presentation starts with a description of th e
problem of model discrimination . A number of ba-
sic concepts are introduced and the relationship be-
tween models and experiments is given . The criterio n
for choosing a maximally-discriminating perturbation
is described in the next section, and embedded in a
simple algorithm for the discrimination of a set of com-
peting models . Next, the application of the method is
illustrated on the example . The last section discusses
limitations and extensions of our method, in the contex t
of related work in statistics and model-based diagnosis .
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Figure 1 : Damped mass-spring system and two QDEs m l and m 2 describing the system (for the notation, see
Vatcheva & de Jong (1999)) . The variables refer to the position x, velocity v, acceleration a, mass m, gravity
constant g, initial spring elongation L and friction constant c. The following intervals complete the QDEs to SQDEs :
range(m) E [2 .95, 3 .05], range(g) _ [9 .83, 9 .83], range(L) = [5 .8, 6 .0], range(c) = [0 .3, 0 .4] . The initial values for th e
position and the velocity are [0 .9,1 .1] and [0, 0], respectively. The constant k is specified by range(k) = [6, 6] .

Model discrimination by perturbatio n
experiments

In this section the concepts of experimental system, per-
turbation experiment and model perturbation are intro-
duced. Since the focus on the paper is on the method for
model discrimination, we provide an intuitive explana-
tion of these concepts rather than giving a well-founde d
formalization framework. Attempts to formalize dis-
criminating tests can be found in (Mcllraith 1994) an d
(Struss 1994a) .

The systems we will be concerned with in this pape r
are (physical) systems controlled in experiments, als o
called experimental systems. An example of an experi-
mental systems is a cell culture allowed to grow unde r
controlled environmental conditions, including nutrient
supply and temperature . Control over an experimen-
tal system is achieved by creating and maintaining it s
structure and by regulating the experimental conditions
under which the behavior of the system evolves .

Suppose a set M of models of a system being in-
vestigated in an experiment has been proposed . Let
p(mi ) be the a priori probability of model mz E M to
be the correct model of the system . The model prob-
abilities can be derived from preliminary observation s
on the system behavior or theoretical considerations .
If no prior knowledge about the relative plausibilitie s
of the models exists, equal probabilities are assumed .
We say that the models m2 E M are competing. M
is assumed to be complete, that is, Ern,EM p(mi) = 1 .
This may seem a strong assumption, but its practica l
consequences are limited as its violation can be tested .

In this paper we will model experimental systems
by means of semi-quantitative differential equation s
(SQDEs), that is, qualitative differential equation s
(QDEs) enhanced with numerical information . The
semi-quantitative information completing a QDE take s
the form of numerical ranges added to landmarks and
envelopes for monotonic function constraints (Berleant
& Kuipers 1997) . In this way, uncertainty about the
exact values of parameters and the precise form o f
functional relations can be expressed . Fig. 1 shows
two SQDEs describing a simple experimental system, a

damped mass-spring system. The models assume tha t
the forces playing a role in the experiment are a spring
force and a friction force, but they differ in the precis e
nature ascribed to the former . The initial ranges for
the position x and velocity v are considered to be part
of the model .

In order to distinguish between the models, addi-
tional information about the system is required . This
information can be obtained by performing a suit-
ably chosen perturbation experiment . In a perturba-
tion experiment the system structure or the experi-
mental conditions are modified . By allowing changes
in the system structure we extend existing approache s
to model discrimination which are only focused o n
changes in the system inputs, e .g . (Box & Hill 1967 ;
Reilly 1970) . The changes have to be reflected on the
competing models in such a way that the operations on
a model correspond with perturbations of the experi-
mental system (Fig . 2) .

model
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perturbation

	

perturbatio n

perturbed model

	

perturbed experimental system

prediction

	

execution
of experimen t

predictions

	

observations

Figure 2 : Correspondence between perturbation exper-
iments and model perturbations .

In order to predict the consequences of a perturba-
tion, we employ the semi-quantitative simulation tech-
niques Q2 and Q3 (Kuipers 1994 ; Berleant & Kuipers
1997) . Q2 and Q3 exploit the ranges of landmarks and
the envelopes of monotonic function constraints in a n
SQDE to refine a qualitative behavior tree produce d
by QSIM. More specifically, they rule out qualitative
behaviors or transform qualitative behaviors into semi -
quantitative behaviors (SQBs) in which the qualitative
values are annotated with numerical ranges . Fig. 3
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Figure 3 : SQBs obtained from the model m l in Fig. 1 . The SQB in (b) is obtained after a perturbation of m 5 ,
increasing the initial velocity from [0,0] to [1 .9, 2 .1] .

shows the oscillations predicted by model ml , before
and after a perturbation that consists in releasing the
object with nonzero initial velocity .

A semi-quantitative behavior is a prediction of the
interval value of the variables at the distinguished time-
points, the time-points at which some variable change s
its qualitative value . For instance, the SQB in Fig . 3(a )
shows that at t3, the time-point at which x reaches its
maximum for the first time, the value of x lies in th e
interval [—0 .94, -0 .51] .

In addition to predictions of the value of a variabl e
at a time-point, we might be interested in knowing the
difference in value of a variable before and after a per-
turbation . Predictions of the relative interval value o f
variables can be obtained by subtracting the predicted
interval values of the variable at corresponding distin-
guished time-points in the behavior before and after a
perturbation, so-called meaningful pairs of comparison
(de Jong & van Raalte 1999) . As a consequence of th e
use of semi-quantitative information, these predictions
may be weaker than necessary. We use the compara-
tive analysis technique SQCA to obtain more precis e
predictions (Vatcheva & de Jong 1999) . The informa-
tion in Fig . 3 allows one to infer, by subtracting interval
ranges, that the difference x — x at the pair of compar-
ison (t3, i4) lies in the interval [—0 .97, -0 .19] . x and
t refer to variables in the perturbed system . Applica-
tion of SQCA refines this prediction by narrowing the
relative value to [—0 .93, -0 .19] .

The amplitude in the behavior of the perturbed mass -
spring system, or the difference in amplitude in the be-
haviors of the perturbed and unperturbed systems, ar e
examples of behavioral features that help in discrim-
inating competing models of an experimental system .
Let P be the sets of possible predictions of the inter-
val values and relative interval values of the variables
of an experimental system before and after a pertur-
bation . A predicted behavioral feature is an interval
value calculated from a set of predictions by means o f
an arithmetic function f : P --> 1(R) . '

I( ) is the set of intervals with bounds in R .

The function f may simply select a predicted valu e
or relative value from the set of predictions P, as i n
the case of a predicted amplitude . An example of a less
trivial feature is the frequency of an oscillation, whic h
can be calculated from the interval ranges of the dis-
tinguished time-points of two successive maxima. The
concept of behavioral feature can be generalized to mor e
complex features, in particular to qualitative feature s
abstracted from the predicted behaviors of the systems .
In the case of a mass-spring system, for instance, th e
mass could be increased to such an extent that the
damped oscillation changes into an overdamped return
to the rest state .

In order to be useful, predicted behavioral feature s
need to correspond with observed behavioral features of
the experimental system . That is, it must be possibl e
to relate a predicted behavioral feature to some direct
or indirect measurement of quantities of the system .
As measurements will be assumed to have the form of
confidence intervals, observed behavioral features ar e
intervals .

The results of a perturbation experiment can be used
to recompute the probabilities of the competing mod-
els . Models of which the predictions do not agree with
the observations will have an a posteriori probabilit y
equal to O . The model discrimination problem can now
be intuitively stated as follows : find the perturbation
experiment with values for the observed behavioral fea-
tures that make a maximum number of models improb-
able . In the next section, we elaborate this intuition by
means of an approach based on concepts from informa-
tion theory.

Method for the selection of
perturbation experiments

In order to maximally discriminate between a set of
models, we will be interested in finding the perturbation
yielding the highest increment in information (Box &
Hill 1967) . Consider a behavioral feature Y define d
by some function f , mapping to intervals in a domai n
D. Consider a perturbation experiment e E E, whose
outcome yields a value Y e = [y e — e/2, y e + e/2] of the
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behavioral feature, where y e is the middle point of th e
interval Ye and e is the size of the confidence interva l
for Y . We can formulate the information increment of

e OH(e) = —

	

p(mi ) Inp(mi ) +
m i EM

E p(mi I Ye) lnp (mi I Ye), (1 )
m i E M

where p(mi) and p(mi I Y e ) are the a priori and a
posteriori probabilities of model mi. The function OH
reaches its maximum when the a posteriori probabilitie s
of all competing models but one are O . On the othe r
hand, a minimal value is attained when the a posterior i
probabilities are equal .

The p(mi I Y e )s in (1) are not known, since they ar e
determined by the outcome of the experiment . How-
ever, we can express the expected value of OH in terms
of the probability distributions g{e,Y} of the behavioral
feature Y . For brevity, gz instead of g0 e 'Y} will be
further used if no confusion about the behavioral fea-
ture being considered is possible . The value of Y pre-
dicted by model mi under perturbation e is an interval
V° C D, with a probability distribution gz : D --> IE8> o
defined as follow s

[y— 2 ,y+ 2] nVie l

Nie l

, y E [Vie +E/2, Vie — E/2], P

, y E [Vie — E / 2 , Vie + E/ 2] ,
,y cz [Vie — E/2, Vie + E/21,(3 )

where Vie and Vie denote the lower and the upper boun d
of Vie , respectively . Fig . 4(a) illustrates the function g 3
for an experiment e consisting of replacing the objec t
in the mass-spring system by a lighter object (e4 in the
next section) . The behavioral feature considered is th e
interval value for the amplitude of the system and E is
taken to be 0 .1 .

Call the expected value of the information incremen t
OJ(e) . By definition ,

OJ(e) = f OH ( e )9 e (y )dy ,

	

(4 )
ED

0.41 0.46 0.51

	

0.62 0 .67 0.72

	

0

(a)

Figure 4 : (a) A plot of the function g3 for the inter-
val value of the amplitude of the mass-spring system i n
an experiment consisting of replacing the object by a
lighter object (experiment e4 in the next section) . The
prediction of model m3 (see next section) perturbed
according to this experiment is V3 = [0 .46, 0 .67], and
e = 0 .1 . (b) A plot of ge defined for the same exper-
iment and behavioral feature, and the six competin g
models given in Fig . 1 and Fig . 6 .

Fig . 4(b) shows the plot of the function ge for the ex-
periment and the behavioral feature mentioned above ,
and the predictions of the six competing models given
in Fig . 1 and Fig . 6 .

By substituting the expression for OH(e) in (4) we
get,

OJ(e) _

p(m j I Y) =

	

ge(y)

via the Bayes rule . Combination of (6) and (7) gives ,
after algebraic simplification ,

OJ(e) _ > p(mi) f 9i (y) In 9e(y) dy

	

(8 )
miEM

	

yED

	

g (y )

If several behavioral features Y1i . . . , Yk are taken
into account, the formula in (8) remains unchanged ,
except for replacing y by y, D by D = D 1 x . . . D k ,
the distributions gi (y) by joint probability distributions
g e'Y1'"''Y'`}(y), and the integral by a multiple integral .

,[y— 2 ,y+2]f1Vie ~ ,

,[y—y +] f1Vg

where I • I denotes an interval length . g2(y) determines
the probability of the empirically-determined value o f
Y to be [y — e/2, y + e/2] if the model mi is the correct
model of the system. (2) can be replaced by the follow-
ing equivalent expression, where the gfs are defined as
piece-wise linear functions :

y—Vie +e/2

Vie I

9(Y) = Nie l

— y+Vie +E/2

Nie l

0

0

, y E [Vie — E/2, Vie + E / 2] ,

where
9e(y) _ p(mi)ga(y ) .

m iEM
(5)

00 .2

	

0 .4

	

0 .6 0 . 0

p (mi) f 9i (y) {
miEM

	

yE D

E p(m i I Y) Inp (m i I Y.) — (6 )
m j EM

i p(m i)lnp(mi )}dy ,
m i EM

where Y = [y — c/2, y + E/2] and
p (m j)9l(y ) (7 )
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Y2 are independent, that is ,
{e,Yi }

	

{e,Y2 }
9i

	

(yi)9 i

	

(Y2) .
From the last two properties, it is readily seen that i f
the measurements in the experiment are independent ,
an experiment in which a set of quantities are measure d
is as informative as performing the same experiment a
couple of times, each time measuring a single quantity .

The optimal next perturbation experiment to per -
form is the one for which (8) is maximized . Intuitively,
the criterion favors experiments for which the corre-
sponding model perturbation results in predicted inter-
vals of the behavioral feature that overlap as little a s
possible . On average, less overlap of the intervals wil l
increase the chance that a measurement of the featur e
discriminates between the models . This can be illus-
trated by means of the predictions of the relative am-
plitude by three alternative equiprobable models of th e
mass-spring system. Consider the case of a perturba-
tion e l replacing the medium with almost a frictionless
medium (setting c to .0), and a perturbation e3 increas-
ing the mass to [11 .95,12.05] (see Fig . 5) . Notice that
the expected information increment is higher for th e
second experiment, as the predicted intervals have les s
overlap .

s,

u.°9

i

	

i
-0 .32

	

-0 .21 -0.19

	

0.33 0.4 0.44

	

(b )
Figure 5 : Two sets of predicted behavioral features (rel-
ative interval values for the amplitude) . In (a) V2' V3 1
and V5' are obtained from models m2, m3 and m5 , and
their perturbations according to e l (see next section) .
In (b) V2", V3' and V5e ' are obtained from the same
models and their perturbations according to e 3 . In (a )
OJ(el) is 0.0176, and in (b) OJ(e 3) is 0 .1246. The
models have been assumed equiprobable .

The soundness of the simulation algorithms referred
to above guarantees that the models will never be falsely
discriminated by a perturbation . If the measurement
of the corresponding observed behavioral feature is cor-
rect, this implies that a model will never be rejected o n
false grounds . However, as a consequence of the incom-
pleteness of the algorithms, competing models may fai l
to be discriminated while they should be .

On the basis of the selection criterion, a simple algo-
rithm can be imagined to identify the model from M
(if any) that best describes the real system by means
of a minimal number of experiments . Let 0 be a num-
ber between 0 and 1, determining the threshold abov e
which we consider a model to be the best representatio n
of the system . That is, m i is assumed to best describe
the system if p(m i ) > O. Let p(m j ) be the a prior i
probabilities of the models and E is a set of pre-define d
perturbation experiments .
set Ediscr to {}
while Drn i E M : p(mi ) 0 and dmi E M : p(m i ) < 0
and not E empty do

determine e E E for which OJ(e) is maxima l
perform experiment corresponding to e, determine Y '
compute the a posteriori probabilities p(mj iY e ) of

the model s
set p(mj ) to p(mj iY e )
add e to Edisc r
remove e from E

The algorithm selects perturbation experiments till one
of the following happens : a model has a sufficiently hig h
probability, all models have zero probabilities or all pos-
sible experiments have been executed. If the algorithm
terminates with p(mi ) = 0 for all models, obviously the
assumption for completeness of M is violated .

Behavioral features are values of some properties o f
the system at a certain time-point, a pair of com-
parison, a sequence of time-points, or a sequence of
pairs of comparisons . If many behavioral features are
possible we can modify the algorithm above not only
to select the best perturbation experiments but als o
to determine which set of behavioral features to b e
taken into account . This means that we can spec-
ify what needs to be measured and at which time-
points in the experiment . The problem of selectin g
behavioral features is related to the problem of se-
lecting best measurement points for the discrimina-
tion between a set of competing diagnoses in model-
based diagnosis, e .g. (de Kleer & Williams 1987 ;
Struss 1994b) . If F is the set of all possible behavioral
features, at each step we then determine not only the
experiment e E E but also the set of features Y E F fo r
which OJ is maximal . Then the tuple (e, Y) is added
to Ediscr and this tuple is not considered in subsequen t
iterations .

Example and evaluation

Consider the six models of a mass-spring system liste d
in Fig. 1 and Fig. 6 (Stoker 1992) . The models differ

Intuitively, the criterion now tries to maximize the non-
overlapping parts of the k-dimensional boxes in D that
are defined by the values for the behavioral feature s
predicted by the m is .

Denote with OJ(e, Yl , Y2 ) the expected increment of
information of the experiment e when the behavioral
features Y1 and Y2 are both taken into account, and
OJ(e,Y2 1Y1 ) the expected increment of information o f
measuring Y2 if Yl has been measured. The following
properties of LJ are easily provable (Fedorov 1972) :

1. OJ(e) > 0 ;
2. OJ(e,Yi ) +OJ(e,Y2IYi) = OJ(e,Y1,Y2) ;
3. OJ(e, Y2 1Y1 ) < OJ(e, Y2 ) with equality iff Yl and

9{e,Y1.,Y2}
(2J1, 2J2) =

V
3
r ,

k
V2' 1K	

0

	

0 .55 0.56 0 .58

	

(a)

v3.
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Figure 6 : Models m 3 -m 6 together with m l and m2 in Fig. 1 form a set of competing models for the mass-sprin g
system. Models m l and m 3 assume linear spring force . Models m 2 and m 4 assume soft spring forces (the stiffness
of the spring decreases with the displacement), while the spring force in m 5 and m6 is hard (the stiffness increase s
with the displacement) . In m l , m2 and m5 the acceleration depends linearly on the velocity . The models m3i m4
and m6 assume quadratic dependency. The meaning of the variables and the constraints for QV(±) and QV(v) is
the same as in Fig . 1 .

el e2 e3 e4 e 5
ml [0 .9, 1 .11 [0 .12, 0.39] [0 .8, 1 .011 [0 .63, 0 .97] [1 .13, 1 .48] AJ( e i) AJ( ei )m2 [0 .9, 1 .1] [0 .11, 0.38] [0 .81, 1 .01] [0 .62, 0 .88] [1 .57, 2 .02] el 0 .0

e 1 0 . 0
M3 [0 .9, 1 .1] [0 .29, 0 .52] [0 .88, 1 .01] [0 .46, 0 .67] [1 .24, 1 .65] e2 0 .5315

e 2 0 .316 3
m4 [0 .9, 1 .1] [0 .34, 0 .55] [0 .8, 1 .0] [0 .41, 0 .62] [1 .22, 1 .64] e3 0 .0934

e3 0 .1239
m5 [0 .9, 1 .1] [0 .18, 0.43] [0 .81, 1 .01] [0 .64, 0 .86] [1 .34, 1 .77] e4 0 .7499

e 5 0 .1694
m6 [0 .9, 1 .1] [0 .23, 0 .51] [0 .83 ,

(a)
1 .02] [0 .41, 0 .62] [1 .09, 1 .47] e5 0 .6504

(b) (c)

Table 1 : (a) Predictions for feature fl , the interval value for the amplitude, derived from the models for the pertur-
bations e l , • , e5 . (b) The values of AJ computed for all perturbations, and (c) some values of AJ after applicatio n
of e4 (see text) .

in the terms for the spring and the friction force . The
experiment consists in stretching and then releasing th e
spring . Suppose that damped oscillations to the res t
position have been observed and assume the following
perturbation experiments can be performed:

e l Replace the medium by an approximately friction -
less medium (c = 0) ;

e 2 Replace the medium by a more compact medium
(c = [2 .85, 3 .15]) ;

e3 Test with a heavier object having mass [11 .95,12.05] ;
e4 Test with a lighter object having mass [0 .7, 0 .8] ;
e5 Release the object with initial velocity [1 .9, 2 .2] .
We consider four behavioral features :

Yl is the interval value of the maximum distance from
the rest position (the amplitude) ;

Y2 is the interval value of the frequency of the system;
Y3 is the relative interval value of the maximum ampli-

tude for the perturbed and the original system ; and
Y4 is the relative interval value of the frequency .

Values for Yl to Y4 have been derived from the per-
turbed models by means of semi-quantitative simula-
tion and comparative analysis . The predicted interval s
for the amplitude are shown in Table 1(a) . The firs t
perturbation gives rise to identical predictions from al l
models . It is evident, even without looking at the value
of AJ(e l ), that the corresponding experiment will never

be able to distinguish between the models . The rest o f
the perturbations also do not give distinct intervals for
this feature, but the predictions are not entirely over -
lapping. Hence, the measurements in the corresponding
experiments may discriminate between at least some of
the models .

Assume the amplitude of the system to be the onl y
quantity measured in the experiments . Suppose the
models have equal a priori probabilities p(m l ) = . . . =
p(m6 ) = 1/6 and 0 = 0.75, that is, a model is consid-
ered best if its probability is larger than 0 .75. At the
first step of the algorithm, e4 is chosen since it max-
imizes LW (see Table 1(b)) . Assume the experiment
is executed and a measurement [0 .4207, 0 .5207] is ob-
tained. The measurement is not consistent with th e
predictions derived from m l , m 2 , and m5 for this per-
turbation and their a posteriori probabilities, therefore ,
become O. The a posteriori probabilities of the othe r
three models after the experiment are p(m 3 ) = 0.2330 ,
p(m 4 ) = 0.3835 and p(m6 ) = 0 .3835 . Ediscr is set
to {e4 } . In the next iteration, e 2 is selected (Ta-
ble 1(c)) . Assume the measurement [0 .3080, 0 .4080] is
obtained which gives rise to the posteriori probabilitie s
p(m3 ) = 0 .2794, p(m4) = 0.3428 and p(m6 ) = 0.3778 .
e 2 is added to Ediscr . Next, e5 is chosen. A mea-
surement [1 .1340,1 .2340] causes p(m 3 ) = 0 and the
algorithm terminates, giving m 6 as the most appro-
priate model of the system with p(m6 ) = 0.8964, an d
Ediscr = {e4, e2, e5} .
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In order to evaluate the performance of the metho d
we have adopted the following strategy . First, one of
the models (m6) was arbitrary selected . "Experimen-
tal" data was then produced by generating random in-
tervals within the predictions of m 6 . The length of th e
random intervals was set equal to the size of the con-
fidence interval of the behavioral feature (E = 0 .1 in
the case of the amplitude) . Finally, the algorithm o f
the previous section was applied given these "measure-
ments" . This procedure was repeated 20 times and the
results analyzed .

In only 15% of the cases the model that was used t o
generate the data was identified as the single remainin g
candidate . In the rest of the cases the algorithm ter-
minated with two to three candidate models that coul d
not be discriminated . On average, for the identification
of the model 4 experiments were necessary . For compar-
ison, when the size of the confidence interval was taken
to be 0.01, in 40% of the cases m 6 was identified with
average number of experiments 2 .5 . The results show ,
not surprisingly, that when the measurement error is
smaller, better discrimination is achieved .

Now suppose all four features are considered, th e
other circumstances remaining the same . Assume fur-
ther that the measurements of the amplitude and th e
period are independent . The joint probability distribu-
tion is then given b y

g{e,Y1,Y2,Y3,Y4}
(yl,y2,y3,y4) =

{e,Yi,Y3}

	

{e,Y2,Y4}

	

)
9i

	

(yl,y3)9i

	

(y2,y4 ,

where

gi

	

f {e,Yl}

	

{e,Y3 }
(yl, y3) = l9i

	

(~Jl)9i

	

(y3 )
0

with A = [a — Ea/2, a + Ea/2] the amplitude of the un-
perturbed system, and

9Z
e,Y2,Y4}

(y 2, y 4) = {9i
{e,Y2}

(y2)9
e,Y4}

(y4) if y4 = t — y2 ,
0

	

otherwise ,

with T = [t — E t/2, a + e t /2] the period of the unper-
turbed system . a and t have been taken 0 .8 and 4 .2 ,
respectively - values that agree with the predictions o f
all models, and Ea = E t = 0.1. In this case, e5 maxi-
mizes OJ and it is selected as the best experiment (see
the table below) . Values of [1 .134, 1 .234] and [4 .12, 4 .22 ]
for the amplitude and the period of the perturbed sys-
tem, for instance, give rise to the posteriori probabilitie s
p(ml) = . . . = p (m5) = 0 and p(m6) = 1 .0 .

el

	

e2

	

e3

	

e4	 e 5
AJ(e i ) 0 .4049

	

1 .1429

	

1 .5548

	

1 .5285 3 .181 1

The above evaluation procedure was again applied 2 0
times, now for the situation that all four features ar e
taken into account . We found that the average num-
ber of experiments necessary to identify model m6 was
1 .1 . In only two of the cases a second iteration in the
algorithm was necessary . In all cases complete discrim-
ination was achieved .

The example illustrates that when more behaviora l
features are considered, a higher efficiency may be
achieved : measuring only the amplitude, we needed 4
experiments to discriminate between the models, whil e
taking into account all four behavioral features a singl e
experiment turned out to be sufficient .

Evaluation by means of random data was used t o
investigate the performance improvement of the algo-
rithm for experiment selection with respect to rando m
selection of perturbation experiments . Assume the am-
plitude of the system is the only quantity being mea-
sured (E = 0 .1) . After 20 times we again obtained
that 4 experiments are necessary, on average, to iden-
tify the correct model . The reasons for the lack of any
improvement of our method with respect to rando m
selection are the large overlap between (some of) the
predictions, the high measurement error assumed, an d
the low number of experiments provided . However, se-
lecting the experiments in random order when all four
features were considered, required 3 .2 experiments o n
average to identify the correct model, whereas select-
ing the experiments by our method required only 1 . 1
experiments .

Discussion and conclusion
We have presented a method for the discrimination
among competing models by selecting suitable pertur-
bation experiments . The method chooses a maximally -
discriminating experiment by means of a criterion base d
on the entropy measure of information . The application
of this criterion was illustrated in an example concern-
ing a set of competing models of a mass-spring sys-
tem. The models in the example had the form of semi-
quantitative differential equations .

Information theory has been used in model-based di-
agnosis (MBD) to distinguish among competing diag-
noses of a faulty system (e .g. (de Kleer & William s
1987); see (Narasimhan, Mosterman, & Biswas 1998 )
for other approaches) . Like our method, these meth-
ods proceed by making new observations on the sys-
tem. However, the work mentioned above is limited
to determining the best measurement point within a
given experiment, while we seek also the best experi-
ment that would permit optimal discrimination . Strus s
(1994b) has extended the approach of (de Kleer &
Williams 1987) by finding the best operating condition s
that would give rise to the most discriminatory obser-
vations . Our work attempts to generalize this metho d
by employing dynamical models and by extending th e
concept of discriminating test to discriminating pertur-
bation experiment .

In statistics, the idea of employing the entropy mea-
sure as a discrimination criterion has been illustrated by
Box & Hill (1967), Reilly (1970) and Fedorov (1972) fo r
distinguishing between quantitative algebraic models .
Kettunen, Sirvio & Varic (1988) have used the entropy
to design observations discriminating among rival wa-
ter quality models . Burke, Duever & Penlidis (1997 ;

if y3 = a—yi ,
otherwise,
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1994) have applied the entropy to discriminate be-
tween copolymerization models . These examples are
restricted to fully numerical models with precise poin t
measurements . In this paper, we have shown how the
criterion can be used when only imprecise, approximat e
observations and nonlinear models of the system are
available.

The idea of planning perturbation experiments fo r
model discrimination based on an entropy measure has
also been proposed by (Karp, Stoughton, & Yeung
1999) . They distinguish between models of a geneti c
regulation network by varying the expression level of in-
volved genes or the influence of external stimuli . Thei r
method, however, is limited to models in the form o f
Boolean networks without feedback and to binary per-
turbations . This article generalizes their approach by
employing more advanced dynamical models and by ex-
tending the concept of perturbation experiments .

The work presented here can be extended into several
directions . In practice, the number of possible pertur-
bations will be infinite when the value of a quantit y
can be changed continuously. The problem of model
discrimination as defined here should then be general-
ized. Instead of selecting a discrete perturbation tha t
has been specified beforehand, a value for the quan-
tity that maximizes (8) has to be chosen . An issue
neglected thus far are the costs associated with exper-
iments . In practice, the costs for performing an ex-
periment may need to be balanced against its expecte d
utility . In these cases, the problem can be reformu-
lated as the selection of an experiment that maximize s
OJ(e)/h(cost(e)), where h is a function depending on
the intended application : one may be interested in ef-
fective experiments without caring about expenses, or
prefer less costly tests .

Further research will concentrate on the extensio n
of the method along the lines mentioned above, it s
comparison with other model discrimination techniques
(e.g . (Atkinson & Fedorov 1975), (Hsiang & Reilly
1971)), and its application to real-world systems . Cur-
rently, we are applying the approach to a model dis-
crimination problem in biology : the regulation of th e
cell cycle in early embryos (Obeyesekere, Tucker, &
Zimmerman 1992) . This system is described by second-
order models and exhibits periodic behavior similar to
the oscillations of the mass-spring example considere d
here .
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