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Abstract

In many situations a system is described by several
competing models. In order to distinguish among the
proposed models, further information about the be-
havior of the system is required. One way to obtain
such information is to perform suitably chosen pertur-
bation experiments. This paper introduces a method
for the selection of optimal perturbation experiments
for discrimination among a set of competing dynamical
models. The models are assumed to have the form of
semi-quantitative differential equations. The method
employs an optimization criterion based on the entropy
measure of information.

Introduction

Scientists and engineers are frequently faced with sit-
uations in which a given system can be described by
several competing models. The predictions of the mod-
els match available observations about the system be-
havior obtained in one or more experiments. When
analyzing the synthesis rate of a product in a catalized
chemical reaction as a function of the partial pressures
of the input substances, one often arrives at several
equations that all satisfy a set of measurements (Swaan
1992). For the mitotic clock of early embryos, a dozen
of models predicting the observed periodic behavior of
the concentrations of key proteins have been suggested
(Obeyesekere, Tucker, & Zimmerman 1992).

In order to identify which of the proposed models
best describes the real setting, new observations have
to be made. These can be obtained by performing sup-
plementary perturbation experiments on the system. In
a perturbation experiment the structure of the system
and/or the experimental conditions are changed. An
experiment discriminates between the competing mod-
els, if the predictions of some of the candidates, which
have been properly modified to reflect the experimen-
tal change, fit the newly obtained data whereas others
show a lack of fit. The problem of experiment selec-
tion for model discrimination can then be defined as
the problem of selecting a perturbation that gives rise
to observations matching the predictions of as few of
the proposed models as possible.

The imprecision of measurements in the experiments,

and the complexity of the system to be understood, do
not always permit detailed quantitative analyses to be
performed. Both the lack of accurate and reliable mea-
surements, and the approximate models of real world
systems, appeal to a qualitative or a semi-quantitative
approach to the model discrimination problem. We as-
sume that the models are given in the form of semi-
quantitative differential equations. Predictions, in the
form of intervals for the model variables, are derived
by means of semi-quantitative simulation techniques.
Measurements are considered to be intervals as well.

This paper presents a method for the systematic
choice of perturbation experiments for model discrimi-
nation. Experiments are selected on the basis of an en-
tropy criterion suggested by Box & Hill (1967), which
measures the information increment provided by each
of the experiments. The concept of entropy as a dis-
crimination criterion has also been used in the work
of Reilly (1970), and Fedorov (1972) in statistics, and
in the work of de Kleer & Williams (1987) and Struss
(1994b) in model-based diagnosis. A novel aspect of
our work is that we extend this concept to the case
of perturbation experiments and to situations in which
experimental systems are described by nonlinear, dy-
namical models.

The in-principle applicability of our approach is illus-
trated on a set of competing models of an oscillatory,
second-order system. We will consider six models of a
mass-spring system and illustrate the choice of suitable
perturbations to discriminate between the models. The
principles involved in this example are applicable to the
investigation of more complex and less understood os-
cillating systems.

The presentation starts with a description of the
problem of model discrimination. A number of ba-
sic concepts are introduced and the relationship be-
tween models and experiments is given. The criterion
for choosing a maximally-discriminating perturbation
is described in the next section, and embedded in a
simple algorithm for the discrimination of a set of com-
peting models. Next, the application of the method is
illustrated on the example. The last section discusses
limitations and extensions of our method, in the context
of related work in statistics and model-based diagnosis.
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Figure 1: Damped mass-spring system and two QDEs m; and mq describing the system (for the notation, see
Vatcheva & de Jong (1999)). The variables refer to the position z, velocity v, acceleration a, mass m, gravity
constant g, initial spring elongation L and friction constant c. The following intervals complete the QDEs to SQDEs:
range(m) € [2.95,3.05], range(g) = (9.83,9.83], range(L) = [5.8,6.0], range(c) = [0.3,0.4]. The initial values for the
position and the velocity are [0.9,1.1] and [0, 0], respectively. The constant k is specified by range(k) = [6,6].

Model discrimination by perturbation
experiments

In this section the concepts of experimental system, per-
turbation experiment and model perturbation are intro-
duced. Since the focus on the paper is on the method for
model discrimination, we provide an intuitive explana-
tion of these concepts rather than giving a well-founded
formalization framework. Attempts to formalize dis-
criminating tests can be found in (MclIlraith 1994) and
(Struss 1994a).

The systems we will be concerned with in this paper
are (physical) systems controlled in experiments, also
called experimental systems. An example of an experi-
mental systems is a cell culture allowed to grow under
controlled environmental conditions, including nutrient
supply and temperature. Control over an experimen-
tal system is achieved by creating and maintaining its
structure and by regulating the experimental conditions
under which the behavior of the system evolves.

Suppose a set M of models of a system being in-
vestigated in an experiment has been proposed. Let
p(m;) be the a priori probability of model m; € M to
be the correct model of the system. The model prob-
abilities can be derived from preliminary observations
on the system behavior or theoretical considerations.
If no prior knowledge about the relative plausibilities
of the models exists, equal probabilities are assumed.
We say that the models m; € M are competing. M
is assumed to be complete, that is, Zmie u P(mi) = 1.
This may seem a strong assumption, but its practical
consequences are limited as its violation can be tested.

In this paper we will model experimental systems
by means of semi-quantitative differential equations
(SQDEs), that is, qualitative differential equations
(QDEs) enhanced with numerical information. The
semi-quantitative information completing a QDE takes
the form of numerical ranges added to landmarks and
envelopes for monotonic function constraints (Berleant
& Kuipers 1997). In this way, uncertainty about the
exact values of parameters and the precise form of
functional relations can be expressed. Fig. 1 shows
two SQDEs describing a simple experimental system, a

damped mass-spring system. The models assume that
the forces playing a role in the experiment are a spring
force and a friction force, but they differ in the precise
nature ascribed to the former. The initial ranges for
the position z and velocity v are considered to be part
of the model.

In order to distinguish between the models, addi-
tional information about the system is required. This
information can be obtained by performing a suit-
ably chosen perturbation experiment. In a perturba-
tion experiment the system structure or the experi-
mental conditions are modified. By allowing changes
in the system structure we extend existing approaches
to model discrimination which are only focused on
changes in the system inputs, e.g. (Box & Hill 1967;
Reilly 1970). The changes have to be reflected on the
competing models in such a way that the operations on
a model correspond with perturbations of the experi-
mental system (Fig. 2).

model experimental system

perturbation perturbation

perturbed model perturbed experimental system
prediction execution
of experiment
predictions observations

Figure 2: Correspondence between perturbation exper-
iments and model perturbations.

In order to predict the consequences of a perturba-
tion, we employ the semi-quantitative simulation tech-
niques Q2 and Q3 (Kuipers 1994; Berleant & Kuipers
1997). Q2 and Q3 exploit the ranges of landmarks and
the envelopes of monotonic function constraints in an
SQDE to refine a qualitative behavior tree produced
by QSIM. More specifically, they rule out qualitative
behaviors or transform qualitative behaviors into semi-
quantitative behaviors (SQBs) in which the qualitative
values are annotated with numerical ranges. Fig. 3
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Figure 3: SQBs obtained from the model m; in Fig. 1. The SQB in (b) is obtained after a perturbation of m;,

increasing the initial velocity from [0,0] to [1.9,2.1].

shows the oscillations predicted by model my, before
and after a perturbation that consists in releasing the
object with nonzero initial velocity.

A semi-quantitative behavior is a prediction of the
interval value of the variables at the distinguished time-
points, the time-points at which some variable changes
its qualitative value. For instance, the SQB in Fig. 3(a)
shows that at 3, the time-point at which z reaches its
maximum for the first time, the value of z lies in the
interval {—0.94, —0.51].

In addition to predictions of the value of a variable
at a time-point, we might be interested in knowing the
difference in value of a variable before and after a per-
turbation. Predictions of the relative interval value of
variables can be obtained by subtracting the predicted
interval values of the variable at corresponding distin-
guished time-points in the behavior before and after a
perturbation, so-called meaningful pairs of comparison
(de Jong & van Raalte 1999). As a consequence of the
use of semi-quantitative information, these predictions
may be weaker than necessary. We use the compara-
tive analysis technique SQCA to obtain more precise
predictions (Vatcheva & de Jong 1999). The informa-
tion in Fig. 3 allows one to infer, by subtracting interval
ranges, that the difference & — z at the pair of compar-
ison (ts,f4) lies in the interval [—0.97,—0.19]. & and
t refer to variables in the perturbed system. Applica-
tion of SQCA refines this prediction by narrowmg the
relative value to [—0.93, —0.19].

The amplitude in the behavior of the perturbed mass-
spring system, or the difference in amplitude in the be-
haviors of the perturbed and unperturbed systems, are
examples of behavioral features that help in discrim-
inating competing models of an experimental system.
Let P be the sets of possible predictions of the inter-
val values and relative interval values of the variables
of an experimental system before and after a pertur-
bation. A predicted behavioral feature is an interval
value calculated from a set of predictions by means of
an arithmetic function f : P — Z(R).!

'Z(R) is the set of intervals with bounds in R.

The function f may simply select a predicted value
or relative value from the set of predictions P, as in
the case of a predicted amplitude. An example of a less
trivial feature is the frequency of an oscillation, which
can be calculated from the interval ranges of the dis-
tinguished tlme-pomts of two successive maxima. The
concept of behvioral feature can be generalized to more
complex features, in particular to qualitative features
abstracted from the predicted behaviors of the systems.
In the case of a mass-spring system, for instancc, the
mass could be increased to such an extent that the
damped oscillation changes into an overdamped return
to the rest state.

In order to be useful, predicted behavioral features
need to correspond with observed behavioral features of
the experimental system. That is, it must be possible
to relate a predicted behavioral feature to some direct
or indirect measurement of quantities of the system.
As measurements will be assumed to have the form of
confidence intervals, observed behavioral features are
intervals.

The results of a perturbation experiment can be used
to recompute the probabilities of the competing mod-
els. Models of which the predictions do not agree with
the observations will have an a posteriori probability
equal to 0. The model discrimination problem can now
be intuitively stated as follows: find the perturbation
experiment with values for the observed behavioral fea-
tures that make a maximum number of models improb-
able. In the next section, we elaborate this intuition by
means of an approach based on concepts from informa-
tion theory.

Method for the selection of
perturbation experiments

In order to maximally discriminate between a set of
models, we will be interested in finding the perturbation
yielding the highest increment in information (Box &
Hill 1967). Consider a behavioral feature Y defined
by some function f, mapping to intervals in a domain
D. Consider a perturbation experiment e € E, whose
outcome yields a value Y® = [y® — €/2,y° + ¢/2] of the




behavioral feature, where y° is the middle point of the
interval Y¢ and ¢ is the size of the confidence interval
for Y. We can formulate the information increment of
e as

AH(e)=— > p(ms)lnp(m;) +

m;eM

> pmi| Y)Inp(m; | Y°), (1)
m;EM

where p(m;) and p(m; | Y°) are the a priori and a
posteriori probabilities of model m;. The function AH
reaches its maximum when the a posteriori probabilities
of all competing models but one are 0. On the other
hand, a minimal value is attained when the a posteriori
probabilities are equal.

The p(m; | Y¢)s in (1) are not known, since they are
determined by the outcome of the experiment. How-
ever, we can express the expected value of AH in terms

of the probability distributions gi{e’y} of the behavioral

feature Y. For brevity, g¢ instead of gi{e‘y} will be
further used if no confusion about the behavioral fea-
ture being considered is possible. The value of Y pre-
dicted by model m; under perturbation e is an interval
Ve C D, with a probability distribution gf : D — R
defined as follows

v —5v+350Vel

€ € e
50) = —2 1 -+ SInvE £,

0 7[y_';':y+§]m‘/ie=(9)

where | - | denotes an interval length. gf(y) determines
the probability of the empirically-determined value of
Y to be [y — €/2,y + €/2] if the model m; is the correct
model of the system. (2) can be replaced by the follow-
ing equivalent expression, where the gfs are defined as
piece-wise linear functions:

9—?%—T‘Eﬂ Jy € [VE —¢/2,VE +¢/2),
g ={wa  velEraaTE-gae

ALy (V- VE+ o2,

o y € Ve - ¢/2,V7 +¢/2)y3)

where V¢ and Vf denote the lower and the upper bound

of V¢, respectively. Fig. 4(a) illustrates the function g§
for an experiment e consisting of replacing the object
in the mass-spring system by a lighter object (e4 in the
next section). The behavioral feature considered is the
interval value for the amplitude of the system and € is
taken to be 0.1.

Call the expected value of the information increment
AJ(e). By definition,

AJ(e) = AH(e)g®(y)dy, (4)
yeD
where
W) = D p(m)gf(y). (5)
mi;eM
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Figure 4: (a) A plot of the function g¢§ for the inter-
val value of the amplitude of the mass-spring system in
an experiment consisting of replacing the object by a
lighter object (experiment e4 in the next section). The
prediction of model ms (see next section) perturbed
according to this experiment is Vi = [{0.46,0.67], and
e = 0.1. (b) A plot of g° defined for the same exper-
iment and behavioral feature, and the six competing
models given in Fig. 1 and Fig. 6.

Fig. 4(b) shows the plot of the function g¢ for the ex-
periment and the behavioral feature mentioned above,
and the predictions of the six competing models given
in Fig. 1 and Fig. 6.

By substituting the expression for AH(e) in (4) we

get,
ase) = Y pm) [

mi;eM yeD

> p(m; | Y)Inp(m; | Y) - (6)
ijM

> p(m;) Inp(m;)}dy,
m;EM
where Y = [y — €/2,y + €/2] and
_ p(my)g;(v)
p(mj I Y) - ge(y)

via the Bayes rule. Combination of (6) and (7) gives,
after algebraic simplification,

ar&)= 3 pm) [

mi;EM ye

H N

(7)

Dgz-(y)l ge(y)dy- (8)

If several behavioral features Yi,...,Yx are taken
into account, the formula in (8) remains unchanged,
except for replacing y by vy, D by D = Dy x ... Dy,

the distributions gf(y) by joint probability distributions

gi{e’yl"” ’Y’“}(y), and the integral by a multiple integral.
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Intuitively, the criterion now tries to maximize the non-
overlapping parts of the k-dimensional boxes in D that
are defined by the values for the behavioral features
predicted by the m;s.

Denote with AJ(e, Y1, Y2) the expected increment of
information of the experiment e when the behavioral
features Y7 and Y, are both taken into account, and
AJ(e, Y2|Y1) the expected increment of information of
measuring Y if Y7 has been measured. The following
properties of AJ are easily provable (Fedorov 1972):

1. AJ(e) > 0;
2. AJ(e, Y1) + Ad(e, Ya|Y1) = AJ(e, Vi, Ya);
3. AJ(e,Y2|Y7) < AJ(e,Yz) with equality iff ¥7 and

Y, are independent, that is, gi{e'Yl’Yﬂ(yl,yz) =

gt (y)glo " (ya).
From the last two properties, it is readily seen that if
the measurements in the experiment are independent,
an experiment in which a set of quantities are measured
is as informative as performing the same experiment a
couple of times, each time measuring a single quantity.

The optimal next perturbation experiment to per-
form is the one for which (8) is maximized. Intuitively,
the criterion favors experiments for which the corre-
sponding model perturbation results in predicted inter-
vals of the behavioral feature that overlap as little as
possible. On average, less overlap of the intervals will
increase the chance that a measurement of the feature
discriminates between the models. This can be illus-
trated by means of the predictions of the relative am-
plitude by three alternative equiprobable models of the
mass-spring system. Consider the case of a perturba-
tion e; replacing the medium with almost a frictionless
medium (setting ¢ to.0), and a perturbation ez increas-
ing the mass to [11.95,12.05] (see Fig. 5). Notice that
the expected information increment is higher for the
second experiment, as the predicted intervals have less
overlap.
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Figure 5: Two sets of predicted behavioral features (rel-
ative interval values for the amplitude). In (a) V3*, V5*
and V5! are obtained from models m2, m3 and ms, and
their perturbations according to e; (see next section).
In (b) V4?,V5* and Vg* are obtained from the same
models and their perturbations according to e3. In (a)
AJ(ep) is 0.0176, and in (b) AJ(es) is 0.1246. The
models have been assumed equiprobable.

The soundness of the simulation algorithms referred
to above guarantees that the models will never be falsely
discriminated by a perturbation. If the measurement
of the corresponding observed behavioral feature is cor-
rect, this implies that a model will never be rejected on
false grounds. However, as a consequence of the incom-
pleteness of the algorithms, competing models may fail
to be discriminated while they should be.

On the basis of the selection criterion, a simple algo-
rithm can be imagined to identify the model from M
(if any) that best describes the real system by means
of a minimal number of experiments. Let 8 be a num-
ber between 0 and 1, determining the threshold above
which we consider a model to be the best representation
of the system. That is, m; is assumed to best describe
the system if p(m;) > 6. Let p(m;) be the a priori
probabilities of the models and F is a set of pre-defined
perturbation experiments.

set Egiser to {}
while 3m; € M : p(m;) # 0 and Ym,; € M : p(m;) <0
and not E empty do

determine e € F for which AJ(e) is maximal

perform experiment corresponding to e, determine Y©

compute the a posteriori probabilities p(m;|Y®) of
the models

set p(m;) to p(m;|Y€)

add e to Egiser

remove e from F

The algorithm selects perturbation experiments till one
of the following happens: a model has a sufficiently high
probability, all models have zero probabilities or all pos-
sible experiments have been executed. If the algorithm
terminates with p(m;) = 0 for all models, obviously the
assumption for completeness of M is violated.

Behavioral features are values of some properties of
the system at a certain time-point, a pair of com-
parison, a sequence of time-points, or a sequence of
pairs of comparisons. If many behavioral features are
possible we can modify the algorithm above not only
to select the best perturbation experiments but also
to determine which set of behavioral features to be
taken into account. This means that we can spec-
ify what needs to be measured and at which time-
points in the experiment. The problem of selecting
behavioral features is related to the problem of se-
lecting best measurement points for the discrimina-
tion between a set of competing diagnoses in model-
based diagnosis, e.g. (de Kleer & Williams 1987;
Struss 1994b). If F is the set of all possible behavioral
features, at each step we then determine not only the
experiment e € F but also the set of features Y € F for
which AJ is maximal. Then the tuple (e, Y} is added
to Egiscr and this tuple is not considered in subsequent
iterations.

Example and evaluation

Consider the six models of a mass-spring system listed
in Fig. 1 and Fig. 6 (Stoker 1992). The models differ
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Figure 6: Models m3-mg together with m; and my in Fig. 1 form a set of competing models for the mass-spring
system. Models m; and mgs assume linear spring force. Models my and my4 assume soft spring forces (the stiffness
of the spring decreases with the displacement), while the spring force in ms and me is hard (the stiffness increases
with the displacement). In mi, me and ms the acceleration depends linearly on the velocity. The models ms, my
and mg assume quadratic dependency. The meaning of the variables and the constraints for QV (&) and QV (¥) is
the same as in Fig. 1.

| e1 ez e3 ey es
mi [ 109, 1.1 [0.12 0.39] [0.8, 1.01]  [0.63, 0.97 [L.13, 1.48]
me | [0.9,1.1] [0.11,0.38] [0.81, 1.01] [0.62, 0.88] [L.57, 2.02]
ms | [0.9,1.1] [0.29,0.52] [0.88, 1.01] [0.46, 0.67] [1.24, 1.65]
ma | [0.9,1.1] [0.34,0.55] [0.8,1.0]  [0.41,062 [1.22, 1.64]
ms | 0.9, 1.1] [0.18,0.43] [0.81, 1.01] [0.64, 0.86] [1.34, 1.77]
me | [0.9, 11] [0.23,0.51] [0.83, 1.02] [0.41, 0.62] [1.09, 1.47]

(a)
Table 1: (a) Predictions for feature fq, the interval value for the amplitude, derived from the models for the pertur-
bations ey, - - ,es. (b) The values of AJ computed for all perturbations, and (c) some values of AJ after application

of e4 (see text).

in the terms for the spring and the friction force. The
experiment consists in stretching and then releasing the
spring. Suppose that damped oscillations to the rest
position have been observed and assume the following
perturbation experiments can be performed:

e1 Replace the medium by an approximately friction-
less medium (¢ = 0);

es Replace the medium by a more compact medium
(c = [2.85,3.15]);

e3 Test with a heavier object having mass [11.95, 12.05];
es Test with a lighter object having mass [0.7, 0.8];

es Release the object with initial velocity 1.9, 2.2].
We consider four behavioral features:

Y; is the interval value of the maximum distance from
the rest position (the amplitude);

Y, is the interval value of the frequency of the system;

Y3 is the relative interval value of the maximum ampli-
tude for the perturbed and the original system; and

Y, is the relative interval value of the frequency.

Values for Y7 to Y, have been derived from the per-
turbed models by means of semi-quantitative simula~
tion and comparative analysis. The predicted intervals
for the amplitude are shown in Table 1(a). The first
perturbation gives rise to identical predictions from all
models. It is evident, even without looking at the value
of AJ(ey), that the corresponding experiment will never

be able to distinguish between the models. The rest of
the perturbations also do not give distinct intervals for
this feature, but the predictions are not entirely over-
lapping. Hence, the measurements in the corresponding
experiments may discriminate between at least some of
the models.

Assume the amplitude of the system to be the only
quantity measured in the experiments. Suppose the
models have equal a priori probabilities p(m1) = ... =
p(mg) = 1/6 and 8 = 0.75, that is, a model is consid-
ered best if its probability is larger than 0.75. At the
first step of the algorithm, e4 is chosen since it max-
imizes AJ (see Table 1(b)). Assume the experiment
is executed and a measurement [0.4207,0.5207] is ob-
tained. The measurement is not consistent with the
predictions derived from mj, ms, and ms for this per-
turbation and their a posteriori probabilities, therefore,
become 0. The a posteriori probabilities of the other
three models after the experiment are p(mg) = 0.2330,
p(mq) = 0.3835 and p(mg) = 0.3835. FEgiser is set
to {es}. In the next iteration, e is selected (Ta-
ble 1(c)). Assume the measurement [0.3080, 0.4080] is
obtained which gives rise to the posteriori probabilities
p(ms) = 0.2794, p(m4) = 0.3428 and p(me) = 0.3778.
e is added to Egiser. Next, es is chosen. A mea-
surement [1.1340,1.2340] causes p(ms) = 0 and the
algorithm terminates, giving mes as the most appro-
priate model of the system with p(mg) = 0.8964, and
Ejiser = {641 €2, 65}-
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In order to evaluate the performance of the method
we have adopted the following strategy. First, one of
the models (mg) was arbitrary selected. “Experimen-
tal” data was then produced by generating random in-
tervals within the predictions of mg. The length of the
random intervals was set equal to the size of the con-
fidence interval of the behavioral feature (¢ = 0.1 in
the case of the amplitude). Finally, the algorithm of
the previous section was applied given these “measure-
ments”. This procedure was repeated 20 times and the
results analyzed.

In only 15% of the cases the model that was used to
generate the data was identified as the single remaining
candidate. In the rest of the cases the algorithm ter-
minated with two to three candidate models that could
not be discriminated. On average, for the identification
of the model 4 experiments were necessary. For compar-
ison, when the size of the confidence interval was taken
to be 0.01, in 40% of the cases mg was identified with
average number of experiments 2.5. The results show,
not surprisingly, that when the measurement error is
smaller, better discrimination is achieved.

Now suppose all four features are considered, the
other circumstances remaining the same. Assume fur-
ther that the measurements of the amplitude and the
period are independent. The joint probability distribu-
tion is then given by

{e,Y1,Y2,Ys,Ys}

9; (y1,92,Y3,ya) =
gl 1, ya) gL (42, ),
where
gl Ny, ys) = {01 w1)af ™ ws) i ys=a -,
0 otherwise,

with A = [a — €4/2,a + €,/2] the amplitude of the un-
perturbed system, and

,Y2,Y. ) ) :
a1V (ya, ya) = {af " (@2)0f ) (ya) i ya =t — 1,
0 otherwise,

with T = [t — €/2,a + €/2] the period of the unper-
turbed system. a and ¢t have been taken 0.8 and 4.2,
respectively - values that agree with the predictions of
all models, and ¢, = ¢, = 0.1. In this case, es maxi-
mizes AJ and it is selected as the best experiment (see
the table below). Values of [1.134,1.234] and [4.12,4.22]
for the amplitude and the period of the perturbed sys-
tem, for instance, give rise to the posteriori probabilities
p(my) = ... =p(ms) = 0 and p(mg) = 1.0.
| e e es3 €4 es

AJ(e;) | 0.4049 1.1429 1.5548 1.5285 3.1811

The above evaluation procedure was again applied 20
times, now for the situation that all four features are
taken into account. We found that the average num-
ber of experiments necessary to identify model mg was
1.1. In only two of the cases a second iteration in the
algorithm was necessary. In all cases complete discrim-
ination was achieved.

The example illustrates that when more behavioral
features are considered, a higher efficiency may be
achieved: measuring only the amplitude, we needed 4
experiments to discriminate between the models, while
taking into account all four behavioral features a single
experiment turned out to be sufficient.

Evaluation by means of random data was used to
investigate the performance improvement of the algo-
rithm for experiment selection with respect to random
selection of perturbation experiments. Assume the am-
plitude of the system is the only quantity being mea-
sured (¢ = 0.1). After 20 times we again obtained
that 4 experiments are necessary, on average, to iden-
tify the correct model. The reasons for the lack of any
improvement of our method with respect to random
selection are the large overlap between (some of) the
predictions, the high measurement error assumed, and
the low number of experiments provided. However, se-
lecting the experiments in random order when all four
features were considered, required 3.2 experiments on
average to identify the correct model, whereas select-
ing the experiments by our method required only 1.1
experiments.

Discussion and conclusion

We have presented a method for the discrimination
among competing models by selecting suitable pertur-
bation experiments. The method chooses a maximally-
discriminating experiment by means of a criterion based
on the entropy measure of information. The application
of this criterion was illustrated in an example concern-
ing a set of competing models of a mass-spring sys-
tem. The models in the example had the form of semi-
quantitative differential equations.

Information theory has been used in model-based di-
agnosis (MBD) to distinguish among competing diag-
noses of a faulty system (e.g. (de Kleer & Williams
1987); see (Narasimhan, Mosterman, & Biswas 1998)
for other approaches). Like our method, these meth-
ods proceed by making new observations on the sys-
tem. However, the work mentioned above is limited
to determining the best measurement point within a
given experiment, while we seek also the best experi-
ment that would permit optimal discrimination. Struss
(1994b) has extended the approach of (de Kleer &
Williams 1987) by finding the best operating conditions
that would give rise to the most discriminatory obser-
vations. Our work attempts to generalize this method
by employing dynamical models and by extending the
concept of discriminating test to discriminating pertur-
bation experiment.

In statistics, the idea of employing the entropy mea-
sure as a discrimination criterion has been illustrated by
Box & Hill (1967), Reilly (1970) and Fedorov (1972) for
distinguishing between quantitative algebraic models.
Kettunen, Sirvio & Varic (1988) have used the entropy
to design observations discriminating among rival wa-
ter quality models. Burke, Duever & Penlidis (1997;



1994) have applied the entropy to discriminate be-
tween copolymerization models. These examples are
restricted to fully numerical models with precise point
measurements. In this paper, we have shown how the
criterion can be used when only imprecise, approximate
observations and nonlinear models of the system are
available.

The idea of planning perturbation experiments for
model discrimination based on an entropy measure has
also been proposed by (Karp, Stoughton, & Yeung
1999). They distinguish between models of a genetic
regulation network by varying the expression level of in-
volved genes or the influence of external stimuli. Their
method, however, is limited to models in the form of
Boolean networks without feedback and to binary per-
turbations. This article generalizes their approach by
employing more advanced dynamical models and by ex-
tending the concept of perturbation experiments.

The work presented here can be extended into several
directions. In practice, the number of possible pertur-
bations will be infinite when the value of a quantity
can be changed continuously. The problem of model
discrimination as defined here should then be general-
ized. Instead of selecting a discrete perturbation that
has been specified beforehand, a value for the quan-
tity that maximizes (8) has to be chosen. An issue
neglected thus far are the costs associated with exper-
iments. In practice, the costs for performing an ex-
periment may need to be balanced against its expected
utility. In these cases, the problem can be reformu-
lated as the selection of an experiment that maximizes
AJ(e)/h(cost(e)), where h is a function depending on
the intended application: one may be interested in ef-
fective experiments without caring about expenses, or
prefer less costly tests.

Further research will concentrate on the extension
of the method along the lines mentioned above, its
comparison with other model discrimination techniques
(e.g. (Atkinson & Fedorov 1975), (Hsiang & Reilly
1971)), and its application to real-world systems. Cur-
rently, we are applying the approach to a model dis-
crimination problem in biology: the regulation of the
cell cycle in early embryos (Obeyesekere, Tucker, &
Zimmerman 1992). This system is described by second-
order models and exhibits periodic behavior similar to
the oscillations of the mass-spring example considered
here.
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