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Abstract

In our approach, a semiqualitative model of a dy-
namic system is expressed by means of a set of
constraints among variables, parameters and in-
tervals. Applying the methodology (Ortega99)
(Ortega00a) these semiqualitative models with
constraints were transformed into a family of
quantitative models without explicit constraints.
In this paper, the methodology is enriched to
manage family of quantitative models where may
appear explicit constraints.
The main idea of the proposed improvement is as
follows: Given a non-causal semiqualitative model
with constraints, it is rewritten into an equivalent
model by means of the transformation of the qua-
litative knowledge. This non-causal model is ex-
pressed by means of a set of constraints where the
states variables may be included. These constra-
ints are ordered and transformed into an equiva-
lent set of constraints in order to apply the whole
methodology. This new set represents a family
of quantitative models with explicit constraints.
This extended methodology is applied to an in-
terconnected tank model with constraints.

Introduction

In real systems studied in science and engineering,
knowledge about dynamic systems may be quantita-
tive, qualitative, and semiqualitative. When these mo-
dels are studied all this knowledge should be taken into
account. Di�erent levels of numeric abstraction have
been considered: purely qualitative (Kuipers94), semi-
qualitative (Kay96), (Berleant97) and (Ortega98), and
quantitative.
Di�erent approximations have been developed in the

literature when qualitative knowledge is taken into ac-
count: distributions of probability, transformation of
non-linear to piecewise linear relationships, MonteCarlo
method, fuzzy sets, causal relations, and combination
of all levels of qualitative and quantitative abstraction
(Kay96).
In this paper, it is used the idea of causal ordering

in a system of structural equations (Simons52), which
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formal basis was de�ned in (Iwasaki86). On the other
hand, it is also used the idea of automating the qua-
litative analysis of physical systems (Sacks91) which
proposes a way to carry out through a combination of
theoretical dynamics, numerical simulation, and geo-
metric reasoning. We use these works to improve the
methodology introduced in (Ortega99) (Ortega00a).

This paper is proposed a technique based in our pre-
vious works to study non-causal dynamic systems with
qualitative and quantitative knowledge. This technique
is appropriate to study some systems, however the me-
thodology cannot be always applied. In section Re-
strictions and problems are described some limitations
of our approach, however it is necessary to carry out a
more detailed study.

The main idea of the methodology is as follows: a
semiqualitative model with explicit constraints is trans-
formed into a family of quantitative models. Every
quantitative model has a di�erent quantitative beha-
viour, however they may have similar qualitative be-
haviours.

The methodology applies two transformations to the
original model. Let be a non-causal semiqualitative
model with constraints. Firstly, it is rewritten into an
equivalent model where the qualitative knowledge has
been transformed. This obtained non-causal model is
expressed by means of a set of constraints where the
states variables may be included. Secondly, these cons-
traints are ordered and transformed into an equivalent
set of constraints to apply the remaining methodology.
This new set represents a family of quantitative models
with explicit constraints.

In this paper, these two transformation techniques
are studied in detail. It is also proposed a way to com-
pile the transformed model into an equivalent model
written like it is required by the commercial simulation
environment Vensim1.

The paper is organized as follows: �rstly, the concept
of semiqualitative model with explicit constraints is de-
�ned and the approach is detailed. Secondly the kind of
qualitative knowledge we are using is introduced, and
its transformation process is described. Thirdly, a tech-

1
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nique is proposed to order the set of equality constra-
ints. Next, the transformation of the ordering constra-
ints and its implementation details are described. Fi-
nally, the approach is applied to an interconnected tank
model with explicit constraints.

Semiqualitative models with explicit

constraints
In this paper, we focus on those dynamic systems where
there may be qualitative knowledge in their parameters,
initial conditions and/or vector �eld. They constitute
the semiqualitative di�erential equations of the system.
A semiqualitative model S is represented by means of

�( _x; x; y; q; t); x(t0) = x0; �0(q; x0) (1)

being x 2 IRn the state variables, y auxiliary varia-
bles, q the parameters, t the time, _x the derivative
of the state variables, � constraints among _x; x; q; t,
and �0 constraints with the initial conditions. These
constraints may be composed of qualitative knowledge,
arithmetic and relational operators, intervals, prede-
�ned functions, (ln; exp; sin; : : :) and numbers.

Our approach
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Figure 1: Our approach

The proposed approach in this paper is shown in �gure
1. Let S be the semiqualitative model with explicit
constraints de�ned in (1) by means of

�( _x; x; y; q; t); x(t0) = x0; �0(q; x0) (2)

Applying the transformation techniques of the qualita-
tive knowledge to S is obtained SQ given by:

SQ �

(
 ( _x; x; y; p; t);
	H ;
x(t0) = x0; p 2 Ip; x0 2 I0

(3)

where p are the parameters of the system,  are the new
obtained constraints and Ip; I0 are real intervals. Let
	H be the set of constraints obtained with the trans-
formation of the qualitative continuous functions of the
model. Firstly, this transformation process completes
the de�nition of the function. Secondly, this de�nition
is enriched by means of an automatic process which
incorporates new landmarks. Finally, the qualitative
function is transformed into a set of quantitative func-
tions whose behaviours are in accordance with the de-
�nition of the function (in (Ortega99) is explained the
transformation process in detail).
The equation (3) denotes a family of semiqualitative

models with constraints where may be state variables
into the constraints. In order to apply the remaining
methodology (Ortega99), it is necessary to transform
(3) into an equivalent model given by:

F �

8>>><
>>>:

_x = f(x; y; p; t);
'(x; y; q; t) = 0;
�(x; y; p; t) > 0;
	H ;
x(t0) = x0; p 2 Ip; x0 2 I0

(4)

where '; � are constraints among parameters and va-
riables, being ' equalities and � inequalities. On the
other hand, f is the obtained function in accordance
with section . Therefore, this second transformation
only changes the form and the order of the constraints:

 ( _x; x; y; p; t)
+

_x = f(x; y; p; t); '(x; y; q; t) = 0; �(x; y; p; t) > 0

(5)
Stochastic techniques are applied to choose every quan-
titative model of the family of quantitative models F .
The number of di�erent models to obtain of F is dis-
cussed in (Ortega00b). Every obtained model is quanti-
tatively simulated obtaining a trajectory. A trajectory
contains the values of the parameters and the values
of all variables from their initial value until their �nal
value. These quantitative trajectories are stored into a
database.
Knowledge Discovery in Databases (KDD) tech-

niques are applied to study the system. It is possible
to carry out queries about the qualitative properties of
the set of trajectories included in the database, using
the language proposed in (Ortega99).
A labeled database is obtained when these trajecto-

ries are classi�ed according to some criteria. Qualita-
tive behaviours patterns of the system may be automat-
ically obtained from this database by applying machine
learning based on genetic algorithms. These steps of
our approach were detailed in (Ortega99) (Ortega00a),
and therefore they are obviated in this paper.

Qualitative knowledge

Qualitative knowledge about a model may be com-
posed of qualitative operators, qualitative labels, en-
velope functions and qualitative continuous functions.



In this section, the representation and transformation
techniques of this qualitative knowledge are described
in a summarize way. A complete description of these
transformation techniques is included in (Ortega99).

Qualitative operators

Every qualitative operator or qualitative label op is de-
�ned by means of an interval Iop which is supplied by
the experts.

Unary qualitative operators Every magnitude of
the problem with qualitative knowledge has de�ned its
own unary operators.
Let Ux be the unary operators for a variable x, i. e.,

Ux = fV Nx, MNx,LNx,AP0x,LPx,MPx,V Pxg. They
denote for x its qualitative labels: very negative, mode-
rately negative, slightly negative, approximately zero,
slightly positive, moderately positive, and very positive
respectively.
The transformation rule for a unary operator is

opu(e) �

�
e� � = 0
� 2 Iu

(6)

being � a new generated variable, and Iu the interval
associated with operator opu which is established in
accordance with (Trav�e-Massuy�es97).

Binary qualitative operators Let e1; e2 be two
arithmetic expressions. A binary qualitative operator
b(e1; e2) denotes the qualitative order relationship bet-
ween e1 and e2. These operators are classi�ed into
� Operators related to the di�erence �;=;�. The

following transformation rules are applied

e1 = e2 � e1 � e2 = 0

e1 � e2 �

�
e1 � e2 � � = 0
� 2 [�1; 0]

e1 � e2 �

�
e1 � e2 � � = 0
� 2 [0;1]

Table 1: Transformation rules

� Operators related to the quotient �;� <;�;�
;�; V o;Ne; :::. The applied transformation rule is

opb(e1; e2) �

�
e1 � e2 � � = 0
� 2 Ib

(7)

being � a new variable and Ib the interval associa-
ted to opb which is de�ned in according to (Trav�e-
Massuy�es97).

Envelope functions

An envelope function y = g(x) (Figure 2) represents
the family of functions included between two de�ned
real functions: a upper one g : IR! IR and a lower one
g : IR ! IR. An envelope function is represented by
means of

y = g(x) hg(x); g(x); Ii; 8x 2 I : g(x) � g(x) (8)

g
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Figure 2: Envelope function
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Figure 3: Qualitative continuous function

being I the de�nition domain of g, and x the indepen-
dent variable.
The transformation rule applied to (8) is

g(x) = �g(x) + (1� �)g(x) with � 2 [0; 1] (9)

where � is a new variable. If � = 0) g(x) = g(x) and
if � = 1 ) g(x) = g(x). Any other value of � in (0,1)

stands for any included value between g(x) and g(x).

Qualitative continuous functions

A qualitative continuous function y = h(x) (�gure 3)
represents a constraint involving the values of y and x
according to the properties of h. It is denoted by means
of

y = h(x); h � fP1; s1; P2; :::sk�1; Pkg (10)

being Pi the points of the function. Every Pi is de-
�ned by a couple (di; ei), being di and ei the qualitative
landmarks associated to the variables x and y respec-
tively. These points are separated by the sign si of
the derivative in the interval between two consecutive
points. A monotonous qualitative function is a partic-
ular case of these functions where the sign is always the
same s1 = ::: = sk�1.
The transformation rules of a qualitative continuous

function are applied in three steps: normalization, ex-
tension and transformation. They are described in (Or-
tega99). Let 	H be the set of obtained constraints ap-
plying the transformation rules to all qualitative con-
tinuous function of the model.



Ordering equalities
This section describes an approach to order equalities.
It is applied to carry out the transformation describes in
section . Let be a set of constraints only with equalities:

'(x; u) = 0 (11)

being x1; :::; xn the variables to solve in the set of cons-
traints '1; :::; 'n, and u1; :::; um are the remaining va-
riables. This set of constraints will be transformed into:8>>>>>><

>>>>>>:

x1 = f1(u);
x2 = f2(u; x1);
x3 = f3(u; x1; x2);
:::
y1 = h1(u; x1; :::);
:::
xp = fp(u; x1; :::; y1; :::)

(12)

where x are the variables to solve. Every y variable
denotes a set of variables xi; :::; xj which will be simul-
taneously solved by means of symbolic techniques. The
way to determine if a set of xi; :::; xj variables may be
solved simultaneously is below described in section .
The functions f; h are obtained taking into account that
the variable to solve, x or y depends exclusively on the
previous solved variables, and obviously on u variables.
This transformation will be carry out in three steps:
1. Constructing a bipartite weighted graph.
2. Solving the bipartite weighted assignment prob-

lem.
3. Topological sorting of the assigned graph.

Constructing a bipartite weighted graph

A graph G = (V;E) is called bipartite if its set of ver-
tices can be partitioned into two subsets such that there
is no edge connecting two vertices from the same subset.
This �rst step constructs a bipartite graph starting

from (11). Let Gb = ('; x;E) be this bipartite graph,
where the vertices of Gb are the constraints ' and the
variables to solve x, and the edges E of Gb connect each
constraint with its variables.
This graph is also weighted. Let 'i be a constraint

and let xj be a variable of 'i, therefore there is an edge
between the vertices xj and 'i. This edge is weighted
with a value pij , which denotes the solving degree of xj
in 'i. The solving degree is established in accordance
with the di�culty to solve that variable xj in the con-
straint 'i. The value of the solving degree is 1 when
the variable xj is easy to solve, and this number be-
comes bigger if the variable is more di�cult to solve.
Therefore, the value +1 indicates that it is impossible
to solve the variable. Next table contains some values
for the solving degree: The solving degree is automati-
cally de�ned by means of pattern matching of symbolic
mathematical expressions.

Solving the assignment problem

The bipartite weighted assignment problem, or, as it
is usually called the assignment problem is a particu-
lar case of the standard matching problem, but with
weights.

Solving How can you give
degree explicit algebraic formula?

1 symbolically polynomial
5 symbolically polynomial with quotient
10 symbolically no polynomial
15 Newton method
+1 Impossible

Table 2: Solving degree

Let Gb = ('; x;E) be the previous bipartite weighted
graph. The assignment problem tries to assign one and
only one variable xj 2 x to every constraint 'i 2 '
minimizing the sum of the solving degrees pij 2 E. Let
j = Assig(i) be the assignment function of the variable
xj to the constraint 'i. Therefore, the objective of the
algorithm is as follows:

min(
X

i=1::m; j=Assig(i)

pij) (13)

where m is the number of constraints (the cardinality
of '), j is a number indicating that the variable xj will
be solved in the constraint 'i. This is a minimization
problem. The Hungarian method (Kuhn55) solves this
bipartite weighted assignment problem by means of an
e�cient algorithm (Papadimitriou82).

When a variable xj is assigned to a constraint 'i
by means of the function j = Assig(i), it means
that this variable is the best candidate to transform
'i(xj ; xk; :::) = 0 into xj = fi(xk ; :::).

This function Assig de�nes a partial order relation
among the variables to solve:

xi < xj if 9k : xi; xj 2 var('k) ^ j = Assig(k) (14)

being var(') the set of variables of '.

Topological sorting of the assigned graph

A directed graph is constructed Gd = (V;E0) start-
ing from the previous bipartite graph Gb = ('; x;E).
Every vertex v 2 V is a constraint 'i 2 Gb and its as-
signed variable j = Assig(i). The edges e 2 E0 are es-
tablished in accordance with the partial order relation
among variables de�ned in (14). An edge is de�ned
between two vertices when there is an order relation
between their two assigned variables xi < xj , and the
sense of the edge is from xi to xj . This is the way to
construct the directed graph Gd.

A topological sorting algorithm (Kahn62) is applied
to the graph Gd. It works as follows: if there is a path
from vi to vj then vj appears after than vi in the �nal
sorting. This algorithm has been implemented as is
described in (Manber89).

The results of the algorithm indicates the order to
calculate the variables, and therefore the result of the
transformation of the equalities constraints (12).



An example

Let be these equalities constraints(
'1(x1; x2; u1) = 0;
'2(x2; x3; u2) = 0;
'3(x2; u3) = 0

where x1; x2; x3 are the variables to solve, and u1; u2; u3
the rest of variables. In �gure 4 appears the bipartite
weighted graph of this set of constraints. It has been
supposed that: the variable x1 is easy to solve and x2
is impossible to solve in '1; the variable x3 is easily
solved, and if the variable x2 is solved then a polynomial
with a quotient expression is obtained in '2; and in a
similar way x2 in '3.

5

1

5

1

x 3

x 1

ϕ1

x 2

ϕ2

8

ϕ3

Figure 4: Bipartite weighted graph

The Hungarian method assigns x1 to '1, x3 to '2 and
x2 to '3, that is, 1 = Assig(1), 3 = Assig(2) and
2 = Assig(3). The partial order relation de�ned in
accordance with (14) follows:

x2 < x1 because x1; x2 2 var('1) ^ 1 = Assig(1)
x2 < x3 because x2; x3 2 var('2) ^ 3 = Assig(2)

The obtained directed graph appears in �gure 5.
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Figure 5: Dependencies graph

Applying the topological sorting algorithm to this
graph, the order to calculate the expressions follows:

x2 = f3(u3)
x1 = f1(x2; u1)
x3 = f2(x2; u2)

Restrictions and problems

Some problems may appear when a set of equalities is
ordered.
Related to the assignment problem
� Multiples results as solution. Any solution may be

choosen. However, it is always appropriate to choose
those solution with less loops. A loop is below de�ned.
� Assignment problem without solution. This prob-

lem has not been studied yet.

Related to the topological sorting
� A graph with strong components. This problem

appears when there are loops in the directed graph.
Next example explains this problem. Let be the set of
equalities: �

'1 � x1 = f1(x2; x; u);
'2 � x2 = f2(x1; x; u)

(15)

where to calculate x1 it is necessary to calculate x2,
and in a similar way, to calculate x2 it is necessary
that x1 has been previously calculated. We suppose
that the other variables x have been already calculated.
Therefore these two constraints are a loop.

The proposed solution to this problem is to group the
loop, and it is computed like a unique constraint. These
constraints have been denoted by hi in the expression
(12). However, this grouping will be possible when the
Jacobian of the system with all the constraints of the
loop will be not equal to 0.

In the previous example, the condition to verify is
given by

detjDx1;x2(f1; f2)j 6= 0 8x1; x2 (16)

The values from x1; x2 are calculated by means of a
�xed point algorithm. The convergence condition to
�nd a solution is that the Eigenvalues are less than
1 (Ortega00b). This way to calculate the values from
x1; x2 will be improved using other techniques like New-
ton or regula falsi. Therefore, the transformation of the
constraints (15) is as follows:

y1 = h1(u; x) � hx1; x2i = h1(u; x)

being

h1(u; x) �

�
x1 = f1(x2; x; u);
x2 = f2(x1; x; u)

Ordering constraints

Let SQ be the obtained model with the qualitative
knowledge transformation. It is de�ned by means of:

SQ �

(
 ( _x; x; y; p; t);
	H ;
x(t0) = x0; p 2 Ip; x0 2 I0

(17)

In order to carry out this new transformation, it is ne-
cessary to divide the constraints  into two groups:



equalities and inequalities2:

 ( _x; x; y; p; t))

�
 1( _x; x; y; p; t) = 0;
 2( _x; x; y; p; t) > 0

(18)

where  1 contains the equality constraints and  2 the
inequality constraints.
Substituting in (18) the variables _x by z, it is ob-

tained: (
 1(z; y; x; p; t) = 0;
_x = z;
 2(z; y; x; p; t) > 0

(19)

The ordering techniques described in section are ap-
plied to  1 in (19), choosing z; y as the set of variables
to solve and x; p; t as the remaining variables:(

hz; yi = (f1(x; p; t) = 0);
_x = z;
 2(z; y; x; p; t) > 0

(20)

A new variable s is introduced in (20) for the inequality
constraints as follows:(

hz; yi = (f1(x; p; t) = 0);
_x = z;
s = ( 2(z; y; x; p; t) > 0)

(21)

Taking into account these steps in (17), it is obtained:8>>><
>>>:

hz; yi = (f1(x; p; t) = 0);
_x = z;
s = ( 2(z; y; x; p; t) > 0);
	H ;
x(t0) = x0; p 2 Ip; x0 2 I0

(22)

where the Boolean variable s contains the evaluation
of the inequality constraints. This value may be al-
ways true, because if it is false then the simulation has
no sense because the evolution of the system does not
verify the whole de�nition of the model.
This is the result of this second transformation pro-

cess. This is a family of quantitative models with ex-
plicit constraints where the state variables may appear.
Stochastic techniques are applied to choose every quan-
titative model of this family. Every model is quantita-
tively simulated.

Implementation details

Automatically, this family of models (22) may be trans-
formed into a program written like it is required by the
simulation environment V ensim3. It is a visual envi-
ronment to study quantitative models. It permit us to
model, to document, to simulate, to analyze and to op-
timize quantitative dynamic systems. In this paper, it
has been used the Vensim DSS32 Versi�on 3.0B (Ven-
sim97).
The V ensim program for the family of quantitative

models with explicit constraints (22) is as follows:
� The equations _x = z are written in V ensim code

as follows:
2It is supposed that all the inequalities are written like

 > 0. Those written like  < 0 will be transformed into
� > 0.

3Vensim is a register mark by Ventana Systems, Inc.

X=INTEG(Z,X0)��|

where X0 denotes the initial value of the state variable
x. This value is given by the initial conditions of the
system x(t0) = x0.
� The equations hz; yi = (f1(x; p; t) = 0) whose pat-

tern is x1 = f(x; u) are written as follows:

X1=F(X,U)��|

� The equations hz; yi = (f1(x; p; t) = 0) whose pat-
tern is h(x; y; u) = 0 are written by means of

R=SIMULTANEOUS(H(X,U,Y),0.)��|

This prede�ned V ensim function SIMULTANEOUS
evaluates the function h using the �xed point algorithm
for the loop which was previously mentioned. This
function returns a value R which is not necessary.
� The equations s = ( 2(z; y; x; p; t) > 0) are written

as follows:

S=IF THEN ELSE(F(z,y,x,p,t)>0,1,0)��|

This function evaluates F (z; y; x; p; t) > 0, and the va-
riable S takes the value 1 when its result is true and
0 when it is false. This value is used by the KDD
techniques to study the evolution of the system, for ex-
ample, to check the consistency of the system, or to
determine those values of the parameters which pro-
duce that the system is inconsistent, etc.
� Let 	H be the set of constraints of a qualitative

continuous function, and let P be the number of points
of this function. The generate code is as follows:

df:(c1-c2*P) ��|
v[df]=SAMPLE(H,P) ��|
h[df]=INITIAL(v[df])��|
r = F(h[c1],P,E) ��|

This code uses some C routines that we have developed.
They are included into Vensim by means of dynamic
link libraries. The function SAMPLE obtains the va-
lues for the function H in its domain. The function F
evaluates the expression E applied to H , that is h(e).
� Let v be a variable or parameter belongs to an in-

terval v 2 Iv = [a; b]. The generated code is as follows:

V=INITIAL(a+RANDOM 0 1()*(b-a)) ��|

Finally, it is also necessary to add the following code:

INITIAL TIME = 0 ��|
FINAL TIME = 100 ��|
TIME STEP = 0.1 ��|
SAVEPER = 0.5 ��|

These values control the simulation time. They may be
de�ned depending on the problem.

Interconnected tanks model

Let be an interconnected two-tank system in the open
air (Figure 6). It is a well-known model. There are
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Figure 6: Interconnected tank system

imposed some constraints to this model. Let S be the
model, being its constraints � given by:

� �

8>>><
>>>:

_x1 � p+ r1 = 0; _x2 � r1 + r2 = 0;
r1 = h1(x1 � x2); r2 = g1(x2);
h1 � f(�1;�1);+; (0; 0);+; (+1;+1)g;
g1 � h0:1x; 5x; [0; 200]i
x1 < 70� s; x2 < 70� s

where h1 is a qualitative continuous function, g1 is an
envelope function. The state variables are x1; x2, the
parameters are p; s, and the rest of variables r1; r2 are
intermediate variables.
It is a semiqualitative model with explicit constra-

ints. It is semiqualitative because there is qualitative
and quantitative knowledge, and it has explicit cons-
traints, i.e. the heights x1; x2 of the tanks may be less
than 70�s, where s is the diminution of the height due
to the system is in the open air.
The initial conditions �0 are de�ned as follows:

�0 �

8><
>:

LPx(x1);
MPx(x2);
LPx(s);
MPp(p);

Initially, the height x1 of the �rst tank and the diminu-
tion of height s are slightly positive, the height x2 and
the in-ow p are moderately positive. This qualitative
unary operators has been de�ned by experts by means
of:

hx; 10; 20; 200i; hp; 1; 60; 1000i

where x denotes height magnitude and p is the ow
magnitude.
We would like to know:

1: if the height of the tanks is exceeded taking into ac-
count the diminution due to s.
2: if an equilibrium is always reached
3: To classify the database in accordance with the
height x1.
Applying the qualitative knowledge transformation

to S is obtained SQ given by:

SQ �

8>>>>>>>><
>>>>>>>>:

_x1 � p+ r1 = 0; _x2 � r1 + r2 = 0;
r1 = 	H1(x1 � x2);
r2 = G1(x2);
G1(k) = � 0:1 k + (1� �) 5 k;
x2 2 [0; 200]; � 2 [0; 1];
x1 < 70� s; x2 < 70� s;
x10 2 [0; 10]; x20 2 [10; 20];
s 2 [0; 10]; p 2 [1; 60]

(23)

Applying the ordering constraints transformation to
SQ is obtained F :

F �

8>>>>>>>><
>>>>>>>>:

_x1 = p+ r1; _x2 = r1 + r2;
r1 = 	H1(x1 � x2);
r2 = G1(x2);
G1(k) = � 0:1 k + (1� �) 5 k;
x2 2 [0; 200]; � 2 [0; 1];
x1 < 70� s; x2 < 70� s;
x10 2 [0; 10]; x20 2 [10; 20];
s 2 [0; 10]; p 2 [1; 60]

(24)

being _x1; _x2 the variables to solve. This model will be
transformed into a Vensim program as it is explained in
section . The simulation of this family of quantitative
models generates a trajectories database (Ortega00a),
which it is used to obtain the conclusions.
1: if the height of the tanks is exceeded taking into

account the diminution due to s.
The answer is true. Therefore there are some trajec-

tories exceeding the height of the tanks.
2: if an equilibrium is always reached
In order to answer this question, it is necessary to

study those trajectories that always verify the constra-
ints. They are shown in �gure 7. The answer to this
question is true, therefore there are no limit cycles in
the system behaviour.
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Figure 7: Evolution of X1

3: To classify the database in accordance with the
height x1.
The values of x1 included in the trajectories database

are shown in �gure 8. In this �gure, we have divided
the x1 axis into four di�erent categories depending on
the value of x1 at the end of the simulation and the
value of s. There is a region classi�ed with two labels.
The whole methodology (Ortega99) (Ortega00a)

with the improvements described in this paper has been
applied to this system.
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Figure 8: Classi�cation according to x1

Conclusions and further work

In this paper, we have enriched the methodology intro-
duced in (Ortega99) (Ortega00a). This methodology
was appropriate to simulate non-causal semiqualitative
models with constraints. In this paper, the methodo-
logy is extended to manage family of quantitative mo-
dels where may be explicit constraints. The idea of
this improvement is based in a double-transformation
process: qualitative knowledge transformation and or-
dering constraints transformation. This extended me-
thodology is applied to an interconnected tank model
with constraints.

It is also proposed an automatic way to compile the
obtained family of quantitative models into an equiva-
lent model like the commercial simulation environment
Vensim requires.

In the future, we would like to study the possibility to
improve the whole transformation process, modifying
the algorithms that we are applying. Dynamic systems
with constraints and with multiple scales of time are
also one of our future points of interest.

We would like to apply the proposed approach to
study a real computer-controlled process. It is a pro-
duction industrial system. There is a metallurgical
Company interested in modifying its steel control pro-
duction system applying the whole methodology. The
production engineers of this company wish to improve
the steel quality, and, if it is possible, to reduce the
production costs. This collaboration is now developing
and in forthcoming papers, we will describe this system
in detail and the obtained conclusions.
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