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Abstract

We consider the problem of automatic construc-
tion of qualitative models by inductive learning
from quantitative examples. We present an algo-
rithm QUIN (QUalitative INduction) that learns
qualitative trees from a set of examples described
with numerical attributes. At difference with deci-
sion trees that are often used in machine learning,
the leaves of qualitative trees contain qualitative
functional constraints. A qualitative tree defines
a partition of the attribute space into the areas
with common qualitative behaviour of the chosen
class variable.

We demonstrate the use of qualitative trees by
their application to the reconstruction of human
skill to control container cranes. The induced
qualitative trees define qualitative control strate-
gies that provide good insight in the human oper-
ator’s control skill and enable also the reconstruc-
tion of individual differences in control styles of
different operators.

Introduction

Building a qualitative model for a complex system re-
quires significant knowledge and is a time-consuming
process. For this reason, many researchers have ad-
dressed the problem of automatic generation of a qual-
itative model. One approach is to build models from
existing libraries of model fragments (Forbus 1984).
Another approach is to learn a model of a physical
system from behaviours using existing knowledge of
processes and mechanisms commonly found in physi-
cal systems (Doyle 1988). Less knowledge-intensive ap-
proaches (Coiera 1989; Bratko, Mozeti¢, & Lavrac 1989;
Bratko, Muggleton, & Varsek 1991; Richards, Kraan, &
Kuipers 1992; Dzeroski & Todorovski 1993) use induc-
tive learning to induce qualitative differential equations
or logical models from a set of qualitative behaviours.
In this paper we present algorithm QUIN for auto-
matic generation of a qualitative model by inductive
learning from quantitative examples. We apply QUIN
to the learning of qualitative models of human control
skill. Qualitative models have already been used in dy-
namic system’s control, including deriving controllers
by qualitative reasoning about differential equations

models (Makarovi¢ 1991), applying qualitative simula-
tion to the analysis of heterogeneous fuzzy controllers
(Kuipers & Astrom 1994), using a qualitative expla-
nation of the control skill (DeJong 1994) and deriving
a qualitative control rule from a qualitative differential
equations model of the controlled system (Bratko 1995).

The comprehensibility of qualitative models offers
also the possibility of their use in the reconstruction of
the human control skill. The motivation for skill recon-
struction is in understanding of the operator’s skill and
its use in the development of an automatic controller.
This is particularly interesting in the case of complex
dynamic systems, as a plane or a crane, that are con-
trolled by skilled operators who acquired their skill in
years of experience. Typically such a control skill is
sub-cognitive and hard to reconstruct through intro-
spection. The operators cannot completely describe
their skill, but can demonstrate it. Therefore an at-
tractive approach to the reconstruction of the human
control skill involves machine learning from the logged
data from skilled, human operators, i.e. operator’s ex-
ecution traces. This approach is also called behavioural
cloning (Michie 1993).

Behavioural cloning has been used in problem do-
mains as pole balancing (Chambers & Michie 1969;
Michie, Bain., & Hayes-Michie 1990), piloting (Sam-
mut et al. 1992; Bain & Sammut 1999; Camacho 2000)
and container cranes (Urbanci¢ & Bratko 1994). These
experiments are reviewed in (Bratko, Urban¢i¢, & Sam-
mut 1998). Controllers, also called clones, were usually
induced as a mapping from the system’s states to con-
trol actions in the form of trees or rule-sets. Although
such clones do provide some insight into the control
strategy, they are often large and difficult to under-
stand. Often, the induced trees have several hundreds
of leaves and are, as such, not suitable as explanatory
models of human skill (Bratko & Urbanéi¢ 1999).

Our experiments in controlling a crane (Suc & Bratko
1999a; 1999b) and double pendulum called acrobot (Suc
& Bratko 2000b) showed that qualitative abstractions
of induced quantitative control strategies are compre-
hensible and therefore suitable as models of the oper-
ator’s skill. These qualitative abstractions offer also a
space for controller optimization. These experiments



motivate the learning of qualitative strategies directly
from execution traces.

The structure of the paper is as follows. First we give
the learning problem description for induction of quali-
tative trees and define monotonicity constraints, called
qualitatively constrained functions. Then we describe
how qualitatively constrained functions and qualitative
trees are learned from a set of numerical examples. The
developed algorithm QUIN is then applied to the recon-
struction of the human crane control skill. Finally, we
discuss some points of interest and give conclusions.

Learning Problem Description
Qualitative Trees

We consider the usual setting of classification learning,
but in our case the hypothesis language involves quali-
tative constraints.

Let there be N learning examples. Each example is
described by n + 1 continuous variables Xi,..., X411
with values %;1,...,%int1, ¢ = 1,..., N. The variable
Xp41 is called the class, and the others are called at-
tributes. In the context of modelling dynamic systems,
an example can be a state in the system’s state space.

Given the learning examples, our problem is to learn
a hypothesis that separates the areas of attribute space
which share a common qualitative behaviour of the class
variable. We learn such hypotheses in the form of qual-
itative trees. A qualitative tree is a binary tree with in-
ternal nodes called splits and qualitatively constrained
functions in the leaves. The splits define a partition
of the attribute space into areas with common qualita-
tive behaviour of the class variable. A split consists of
a split attribute and a split value. Qualitatively con-
strained functions (abbreviated QCFs) in leaves define
qualitative constraints on the class variable.

Figure 1 shows an example of qualitative tree induced
from a set of example points for the function z = 22 —y?2.
This tree is usually written in a text form as:

z<0
| y<0:2=M""(z,y)
| y>0:2=M""(x,y)
x>0
| y<0:z2=M""(z,y)
| y>0:2=M""(z,y)

Qualitatively Constrained Functions

Qualitatively constrained functions are inspired by the
qualitative proportionality predicates Q4+ and @J_ as
defined by Forbus (Forbus 1984) and are also a gen-
eralization of the qualitative constraint M T, as used
in (Kuipers 1986). We use QCFs to define qualitative
constraints on the class variable. A QCF constrains the
qualitative change of the class variable in response to
the qualitative changes of the attributes.
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Figure 1: A qualitative tree tree induced from a set
of example points for the function z = 22 — y2. The
rightmost leaf, applying when attributes z and y are
positive, says that z is monotonically increasing in its
dependence on z and monotonically decreasing in its

dependence on y.

A qualitatively constrained function M5t
R™ —» R, s; € {+,—} represents an arbltrary func—
tion with m < n continuous attributes that respect the
qualitative constraints given by signs s;. The qualita-
tive constraint given by sign s; = + (s; = —) requires
that the function is strictly increasing (decreasing) in
its dependence on the i-th attribute. We say that the
function is positively related (negatively related) to the
i-th attribute. M %15 represents any function which
is, for all ¢ = 1,...,m positively (negatively) related to
the 4-th argument, if s; = + (s; = —).

Note that the qualitative constraint given by sign
s; = + only states that when the i-th attribute
increases, the QCF will also increase, barring other
changes. Tt can happen that a QCF with the con-
straint s; = + decreases even if the i-th attribute
increases, because of a change in another attribute.
For example, consider the behaviour of gas pressure
in a container: Pres x Vol/Temp = const. We
can express the qualitative behaviour of gas by QCF
Pres = M~ (Temp,Vol). This constraint allows that
the pressure decreases even if the temperature increases,
because of a change in the volume. Notice however, that
the qualitative behaviour of gas is not consistent with
the constraint Pres = Mt (Temp).

QCFs are concerned with qualitative changes and
qualitative change vectors. Qualitative change g; is
the sign of change in continuous variable X;, where
g;i € {pos,neg,zero}, corresponding to positive, neg-
ative or zero change. A qualitative change vector is a
vector of qualitative changes of the variables. We define
QCF-prediction P(s;,q;) as:

pos, if (si=+ A g;=pos) V (s;=— A gi=neg)
neg, if (s;=+ A g;=neg) V (s;=— A q;=pos)
zero, otherwise

P(si,q:)=

A qualitative change vector ¢ = (g1, .. ., gn+1) iS consis-
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315.00 62.00 10.16
330.00 50.00 13.20
300.00 50.00 12.00
%'500 300.00 55.00 10.90

Figure 2: Gas in the container example: five numeri-
cal examples (the table at the bottom right), described
with attributes T'emp, Vol and class Pres, are repre-
sented as points in the attribute space. The arrows de-
note the qualitative change vectors at the circled point
e=(Temp=315, Vol=56, Pres=11.25). For example,
the point (Temp=300, Vol=50, Pres=12.00) gives
qualitative change vector gz=(¢remp=neyg, qvo=neg,
(pPres=pos) with point e.

tent with a given QCF M- if the QCF does not
reject the qualitative change of the class variable, that
is, if either (a) class qualitative change is zero, (b) all
attribute’s QCF-predictions are zero, or (c) there ex-
ists an attribute whose QCF-prediction is equal to the
class’s qualitative change.

A QCF does not always uniquely predict the class’s
qualitative change given the qualitative changes of the
attributes. Qualitative ambiguity, i.e. ambiguity in the
class’s qualitative change appears whenever there exist
both positive and negative QCF-predictions or when-
ever all QCF-predictions are zero. In this case any
qualitative class change is consistent with the QCF.

Note that any class change (not just zero class
change) is consistent with a QCF when all QCF-
predictions are zero. This is a weaker definition of
consistency than one might expect. The reason for
such definition is in learning QCFs, where each pos-
sible QCF is penalized according to inconsistent qual-
itative change vectors: small changes in all attributes
(all zero QCF-predictions) are not a strong evidence
against large (nonzero) class change.

Learning Qualitatively Constrained
Functions

When learning a QCF from a set of numerical examples
we are interested in a QCF that is consistent with most
of the examples, i.e. in the “minimal cost” QCF. For
this reason we define error-cost E(g) of a QCF g (de-
fined later in Eq. 3) that penalizes g with inconsistent

QCF Inconsis. | Ambig.
Pres=M™(Temp) g3 @
Pres=M~(Temp) 42,44 q

Pres=M*(Vol) q1,492,43 /

Pres=M~(Vol) q4 /
Pres=M™**(Temp,Vol) q1,q3 q
Pres=M™*~(Temp, Vol) / g3, q4
PT€8:M7’+ (Tempa VOZ) g1, 42 q3,44
Pres=M—~(Temp,Vol) qa q2

Table 1: Gas in the container example: the first col-
umn gives all possible QCF's using attributes T'emp and
Vol. The second and the third column give qualitative
change vectors at point e (see Figure 2) that are respec-
tively inconsistent and ambiguous with the correspond-
ing QCFs.

and ambiguous qualitative change vectors at every ex-
ample. The “minimal cost” QCF is learned from a set of
numerical examples by first forming qualitative change
vectors from examples and then minimizing error-cost
of a QCF over all possible QCFs.

First, every pair of examples e and f # e is used
to form a qualitative change vector with qualitative
changes q(c,5),; € {pos,neg,zero}, j =1,...,n+1 de-
fined as:

pos, if ¢ ; > . ; + Tzero;
Q(e.f).5 = § €8, if g < xej —Tzero; (1)
zero, otherwise

where T'zero; denotes a user-defined steady threshold
defining negligible changes of j-th attribute. The de-
fault value of Tzero; is 1% of the difference between
maximal and minimal value of j-th attribute. Typi-
cally, many pairs of examples map into the same qual-
itative change vector. A qualitative change vector is
either consistent or not consistent with a given QCF.
Note that a consistent qualitative change vector can
also be ambiguous for a given QCF.

We illustrate the method to find the “minimal cost”
QCF by an example of gas in the container. Fig-
ure 2 gives five numerical examples described with at-
tributes Temp and Vol and class Pres, giving gas
temperature, volume and pressure according to equa-
tion Pres = 2 Temp/Vol. There are five numeri-
cal points, each with four qualitative change vectors
with respect to other points. Figure 2 illustrates qual-
itative change vectors ¢, g2, g3 and ¢4 at the cir-
cled point e=(Temp=315, Vol=56, Pres=11.25). To
find the “minimal cost” QCF at point e, qualitative
change vectors that are inconsistent and ambiguous
with each possible QCF are counted. Consider for ex-
ample QCF Pres = M (Temp). Qualitative change
vector g3=(qTemp=mneyg, qvo=neg, qprres=pos) is not
consistent with this QCF. Qualitative change vector
01=(qTemp=2€70, qvo1=pOS, qpres=neg) is ambiguous
with respect to this QCF.



Table 1 gives qualitative change vectors at point e
that are inconsistent with and ambiguous for each pos-
sible QCF. QCF M+~ (Temp,Vol) is the only QCF
consistent with all qualitative change vectors and is the
“minimal cost” QCF. It also minimizes the error-cost
(defined in the next paragraph) over all QCFs. Note
that this QCF is also ambiguous for g3 and q4. If the
error-cost would prefer simpler QCF with one inconsis-
tent qualitative change vector over QCF with two am-
biguous qualitative change vectors then QCF M~ (Vol)
would be selected as the “minimal cost” QCF.

The error-cost of a QCF is based on the minimum
description length principle (Rissanen 1978; Quinlan &
Rivest 1989). Basically it is defined as the number of
bits needed to code the QCF plus the number of bits to
code the inconsistent and ambiguous qualitative change
vectors as follows. Let C.(g) and n.(g) denote respec-
tively the set and the number of all examples f that
form, with e, qualitative change vector g:

Celg) ={fIVj=1,....n+1:qcp,; =0}
ne(q) = |Ce(q)|

In the above gas in the container example Cc(g3) =
{(Temp= 300,Vol= 50,Pres= 12.00)} and n.(¢g3) = 1.
The error-cost E(g) of a QCF ¢ that mentions m out
of all n attributes is:

(2)

E(g) =logyn + m(logyn + 1)+
logz Nnonamb + Nreject (IOgQ Nnonamb)"‘ (3)
logz Namb + Namb

Here Nyeject denotes the number of example pairs (e, f),
f # e, that form a qualitative change vector that is not
consistent with QCF ¢ and is computed as the sum of
ne(q) over all examples e and over all qualitative change
vectors ¢ that are not consistent with g. Similarly, Ng.p
and Nponams denote the sum of ne(q) of vectors ¢ that
are respectively ambiguous and not ambiguous for g.
This error-cost is based on the following encoding: we
code the QCF, the indexes of Nyje.¢ inconsistent quali-
tative change vectors (each index requires logs Nponams
bits since ambiguous qualitative change vectors are al-
ways consistent) and one bit for each ambiguous quali-
tative change vector.

The “minimal cost” QCF is found by a simple ex-
haustive search algorithm that forms all possible QCFs
and selects the one with the smallest error-cost. This
requires the number of error-cost computations that is
exponential in the number of attributes. Instead of the
exhaustive search, QUIN uses a greedy heuristic algo-
rithm that requires the number of error-cost compu-
tations that is quadratic in the number of attributes,
but does not guarantee the “minimal cost” QCF. The
idea is to start with the QCF that minimizes error-cost
over all QCFs that use only one attribute, and then
use error-cost to refine the current QCF with another
attribute.

Learning Qualitative Trees

QUIN learns a qualitative tree from a set of numerical
examples by a top-down greedy algorithm guided by
error-cost of a QCF. This algorithm is similar to the
decision tree learning algorithms.

Given the examples, QUIN chooses the best split by
comparing the partitions of the examples they gener-
ate: for every possible split, it splits the examples into
two subsets (according to the split), finds the “minimal
cost” QCF in both subsets, and selects the split which
minimizes the tree error-cost (defined below). It puts
the best split in the root of the tree and recursively
finds both subtrees for the corresponding example sub-
sets, until the stopping condition is satisfied, i.e. until
using the best split does not improve the tree error-cost.

The tree error-cost is computed as follows. The tree
error-cost of a leaf is the error-cost E(g) of the “minimal
cost” QCF g that is induced from the examples in the
leaf. The tree error-cost of an internal node is the sum
of the error-costs of both subsets plus the cost of the
split, i.e. the number of bits needed to encode the split:

Eiree = Eieft + Eright + SplitCost
SplitCost = log, n + log,(Splits; — 1)

Here Fj.f: and FE,;op: denote the error-costs in both
subsets, n is the number of variables and Splits; is the
number of possible splits for the split variable, i.e. the
number of different values of the variable X;.

The error-cost (Eq. 3) penalizes inconsistent and am-
biguous qualitative change vectors formed from every
pair of examples. This sometimes results in myopic se-
lection of the “best” split, since the proximity of exam-
ples and the consistency of qualitative change vectors
are not considered. We refer to the algorithm that uses
this error-cost also as ep-QUIN algorithm (ep standing
for every pair).

QUIN is a heuristic variant of ep-QUIN algorithm
with the improved error-cost. QUIN’s error-cost is
similar to ep-QUIN’s error-cost, but with qualitative
change vectors weighted according to their confidence
estimates. These confidence estimates take into account
the locality and the consistency of qualitative change
vectors.

A more elaborate description of the QUIN algorithm
and the evaluation of ep-QUIN and QUIN algorithms
on a set of artificial domains is given in (Suc 2001). The
empirical results show that QUIN usually gives better
results and is more time efficient, can handle noisy data,
and, on simple domains, produces qualitative trees that
correspond to the human intuition.

QUIN in the Crane Domain

In this section QUIN is applied to the reconstruction of
the crane control skill from operator’s execution traces.
An ezecution trace is a sequence of the system’s states
and the corresponding operator’s actions that are (at
some frequency) logged to a file.
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Figure 3: Container crane: the state of the system is
specified by six variables: trolley position X and its
velocity X, rope inclination angle ¢ and its angular ve-
locity ¢>, rope length L and its velocity L. The system is
controlled through force to the trolley in the horizontal
direction and force in the direction of the rope.

First we describe the domain of container cranes,
then give some notes on experiments and present qual-
itative control strategies induced from execution traces
of two operators. The induced qualitative strategies
provide good insight into the operators’ control skill and
also enable to reconstruct the individual differences in
the control styles of different operators.

Container Crane

To transport a container (see Fig. 3) from the shore
to a target position on the ship, two operations are to
be performed: (1) positioning of the trolley, bringing it
above the target load position (X,), and (2) rope oper-
ation, bringing the load to the desired height (L;). The
performance requirements include basic safety, stop-gap
accuracy and as high capacity as possible. The last re-
quirement means that the time for transportation is to
be minimized. Consequently, the two operations are to
be performed simultaneously. The most difficult aspect
of the task is to control the swing of the rope. When
the load is close to the goal position, the swing should
ideally be zero.

A crane simulator was used in our experiments. The
parameters of the system (lengths, heights, masses,
etc.) are the same as those of the real cranes in Port
of Koper in Slovenia. The state of the system is speci-
fied by six variables: trolley position X and its velocity
X, rope inclination angle ¢ and its angular velocity ¢,
rope length L and its velocity L. Two control forces are
applied to the system: force to the trolley in the hori-
zontal direction and force in the direction of the rope.
The task is to transport the load from its start position
(Xo= Xo= Po = ¢0— 0, LO_ 20, Lo= 0) to the goal
position (X,=60,X,=¢,=d,=0, L,=32, L,=0).

We used experimental data from manually controlling
the crane from a previous study (Urbanci¢ & Bratko
1994). In that study, six students volunteered to learn

to control the simulator. Remarkable individual dif-
ferences were observed regarding the characteristics of
the strategy they used. Some operators tended towards
fast and less reliable operation, others were more con-
servative and slower, in order to avoid large rope oscil-
lations. One goal of our skill reconstruction was also
to reconstruct the individual differences and similari-
ties between the operators in the style of controlling
the crane. For this reason we used traces of two op-
erators that use, at least quantitatively, very different
control styles. The two operators are named S and L.

Operator S uses very conservative strategy that is
very reliable but requires more time to accomplish the
control task. He uses small accelerations in order to
avoid large rope oscillations. Operator L, on the other
hand, uses a faster and more complex strategy. He is
able to afford large initial swing caused by large accel-
eration, and later skillfully reduce the swing. Typical
traces of both operators are given in Figure 4.

Notes on Experiments

Controlling the crane requires a rule to control the
trolley and a rule to control the rope. The obvi-
ous choice would be to induce the constraints on the
control actions, i.e. to select the force to the trol-
ley and the force to the rope as the class variables.
However, the experiments in (Suc & Bratko 2000a;
Suc 2001) show that the learning of the operators con-
trol trajectories usually results in more robust and com-
prehensible controllers than learning of the operators
actions. Here, the operator’s trajectory is a sequence
of system’s states from the execution trace. For this
reason, QUIN was used to induce the constraints on
the operator’s trajectories, not the actions. To sim-
ply the system’s control according to the induced con-
straints and to gain comprehensible strategies, one or
more state variables can be selected as the dependent
trajectory variables. The dependent trajectory variable
is the class variable and the other state variables are the
attributes for learning.

We decided to induce the desired trolley velocity X s
and desired rope length Lges, that is qualitative trees
predicting X and L in the next state as the function of
the current state. We selected these class variables since
they are close to human thinking about controlling the
trolley and the rope.

Controlling the Rope Length

We used QUIN to induce the desired rope length, i.e.
Lg4e, from the traces of operator’s S and L. Lg.s was the
class and the other state variables were the attributes.

From a trace of operator S, a qualitative tree with a
single leaf was induced:

Lges = M+(X) (4)

Although this tree is very simple, it is consistent with
all the learning examples from the operator’s trace and
clearly describes the operator’s strategy to control the
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Figure 4: Typical traces of operators S and L: on the left is a trace of operator S and on the right a trace of operator
L that uses a more complex strategy. Note the differences in the swing of the rope (variables Fi and dF1i).

rope: the operator brings down the load as the trolley
moves from its start to the goal position.

From other traces of both operators, similar trees
were induced. Some of them were more complicated,
but all of the induced trees had QCF Lges = MT(X)
in the root. An example is a qualitative tree induced
from another trace of operator S:

X <60.5: Lges = MT(X)

X >60.5: Lges =M (X)

In this trace the operator failed to stop the trolley at
the exact trolley goal position X,=60. He uses negative
trolley velocity to approach X, from the other direction,
but still increases the rope length.

Comparing the trees of both operators we can con-
clude that they use the same simple control strategy to
control the rope length. They both increase the rope
length as the trolley moves towards the goal. Usually
this is all it takes to control the rope length. However,
both sometimes miss the exact goal position and do
some additional adjusting at the end.

Controlling the Trolley

Transporting the load from the shore to the ship re-
quires positioning of the trolley above the goal position
(X4=60). Therefore the trolley velocity is to be first
increased and then decreased, to precisely adjust the
trolley at the goal. The task is difficult, because it re-
quires that the swing of the rope is zero at the goal. Ex-
perienced operators try to reduce the swing by proper
accelerations of the trolley.

We used QUIN to induce the desired trolley velocity,
i.e Xges from the traces of operator’s S and L. The
following experiments with traces of operator S were a
surprise for us. QUIN, in contrary to our expectations,
discovered that the operator S is able to reduce the

swing of the rope by proper acceleration of the trolley.
Operator S controls the crane in a very conservative way
and changes the control forces rarely as can be observed
in Figure 4. His conservative control style, with small
trolley accelerations, results in small swing of the rope.
For this reason, our initial hypothesis was that he does
not try to reduce it. Also in experiments with regression
trees (Urbanci¢ & Bratko 1994), the skill to reduce the
swing could not be identified. Rope angle and velocity
were typically not important attributes in the induced
trees.

One reason that his skill to reduce the swing is hard
to identify, is because he uses it rarely, typically just a
few times in a trace, sometimes just at the very end.
This is what QUIN induced from one of his less suc-
cessful traces:

X <20.7: Xgeo=MT(X)
X > 20.7:
e (5)
| X<601: Xgoo=M(X)
| X >601: Xgz=M"(®)

This qualitative tree provides a good insight in the op-
erator’s control skill. The operator first increases the
trolley velocity. At about half distance from the goal
(X'=20.7) he decreases the trolley velocity. At the goal
position (X > 60.1) he uses the rule Xg4es = MT(9).
This constraint, telling that the trolley velocity is posi-
tively related to the rope angle, shows his skill to reduce
the swing of the rope. By acceleration of the trolley,
when the rope angle increases, the angular velocity is
decreased.

In (Urbanci¢ & Bratko 1994), the human operators
were also requested to describe their skills in the form
of instructions for controlling the trolley. The surpris-
ing constraint Xz, = MT(®) led us to reconsider the



instructions that the operator gave through introspec-
tion. Operator S described his skill of “final balancing”
at the goal (when X > 59.65) by decelerating the trolley
“alittle before the maximum of X” and accelerating “a
little before the minimum of X”. Note that the oscilla-
tion of X is the consequence of swinging of the load and
that X oscillates in the opposite direction than ®. Since
the minima (maxima) of X correspond to the points in
the middle of the rope swing cycle when @ is increasing
(decreasing), the operators instructions amount to the
same effect as the induced QCF: X g5 = MT(®).

In the same way the operator described his skill to
reduce the swing also before reaching the goal. This
was induced from another one of his traces:

X <26.9: Xz, =MT(X)
X >26.9:
: _ (6)
| ®<—-001: Xgo,=M(X)
| &> —0.01: Xgos=M"""(X,®,)

Here, the strategy is similar as before, but reducing the
swing starts before reaching the goal (X > 26.9). Also,
the skill to reduce the swing is here more refined. Let’s
observe just the part of the tree for X > 26.9. One in-
terpretation is that the trolley velocity it to be increased
when @ > —0.01 and @ is increasing and @ is decreas-
ing, i.e. when the rope swings through the vertical to
the right. It is interesting that this part of the tree
is a refinement of rule Xges = M+ (®) and even more
precisely corresponds to the operator’s instructions to
accelerate “a little before the minimum of X”. QUIN
qualified “a little before” as & > —0.01.

From a trace of operator L, the following qualitative
tree was induced:

X <293: Xg,=MPT (X, 0, 9)

X >29.3: {default rule: Xges = M—F(X,®) }

| ®<-0.02: Xges=M(X)

| &> -0.02: Xgz=M""(X,®)

(7)

Similar to operator S, operator L first increases the trol-
ley velocity and decreases it later to approach the goal.
However, to approach the goal as fast as possible he
uses large accelerations that cause large swing of the
rope at the very start. He manages to skillfully reduce
this large swing as can be observed in Figure 4. At
a difference with operator S, he reduces the swing of
the rope also in the first stage of control, while still in-
creasing the trolley velocity. QUIN induced this skill as
the QCF M+ ~=(X,®,®) that applies when X < 29.3.
An interpretation of this QCF is that he decreases the
trolley velocity when the rope angle ® is decreasing and
the rope velocity ® is increasing. This is, while the rope
swings from the vertical to the left, until it reaches it
local minimum.

Similarly to operator S, operator L also reduces the
swing of the rope in the second part of control, that

is when the trolley velocity is decreasing. However he
does it more consistently. QUIN induced the default
rule Xges = M+ (X, ®) in the second part of the tree
(for X > 29.3). This rule, similar to the above men-
tioned rules, decreases the swing of the rope by increas-
ing the trolley velocity when the rope angle increases.
The operator’s consistency also enabled QUIN to in-
duce a simpler form (from QUIN’s point of view) of this
rule. Consider the leaf that applies when & < —0.02. ®
is negative, so @ is decreasing. Since X is increasing (as
the trolley moves towards the goal) and @ is decreasing,
the default rule would require X405 to decrease. Since
X is increasing, a simpler QCF M~ (X) achieves the
same result as the more complex default rule.

By comparing the induced trees we can conclude that
both operators use qualitatively similar strategies to
control the trolley, but there are differences. The most
important difference is that operator L reduces the rope
swing during the whole trace, whereas operator S tries
to reduce the swing only at the end, while approaching
the goal.

The experiments described in (Suc 2001) show that,
by transforming QCFs into real-valued functions, all
the presented qualitative trees can be turned into op-
erational controllers, that are successful and robust. In
this way, qualitative trees define spaces for controller
optimization. The success and efficiency of such con-
trollers depend also on the operator’s control style.

Conclusion

We presented QUIN algorithm for learning of qualita-
tive trees from quantitative examples and demonstrated
its use by an application in the human skill reconstruc-
tion. To our knowledge, no study has yet addressed
the induction of similar tree-structured qualitative con-
straints from quantitative examples.

The results show that QUIN is able to detect very
subtle aspects of the human control skill and enables
the reconstruction of the individual differences in the
control styles of different operators. Qualitative con-
trol strategies open also other new perspectives to the
human skill reconstruction, such as automating the ex-
planations of the induced strategies by qualitative sim-
ulation and automating qualitative or semi-qualitative
reasoning that can verify whether, or under which con-
ditions a qualitative strategy might be successful. In
this case the induced strategy would be checked by
qualitative simulation using the provided (or induced)
constraints of the system’s behaviour. An alternative
would to modify the learning algorithm so as to con-
sider the provided constraints of the system’s behaviour
during the learning of the strategy.

QUIN has been successfully used in skill reconstruc-
tion. The experiments in artificial domains described
in (Suc 2001) also show that QUIN can handle noisy
data, and, at least in simple domains, produces qual-
itative trees that correspond to human intuition. We
believe, QUIN can be applied to other domains as a



general tool for qualitative system identification.
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