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Abstract

The Monte Carlo technique is an alternative to semi-
quantitative simulation of incompletely known differ-
ential equations. Here, a large number of ODEs match-
ing the given QDE are randomly generated making use
of the available semi-quantitative information. Each
ODE is then numerically integrated and conclusions are
drawn from the family of results produced. Maintaining
fair-coverage (or true randomness) is important for pro-
ducing unbiased conclusions when we randomly gener-
ate monotonic functions matching the original incom-
plete specifications in the numerical integration phase
of these techniques. Earlier attempts did not ensure
fair-coverage in a theoretical sense. We provide a hier-
archy of algorithms (exponential in number) to do this
when envelopes for the monotonic functions are speci-
fied. These algorithms can be ranked according to in-
creasing degrees of nearness to fair-coverage and de-
creasing computational tractability. The appropriate al-
gorithm can then be selected from this hierarchy to suit
the requirements of the problem.

Introduction
The Monte Carlo technique is an alternative to semi-
quantitative simulation of incompletely known differential
equations, finding its use in a number of real life applica-
tions. Here, a large number of ODEs matching the given
QDE are randomly generated making use of the available
semi-quantitative information. Each ODE is then numeri-
cally integrated and conclusions are drawn from the family
of results produced. The greater the number of ODEs gener-
ated, the more confidence one has in not missing a rare type
of behavior.

One other important factor on which the usefulness of the
Monte Carlo technique depends is whether the underlying
space is covered fairly or not. Maintaining fair-coverage (or
true randomness) is important for producing unbiased con-
clusions when we randomly generate monotonic functions
matching the original incomplete specifications in the nu-
merical integration phase of these techniques.

In this paper, we provide a hierarchy of algorithms (expo-
nential in number) to do this when envelopes for the mono-
tonic functions are specified. The algorithms can be made to
work under two different frameworks - the grid representa-
tion and the point-list representation. These algorithms can

also be ranked according to increasing degrees of nearness to
fair-coverage and decreasing computational tractability. The
appropriate algorithm can then be selected from this hierar-
chy to suit the requirements of the problem. This paper also
shows how some clever mechanisms can be used to achieve
a polynomial space complexity for all these algorithms as
opposed to an exponential amount of space that would be
otherwise required in their naive implementation.

Previous Approaches
In (Gazi et. al. 1997), the following algorithm was used
for randomly generating a monotonic increasing function
y=f(x) such that
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and� � �����

are the given quantitative envelope functions.

Algorithm: GENERATE-FUNCTION
1. Let G (the number of Grid points to be selected in x) be a
sufficiently large integer.
2. Let

���
and

���
be the smallest and greatest possible

�
values to be considered respectively. The interval � � ��� � ���
will be divided by the grid points to G-1 intervals of equal
length.
3. Choose � � randomly in � � � ������� � � � ������� � from some
distribution.
4. Choose � � randomly in � ��� ����� � ������� � � � � � � � ������ �

from
some distribution.
5. Do the following for all available

����! � � !"�#��%$ � � $&� pairs
with remaining untouched grid points between them:

5.1 Select a midpoint
��'

in this interval
5.2 Randomly choose � ' in� �(� �)�"�*�+��� ' � � � !"� � �
,.- ��������� ' � � � $#� �

6. Connect the points
�� '/� � ' � , k = 1 ... G with straight

lines.
(Decreasing functions are treated analogously.)

Problems
The probability distribution to be used in step 5.2 of the
above algorithm to choose a � ' for a given

� '
is of cru-

cial importance from the point of view of fair coverage. For
the case of a uniform distribution, the functions generated
would be unfairly attracted towards the upper envelope. Try-
ing to favor points near the lower envelope depending upon
a tuned parameter (Gazi et. al. 1997) poses many problems
apart from the fact that this is not the theoretically right thing



to do. Other problems related to this approach are identified
in (Say 2000). Among them is the observation that there
is an unjustified shape restriction on the generated function
when trying to impose differentiability of the function for
QSIM. The method may also waste resources to generate
parts of the function that will turn out to be unnecessary in
the numerical integration phase. This is because of the grid
representation that is used. The point-list representation de-
scribed in the next section solves this particular problem.

The Point-List Representation

One proposed solution (Say 2000) to some of the problems
described in the previous subsection is based on generating
the monotonic functions point by point as the need arises
during integration, and representing them as lists of these
points, without committing to any shape about the intervals
in between. Essentially, we want to do the following when-
ever f(x) is supposed to be evaluated for x=r:

IF the point (r,y) is a member of f’s point-list
THEN RETURN y
ELSE IF r � rightmost(f) OR r � leftmost(f)
THEN EXTRAPOLATE ELSE INTERPOLATE

While the point-list representation solves the problem of dif-
ferentiability and not wasting resources for x-coordinates
that are not used, it still does not say anything about pro-
ducing monotonic functions from a fair distribution. In (Say
2000), angles were being used to favor points closer to the
lower envelope to offset the unfair attraction to the upper
envelope.

Problems with Using Angles

The following problems are still associated with using an-
gles to produce random monotonic functions between the
specified envelopes (Say 2000). (1) Although using angles
in the EXTRAPOLATE function works against the unfair at-
traction to the upper envelope by biasing points closer to the
lower envelope, this is still just an ad-hoc solution and does
not ensure true randomness. (2) The INTERPOLATE func-
tion (Gazi et. al. 1997) by itself, is not justified to be theoret-
ically correct because the choice for the middle point can be
biased either to the upper or the lower envelope depending
upon the particular case. (3) In the case where � intervals
for two consecutive x-values do not overlap, a uniform dis-
tribution (over each of them independently) provides true
randomness; but the usage of angles incorrectly favors the
points closer to the lower envelope.

A Proposed Solution
Suppose that we want to find a random

�
and � under the

constraints that:
� � � � � ���

, � � � ��� � � and
� � � .

Quite naturally, first randomly generating
�

between
� �

and� �
and then generating � according to the additional con-

straints imposed, does not serve the purpose (the result is at-
tracted more towards � � ). This is because not all constraints
are being considered at a single time. Figure 1 shows that
region r is more dense than region s if the x-coordinate is
chosen independently first. The mistake committed by all
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Figure 1: Illustrates a convex solution space. Note that re-
gion � is more dense than region � if the x-coordinate is
chosen independently first.

earlier attempts was that constraints were being procrasti-
nated with each new dimension, thereby leading to an unfair
distribution in the final outcome. The only way to get a truly
random generation is by considering all the constraints at
once.

First, consider the solution space from which the random
sample has to be drawn (see Figure 1). An important prop-
erty of this space is its convexity. We know that any point
inside the convex area can be expressed as a linear combi-
nation of its vertices. Therefore, to generate a random

�
and � satisfying all the constraints, we randomly generate 5
numbers (between 0 and 1) ( � � , � � , ��� , �
	 , ��� ). Now, the
random

�� � � � = �� ��� ����� � ����� � ����� � ������ 
� � �

� � �
� � �

� � � . The trick here
is that although in reality there was another constraint that
the random weighting factors for A, B, C, D and E (the � �!� )
must sum to one, we satisfied it by normalization; still main-
taining uniform randomness 1.

A Generalized Algorithm
We introduce a generic algorithm that works under both the
frameworks - the grid representation and the point-list rep-
resentation. In both cases, complexities are in terms of the
number of x-coordinate lines (denoted by the variable - ). A
further discussion and comparison is made later in the pa-
per. Let us now formally define some notions (see Figure 2)
related to the geometry of the envelopes and the coordinate
lines to facilitate explanation of the ideas in the algorithm.
Definition A coordinate line is a vertical line drawn at a par-
ticular x-coordinate.
Definition The lower and upper caps on a coordinate line
are the points where the coordinate line cuts the lower and
upper envelopes respectively.

1Another observation to make here is that the number of ran-
dom numbers required is more than the number of coordinates viz" and # . This corresponds to the Lagrange multipliers for opti-
mization under constraints (which is equivalent to optimization in
a higher dimension)
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Figure 2: Diagrammatically illustrates the definitions of var-
ious related notions about the geometry of the envelopes.
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Figure 3: Roughly illustrates how the extension of the solu-
tion space is done for each new dimension.

Definition The upper horizon at a coordinate line is a maxi-
mal horizontal line-segment with one end point on the lower
envelope and the other (left-side) end point as the upper cap
on the coordinate line.
Definition The lower horizon at a coordinate line is a maxi-
mal horizontal line-segment with one end point on the upper
envelope and the other (right-side) end point as the lower
cap on the coordinate line.
Definition A mark on a coordinate line is an intersection
point of that coordinate line with any of the horizons such
that the intersection point itself lies within the caps on the
coordinate line. (Note that this definition includes the caps
on the coordinate line themselves, since they are the end
points of the lower and upper horizons for that coordinate
line.)

Conceptualization of the Solution Space

First of all, suppose that we want to compute the vertices of
the n-dimensional convex solution hyperspace. Conceptu-
ally, the computation can be done in two phases (see Figure
3):

Duplication Phase Consider the x-values in increasing
order. For each new

��'
, duplicate the current (k-1)-

dimensional region at
� � ' ����� � � ' �+� and

� � ' ����� � � ' �+� .
Here, ��� and ��� are the bounding lower and upper envelope
curves given. In the new k-dimensional space thus obtained,
there is a line connecting corresponding points in the two
copies of the (k-1)-dimensional solution space that was ex-
isting before

� '
was considered (one at each of the bounding

values for
��'

).

Intersection Phase We now need to consider the extra
constraint that the random value generated against

� '
(i.e.� ' ) must be greater than that generated against

� '
	 �
(i.e.� '
	 � ) to maintain monotonicity. The required solution

space is therefore that part of the k-dimensional convex
space (constructed from the duplication phase) which lies
above the hyperplane � ' � � '�	 � . The intersections of this
hyperplane can be computed easily by using the notion of a
consistent and inconsistent point.

Definition A point is said to be consistent if its co-
ordinates are in a monotonically increasing order (i.e.� �� � � � � ����� � '�� ). Otherwise, it is said to be inconsistent.

The procedure, conceptually, is therefore simply to cut
lines joining consistent and inconsistent points by the hyper
plane � ' � � '
	 � to find other consistent vertices of the
solution space.

Algorithm (conceptual): SOLUTION-SPACE-VERTICES
1. Set SSV = � . (consider

� � ��� ��� in increasing order)
2. FOR , = 1: - DO

2.1 [Duplication Phase]
SSV = SSV.lb( � ! ) � SSV.ub( � ! )
2.2 [Intersection Phase]
FOR every inconsistent P in SSV:

2.2.1 Let EQ be the set of all Q s.t. Q is a
consistent neighbor of P.
2.2.2 Let ER be the set of all R such that
R = point on line segment PQ lying on plane� ! � � ! 	 � . (R is consistent).
2.2.3 SSV = SSV - P � ER

3. SSV is the required set of points of the convex n-
dimensional solution hyperspace.

In the above (conceptual) algorithm, we observe that the
number of points in the solution space is unwieldy 2. We
would need an exponential amount of space to store all the
vertices and an exponential amount of time to generate all
the � s and compute the random linear combination of these
vertices. We solve each of these two problems (i.e. achieve
tractable space and time complexities) by relating the so-
lution space to geometric properties of the envelopes ex-
plained earlier.

Line Segment Encoding of Solution Space

We now prove a series of properties and culminate by prov-
ing that the solution vertices can be encoded in a polynomial

2Of the order of ��� . Proof omitted in this paper
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Figure 4: Shows the line-segment encoding of the solution
space vertices.

space of
� � -

� �
by just maintaining the marks on each coor-

dinate line.
Definition The line-segment representation of a solution
vertex is a continuous set of line segments (joined end to
end) (abcdefg in Figure 4) where the ,���� coordinate value of
the solution vertex corresponds to the y-value of the mark
(selected to represent the vertex) on the ,���� coordinate line.
Lemma A vertex is inconsistent if and only if its line-
segment representation has a piece with a negative slope.
Lemma The duplication phase corresponds to joining all
marks on coordinate line

� '
	 �
with the caps on the coordi-

nate line for
� '

.
Lemma The intersection phase corresponds to replacing
the inconsistent line-segments by a pair of horizontal line-
segments starting from each of the end-points as shown in
Figure 5.
Lemma The set of solution vertices produced by the concep-
tual algorithm is exactly the same as those represented by a
consistent sequence of marks (i.e. consistent line-segment
representations).
This is because the horizontal lines drawn in the intersection
phase are exactly the horizons drawn to compute the marks.

Data Structure
We use a 2D array � as the underlying data structure in our
algorithm (see Figure 6). � ! $

gives the y-value of the �����
mark on coordinate line , . Marks on each coordinate line are
ranked (in an increasing order) according to their y-values.
� ! $

also stores two other fields count and p-value along with
some indexing information 3. The use of these fields will be
described later in the paper. We also ensure that all cells
are initialized with a special symbol in them so that any un-
used cells (arising by virtue of coordinate lines having fewer
marks on them than the maximum possible - viz ��- ) can be
identified.

Space Complexity There are - row indices each corre-
sponding to a coordinate line and against them there are a

3But all cells are of the same size, facilitating pointer arithmetic
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Figure 5: Illustrates how negative slopes are replaced with
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Figure 6: The underlying data structure for the algorithm.



maximum of � - y-values stored. This is because all marks
have the same y-value as one of the caps and there are 2n
caps all together. The space complexity is therefore

� � -
� �

.

Time Complexity The time complexity involved in build-
ing and maintaining the data structure depends on the rep-
resentation we use. We discuss the time complexities under
the grid and point-list representations separately below.

In the grid approach, we need to consider the caps in
sorted order and add them to each partially built row if it lies
within the caps for that coordinate line. Note that this com-
parison is not done against all coordinate lines. The lower
caps are compared to coordinate lines occurring before the
coordinate line to which the cap belongs and the upper caps
are compared to coordinate lines occurring after the coor-
dinate line to which the cap belongs. This is in accordance
with how the horizons are built. This procedure clearly takes� � -

� �
time and the other complexities related to sorting the

caps and initialization of the data structure are subsumed by
it.

In the point-list approach however, coordinate lines can
occur in a random order and it clearly takes

� � -
� �

time
to update the data structure consistently for each new line
added into consideration (even if one rebuilt the whole data
structure upon every new addition). All together, the time
complexity comes to

� � - � � where - is the number of co-
ordinate lines present so far in the point-list representation.
Again, this subsumes other complexities related to sorting
and initialization.

It can be observed therefore, that the point-list represen-
tation has the advantage of using fewer coordinate lines but
requires

� � - � � time to maintain a consistent data structure.
The grid approach has the advantage of using an

� � -
� �

time
algorithm to build the data structure once and for all, but
may be using many more unwarranted coordinate lines to
work with.

Consistent Solution Space Vertices Let us consider the
task of generating consistent sequences of marks from the
line-segment encoding of solution space vertices. Suppose
we imagine a graph in which all the marks are nodes
and that there is an edge between mark , and mark � if
they occur on consecutive coordinate lines and � has a
higher y-value than , . Suppose we need to pick consistent
line-segment representations randomly; then we need
to do the following to ensure uniformity. We make use
of the p-value at each mark. The p-value is calculated
as the sum of the p-values of its neighbors at the next
level, with the p-value for the last level nodes being set
to 1. The algorithm would now simply be to choose at
each level a node amongst a candidate set of nodes at the
same level with a probability proportional to its p-value
and then proceed to its neighbors at the next level as being
candidates for the next selection and so forth (see Figure 7).

Algorithm: RANDOM-PATH
1. CandSet = all Level-1 nodes

(marks on the first coordinate line).
2. Random-Path =

���
.

3. rand = random number in [0, � ���
�����
	

� p-values].

B B B

A A A

2

3 1 1

12

direction of evaluation of p-values

Figure 7: Choosing paths randomly and fairly. Note that
the probability of choosing any path = 1/5. For example,
P(ABB) = 3/5.2/3.1/2 = 1/5.

4. Current = binary search for rand in
count fields of CandSet.

5. Add Current as the next node in the Random-Path.
6. FOR � = 2 to - DO

5.1 CandSet = neighbors of Current in level � .
5.2 rand = random number in [0, p-value of Current].
5.3 Current = binary search for rand in

count fields of CandSet.
5.4 Add Current as the next node in the Random-Path.

7. Return Random-Path.

Computing Count, P-value and Indexing Information
We also need to address the issue of jumping to a random
neighbor in

� � ���� - � time if we want to have
� � - ���� - �

complexity for the generation of a single random solution
space vertex. This can be achieved if we can perform a bi-
nary search on the neighbors of a point having generated a
random number in the interval [0, p-value]. Being able to
perform binary search requires that we maintain in each cell
a count field equal to the sum of the p-values of all marks
occurring above it on the same coordinate line. Notice that
since the sorted order of marks is already present in the way
we build our data structure, we only need to maintain in-
dexing information of how each cell maps into the follow-
ing row in which it is present. Indexing information can be
computed by walking down a pair of consecutive rows si-
multaneously and reusing computations made. This takes� � - � time for a pair of rows and needs to be done for (n-
1) pairs. The overall time complexity remains

� � -
� �

in the
case of the grid representation and

� � - � � in the case of the
point-list representation. It is easy to observe that the count
and p-values can also be computed while building up the
indexing information.

Degrees of Uniform Randomness: Exploiting
Convexity of the Solution Space

We now present two theorems 4 which apply to convex
hyper-spaces and see how we can import them into our
mainstream ideas.
Theorem 1 The set of points which can be chosen by a lin-
ear combination of the vertices of a n-dimensional convex
solution space is the same as that which can be chosen by

4Formal proofs are omitted in this paper
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Figure 8: A simple example illustrating the truth of the two
theorems. Region � is more dense than region � when � =3;
but they are equally dense when k=4.

first selecting � ( - � � ) of these vertices and then taking
their linear combination.
Theorem 2 For random choices of the � vertices, the distri-
bution in the probabilities with which different points can be
selected increasingly tends towards uniformity with increas-
ing � (i.e. entropy increases with increasing � ).
This is because, every � � selection of nodes can be fur-
ther subdivided by a � � selection of nodes among them
( � � � � ��� . Figure 8 shows an example for a 2D space.
Regions � and � are not equally dense when k=3. Letting
k=4 however, makes the whole solution space uniform.

A Hierarchy of Algorithms for Achieving
Increasing Degrees of Uniform Randomness

The random monotonic functions can now be generated
by enumerating all possible consistent sequences of marks
(representing solution-space vertices) on the coordinate
lines, and taking a random normalized linear combination
of them. This process however, may be a costly affair
since there are an exponential number (denoted by � ) of
such consistent sequences of marks. We present below a
hierarchy of algorithms approximating uniform randomness
to increasing degrees of accuracy.

Algorithm: MONTE-CARLO(k) [k � n]
1. Randomly choose � consistent sequences of marks.
2. Randomly generate � � .. � ' in the interval [0,1].
3. Use the � s generated in (2) to obtain a random normal-
ized linear combination of the sequences chosen in (1).

Observation MONTE-CARLO(k) runs in time
� �/- � ��� - � .

This is because generating a single solution-space vertex
takes

� � - � ��� - � time.
Observation Theorem 1 of the previous section ensures
that all possible monotonic functions between the envelopes
are covered by MONTE-CARLO(k) and, moreover, exactly
these are covered.
Observation Theorem 2 of the previous section ensures that
for all , � � � � -���� ����� � �

and � � , , MONTE-CARLO(j)
has a better degree of uniform randomness than MONTE-
CARLO(i).
Observation In the sequence of algorithms MONTE-

CARLO(k), � ranges from a linear function of - (viz -���� )
to an exponential function of - (viz � ). This provides a
very fine gradation for trading off time versus accuracy and
it is our conjecture that the requirements of most problem
domains can be met with some polynomial function of - .
Observation We have not addressed the possibility of du-
plicate solution-vertices being chosen in step (1). Although
we can try and detect them, we choose not to do so since it
happens with an exponentially small probability for small
(polynomial) values of k.
Observation MONTE-CARLO(m) actually achieves the
theoretically correct way of ensuring uniform random-
ness. However, instead of producing � randomly chosen
solution-vertices like in step (1), one can actually enumerate
all the vertices by performing a DFS on the graph encoded
in the underlying data structure.

Discussion and Summary
In this paper, we addressed the problem of generating
random monotonic functions within specified envelopes.
Firstly, we proposed the theoretically correct way of en-
suring fair-coverage. Secondly, we provided a clever way
to represent an exponential number of vertices of the solu-
tion hyper-space in

� � -
� �

space. This was done by relat-
ing the geometry of the envelopes to the solution space we
had to work with. Thirdly, we provided a hierarchy of algo-
rithms (an exponential number of them) that exhibit a very
fine gradation for trading off time versus accuracy (in en-
suring fair-coverage). It is our conjecture that the require-
ments of most problem domains can be met with MONTE-
CARLO(k) where � is some polynomial function of - . This
would also imply a polynomial time complexity for the cho-
sen algorithm. It is important to note that we have exploited
the convexity of the solution space in many ways: to define
what a theoretically correct solution is, to reduce the space
requirements, and finally to provide the hierarchy of algo-
rithms.
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