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Abstract 
Qualitative simulations can be seen as knowledge models 
that capture insights about system behaviour that should be 
acquired by learners. A problem that learners encounter 
when interacting with qualitative simulations is the 
overwhelming amount of knowledge detail represented in 
such models. As a result, the discovery space grows too 
large, which hampers the knowledge construction process 
of the learner. In this paper we present an approach to 
restructure the output of a qualitative reasoning engine in 
order to make it better suited for use in interactive learning 
environments. The approach combines techniques for 
simplifying state-graphs with techniques for aggregating 
causal models within states. The result is an approach that 
automatically highlights the main behavioural facts in 
terms of simulation events and simplified causal accounts, 
while leaving the option for the learner to explore the 
aggregated constructs in more detail. 

1. Introduction 
This paper addresses the problem of making qualitative 
simulations of complex systems easier to understand for 
learners. The simulations generated by qualitative 
reasoning engines are often difficult to understand, 
because these models capture a lot of detail about the 
structure and behaviour of a system.  
 
Previously proposed solutions to this problem can be 
grouped into two classes. One group tries to generate less 
complex simulations to begin with, while the other group 
tries to summarize the results of complex simulations 
afterwards. In the case of the former, the idea is to use 
information needs (such as user questions) as guidance. 
For instance, given a particular question about the 
behaviour of some system, a parsimonious simulation can 
be generated that does not necessarily account for all 
possible behaviours of that system, but that is sufficiently 
detailed to address that particular question (e.g. 
Falkenhainer & Forbus, 1991; Rickel & Porter, 1997). 
Mallory et al. (1996) present ideas within the second 
group of approaches. By analysing the behaviour paths in 
a state-graph for certain features, multiple states can be 
grouped into a ‘single’ state, simplifying the graph as a 
whole. De Koning et al. (2000), also within the second 

group, take a rather different approach when they 
aggregate the causal model within a state. Although this 
approach significantly reduces the complexity of the 
causal model, the link with important state-graph features 
(as discussed by Mallory) is missing, because the 
aggregation is always applied within a single state of 
behaviour. 
 
We view a qualitative simulation as a knowledge model 
that captures certain insights that a learner should acquire. 
This model, made by a teacher or with the help of a 
teacher, must therefore be treated as a given, it cannot be 
reduced beforehand. This implies that we need an 
approach from the second class, namely one that takes the 
output of a reasoning engine and makes it easier to 
understand for a learner. Specifically, we combine the 
ideas from Mallory et al. (1998) and De Koning et al. 
(2000), and use them not only to construct a simplified 
state-graph, but also to create a simplified account of that 
graph in terms of the underlying causal relationships. In 
addition, we provide the learner with the possibility to 
open up the aggregated constructs, so that the learner can 
also explore the simulation results in more detail. Our 
approach can be regarded as a hierarchically structured 
simulation model that simplifies the discovery process for 
learners by highlighting the important behavioural facts. 
 
The content of this paper is as follows. Section 2 
introduces a taxonomy of events, describing how the 
behaviour of a simulated system can be analyzed 
hierarchically in terms of events. Section 3 explains how 
the notion of events on different levels of aggregation can 
be used to select interesting information while abstracting 
from the rest. Section 4 discusses the differences with 
respect to previous work, as well as directions for further 
research.  

2. A taxonomy of simulation events 
Our goal is to make detailed descriptions of system 
behaviour easier to understand for learners, by pointing 
out patterns, and abstracting information using such 
patterns. As the basis of our method, we decompose



 
  State Graph Events Value Events Inequality Events Structure Events Model Fragment Events Causal Events 

Global Simulation Level Start and end states  Different path  
behaviours 

Different path  
behaviours 

Different path  
behaviours 

Different path  
behaviours 

Input can lead to any 
end state 

  Reuniting of paths  Common behaviour Common behaviour Common behaviour Common behaviour Different path  
Behaviours 

   Global max/minimum       Common behaviour 

Path Level Sequence of transitions Sequence of events  
below 

Sequence of events  
below 

Sequence of events  
below 

Sequence of events  
below 

Begin may lead to end 
state 

  Recognition of branches Repetition of events  
below 

Repetition of events  
below 

Repetition of events  
below 

Repetition of events  
below 

Sequence of events 
below 

    Path max/minimum        Repetition of events 
below 

Path Segment Level Sequence of transitions Sequence of events  
below 

Sequence of events  
below 

Sequence of events  
below 

Sequence of events  
below 

Begin leads to end state 

    Repetition of events  
below 

Repetition of events  
below 

Repetition of events  
below 

Repetition of events  
below 

Sequence of events 
below 

    Segment max/minimum       Repetition of events 
below 

Local Level Outgoing branch Reach value and stay  Become equal Entity (dis)appears Situation becomes  
(in)active 

Qx has pos./neg./no 
effect on Qy 

  Incoming branch Move from value Become greater Entity changes Situation changes dQx has pos./neg./no 
effect on Qy 

    Cross value Become smaller Attribute (relation)  
(dis)appears 

Process becomes  
(in)active 

  

    Reach extreme value   Attribute (relation)  
changes 

Process changes   

State & Transition Level Momentary states Value Equality Entity exists Process is (in)active Pos/neg. influence of 
Qx on Qy 

  Interval states Derivative Inequality Attribute exists Description view is 
(in)active 

Pos/neg. proportionality 
from Qx to Qy 

  Momentary transitions Value transition Inequality transition Attribute relation  
exists 

(De)composition view is 
(in)active 

  

  Interval transitions       Qualitative state is  
(in)active 

  

 
Figure 1. Event types at different levels of aggregation. 



behaviour into events, which can be causally and 
temporally related. We distinguish different kinds of 
events, both in terms of categories (the type of 
information) and aggregation level (the degree of 
abstraction). To this end, we have devised a taxonomy of 
events, as shown in figure 1. The contents of the matrix 
figure will be discussed in detail in the next two 
subsections.  

2.1. Levels of aggregation  
The rows of figure 1 denote the different levels of 
aggregation, which will be discussed from bottom to top, 
because this is the order in which they are derived.  
 
State and transition level: this level contains state 
descriptions and transition specifications, the 
representations used by the simulation program, in our 
case GARP (Bredeweg, 1992). Each state specifies the 
structural elements and relations which hold at that 
moment or time interval, the quantities along with their 
values and derivatives, the mathematical and causal 
relationships between quantities, and the active model 
fragments (representing situations, or processes). 
Transitions specify essentially which quantity values or 
inequality relationships change (in a qualitative sense), 
but domain-specific rules may be added to introduce 
structural changes as well (e.g., the lid of a container may 
open when the pressure exceeds some threshold). Because 
the information at this level is the output from the 
simulator, it functions as the bottom level for the higher 
levels of aggregation.1  
 
Local level: this level comprises two (or three) states and 
the transition(s) in between. It largely corresponds to 
Mallory’s notion of trajectory (1996), although he 
focuses mostly on value and derivative events, while we 
include other types of events as well. Like the transitions 
on the previous level, this level deals with the difference 
between adjacent states, but it does this in a more 
integrated way. A transition specifies the basic changes 
from one state to the next, in terms of quantity values and 
inequality relationships, but it does not fully specify the 
successor state. Hence, not all the differences between 
adjacent states (like the situation description changing, or 
processes becoming active) are included in a transition. 
On the local level, also these changes are explicitly 
represented.  
 
Path segment level: this level aggregates successive 
events until multiple possibilities arise, i.e., a branch 
occurs in the state-transition graph. This level contains the 
same types of events as the path level (the next level), but 
                                                           
1 While calculating the simulation results, the program uses even 
lower-level internal representations, but these are not interesting 
for our purposes. 

it is interesting as an intermediate level for explanation 
purposes. When a simulation contains a path segment 
(i.e., a state sequence without branches) from sm (possibly 
via sm+1, sm+2, …) to sn, we can say that the situation at sm 
has led to the situation at sn. When we consider a longer 
path which includes a branching point, e.g., the path sm to 
sn+1a, while there is another transition from sn to sn+1b, we 
can no longer say that sm has led to sn+1a, because it could 
have led alternatively to sn+1b (see figure 2).  
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Figure 2. Path segments vs. paths. The path from Sm to 
Sn is also a path segment, but the path from Sm to Sn+1a 
(or Sn+1b) is not, because it includes a branching point. 

 
Path level: this is a generalization from the path segment 
level, allowing branching points to be included. However, 
like the path segment, a path is still a strict sequence of 
states and transitions, so for every branching point, only 
one of its successors is included. About a path, one can 
say that the begin situation may lead to the end situation. 
Also, for a path, one can talk about repetitive, or cyclic 
behaviour, if present. When the begin and end of a path 
are also global begin and end states in the simulation, 
such a path represents a possible behaviour of the system 
simulated.  
 
Global simulation level: this level includes all alternative 
paths, if there are any. If the simulation results in only one 
path, there is only one possible behaviour of the system 
modeled, given the input to the simulator. In many cases, 
however, the input or the model does not fully specify the 
behaviour in advance, and multiple possibilities will arise, 
creating branches in the state-transition graph. At the 
global simulation level, we can look at the differences 
between such alternative paths. In some cases, alternative 
paths only differ with respect to the order in which events 
occur, but in other cases, alternative paths may contain 
very different events altogether.  

2.2. Event type categories 
With these levels of aggregation in mind, we now focus 
on the different event type categories that we distinguish 
in the different columns of figure 1.  
 
State graph events: on the state and transition level, 
states and transitions can be momentary or take some 
interval of time. On the local level, it’s also possible to 



recognize branching points when there are multiple 
transitions from, or to the same state. On the path segment 
level, there are no branches. On the path level, there can 
be branching points, and also cyclic behaviour is 
recognized. On the global level, paths branching out and 
reuniting again can be recognized, as well as global start 
and end states.  
 
Value events: at the state and transition level, every state 
specifies the value and derivative of every quantity in that 
state. On the local level, Mallory et al. (1996) has 
introduced some event types in this category. The 
information of two states is combined to form events, 
such as reach value and stay, or move from value. For 
some events, it’s necessary to consider three successive 
states, because they form a more natural whole than any 
combination of two, e.g., a maximum requires a state in 
which a quantity value is increasing, a state in which it is 
steady (this may be a momentary state, or a state lasting 
for an interval of time), and a state in which it is 
decreasing again (Mallory et al., 1996). At the path 
(segment) level, these events can be further aggregated by 
chunking continuous or repetitive developments, 
abstracting where necessary from local maxima and 
minima to path (segment) level extremes. At the global 
simulation level, the differences and commonalities 
between different behaviours can be determined, as well 
as global extremes.  
 
Inequality events: in the individual states, (in)equalities 
are specified between pairs of quantities, if applicable. In 
the state transitions, changes in these (in)equalities are 
specified. On the local level, these are essentially 
preserved, with an exception for the case of a continuous 
change from Qx < Qy via Qx = Qy to Qx > Qy (or vice 
versa): this is chunked to a change from Qx < Qy to Qx > 
Qy. This kind of chunking may also occur on the path 
(segment) level, if the changes are spread out over more 
than three consecutive states.  
 
Structure events: every state specifies the structural 
constellation of the system modeled, in terms of entities 
and relationships. Whenever an entity or relationship 
(dis)appears, or changes, this constitutes an event on the 
local level. Since our qualitative simulation engine is 
geared towards representation of change in terms of 
varying quantities rather than spatial information, not 
much further aggregation is possible in this category.  
 
Model fragment events: model fragments specify 
situations and processes, although the state and transition 
level contains a more fine-grained typology. When its 
conditions are met (specifying structural, value or 
(in)equality constraints), a model fragment becomes 
active in a particular state, potentially introducing more 
information. A process model fragment typically 

introduces a flow quantity influencing other quantities 
which are often involved in the triggering condition (e.g., 
T1 > T2 introduces a heat flow). On the local level, 
processes can become active or inactive, and situations 
may change. Since model fragments are organized in an 
is-a hierarchy, subtle changes (e.g., a change in model 
fragments localized low in the is-a hierarchy) can be 
distinguished to some degree from more extensive 
transformations (i.e., a change in model fragments higher 
up in the is-a hierarchy). On the path (segment) level, 
intermediate model fragments may be abstracted when 
they are at the same level in the is-a hierarchy as the ones 
occurring in the begin and end of the path (segment). On 
the global simulation level, an overview is possible of all 
situations and processes which can occur, highlighting the 
commonalities and differences between alternative paths.  
 
Causal events: on the state and transition level, causal 
relationships are specified between quantities potentially 
influencing each other, or when they are proportionally 
related. However, since causal relationships may be 
inactive, and they may have opposing effects, their 
expected effect does not always occur. It’s necessary to 
look at the local level to see which causal relationships 
did actually have an effect, and which were submissive 
(De Koning et al., 2000), i.e., did not have an effect. On 
the path segment level, some of the local events can be 
connected to form a causal chain of events taking place 
over multiple states, e.g., a temperature difference 
introduces a heat flow process, causing the temperature 
and pressure to rise in statem, the pressure to reach its 
maximum in staten, the container to explode in state and 
the fluid to leak out in statep, the table to get wet in stateq, 
etc. Since a path segment does not include branching, we 
can say that the situation at the begin of the segment must 
lead to the situation at the end. On the path level, a path 
can include a branching point; in that case we can only 
say that the begin may lead (instead of must lead) to the 
end. On the global level, it’s important to realize that the 
input to the simulator can lead to any of the end states via 
any of the possible paths, so we can only make causal 
statements about what all end states have in common.  

3. Hierarchical abstraction of qualitative 
simulations 

Now that all event types have been introduced, this 
section will describe their role in the abstraction process 
to facilitate the communication of the simulation results 
and underlying causal explanations. To relate our 
discussion more clearly with previous work, we have 
divided this section in two parts: aggregation of the state-
transition graph, and aggregation of causal models.  
 



3.1. Aggregation of the state-transition graph 
The number of states generated in a simulation depends 
essentially on the scope and level of detail of the model: 
the number of independently varying quantities 
(responsible for branching), the number of qualitative 
distinctions in the quantity space of these variables, and 
the number of causal relationships included in the model. 
While any of these distinctions may be considered 
interesting for future users by the model builder, or may 
be necessary to calculate results further along a causal 
chain, not all of the distinctions matter at the time of 
presenting the results. The original state-transition (or 
behaviour) graph that results from a simulation can 
contain many (tens, hundreds or even thousands) 
behaviours, but as soon as the number is larger than a 
handful, it becomes difficult to gain an overview of what 
happens, especially when the state-transition graph 
contains branching. Reduction of the state-transition 
graph helps learners to gain an overview of the results, 
while parts of the graph may be selected by the user for 
further expansion, thereby giving access to the underlying 
details.  
 
We distinguish three main methods of graph reduction: 
(1) abstracting from particular domain structures; (2) 
abstracting from particular kinds of events; (3) abstracting 
from temporal information. The first method, abstracting 
from particular domain structures, is very powerful, as 
shown by the following. Assume we’re only interested in 
one of the three subsystems involved in the example 
simulation; now we can abstract away everything from 
our example simulation trace except the information 
pertaining to that subsystem. Suddenly, of the 19 original 
states, only 6 states remain, because the other states did 
not differ from the remaining states with respect to the 
subsystem of interest. Although we acknowledge the 
importance of this method, it has been treated in some 
detail by Mallory et al. (1996), and it requires (user) 
specification of interests. In this paper, we therefore focus 
largely on the second and third method of abstraction.  
 
An overview of the top-level algorithm and the results of 
the different steps is shown in figure 3. We use two main 
principles behind each step in the algorithm: (1) we prefer 
linear descriptions of what happens, and abstract from 
alternative lines of events whenever possible; (2) we 
focus on begin and end of event sequences, if the 
intermediate stages are mostly continuous. In the 
following subsections, the specific techniques illustrated 
in figure 3 will be described in more detail. The example 
simulation that is used throughout this section is based on 
a re-implemented model of the Cerrado Succession 

Hypothesis model as originally presented in Salles & 
Bredeweg (1997).2 
 
Transitive Reduction 
Transitive reduction (as expressed by the first condition 
of algorithm 1) is a well-known technique in graph 
theory; it reduces the number of edges, while preserving 
all information, provided that the edge-relationship is 
transitive (e.g., the hierarchical is-a relationship). In our 
case, the edges represent transitions which can also be 
considered transitive in some sense: the information that 
state 7 can be reached directly from 3 can be abstracted, 
because 7 can also be reached via some other path (e.g., 3 
→ 4 → 7). There is an exception, however, when the 
events in the direct transition don’t match the events in 
the longer path. In that case, the shortcut involves less, 
more, or different events than the longer path, and they 
should be considered as alternative behaviours. Therefore, 
the second condition is added to ensure that we only 
abstract away transitions in which the same events occur 
as in the longer path. The only information we lose after 
transitive reduction is that events may occur 
simultaneously. 
 
Algorithm 1. Transitive reduction of the state-transition 
graph: 
 
Abstract from (i.e., remove) all transitions T (= X → Y) 
for which holds: 

There is a path P from X to Y which does not 
contain transition T 
AND  
P contains the same events as T. 

 
Since this technique involves looking at transitions, the 
events that should be considered in the comparison of P 
and T are at the local level. All events can be considered, 
or a subset of interest. Some events (like local maxima) 
may exist only in the longer path because they involve 
two transitions; in such cases, the second condition does 
not hold. Note: in this step, only transitions are abstracted, 
not states.   
 
Aggregation of alternative orderings 
The previous technique abstracted away the occurrence of 
events simultaneously, if they also occurred in sequence. 
We can generalize this idea of abstraction from sequence, 
by comparing the sets of events in different branches 
which reunite again later, e.g., 15 → 16 → 18 and 15 → 
19 → 18. If these different paths contain the same events 

                                                           
2 Due to lack of space, and because we prefer to stress the 
generality of the approach, we do not go into more detail about 
the domain model in this paper. 
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The original state-transition graph as output from the 
simulator, consisting of 19 states, 43 transitions, and 
896 behaviour paths. The first step in the aggregation 
process actually adds more information, namely the 
differences between states. The second step is 
performing transitive reduction (see text for details).   
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The result after the first two steps, consisting of 19 
states, 25 transitions, and only 24 distinct behaviours. 
The next step reduces the number of paths by 
abstracting from alternative orderings. This is done 
by  comparing the events in reuniting branches, and 
creating higher level transitions when they match.  
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The result after aggregation of alternative orderings, 
consisting of 9 states, 7 transitions (of which 2 are 
aggregated), and only 2 distinct behaviour paths. The 
final step, aggregation of sequence, compresses the 
events in a path until a branching point occurs, 
thereby reducing the number of states.  
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The end result at the highest level of abstraction, 
consisting of only 4 states, and 3 aggregated path 
segments, which together summarize the two 
behaviours. Further abstraction would only leave the 
begin and end states.   

 
Figure 3: Steps in the process of aggregating the state-transition graph 

 
 
(in a different order), or when the events can be 
aggregated to the same events, we can perform 
aggregation of alternative orderings, and see them as one 
aggregated alternatives transition, until the user is 
interested in more detail and the order becomes important 
again. The algorithm is presented here as algorithm 2.  
 
Algorithm 2. Aggregation of alternative orderings in the 
state-transition graph: 
 
Find a group of paths P1 to Pn with the same begin-point 
(X) and end-point (Y), for which holds:  

P1 to Pn contain the same events, or events which 
can be abstracted into the same higher level 
events (following figure 1), 

and do the following:  

1. Add a shortcut edge from X to Y, to represent an 
aggregated transition, containing all (aggregated) 
events occurring in paths P1 to Pn.  

2. Delete every edge from the original paths P1 to Pn, 
unless: 

a. the edge appears after an incoming 
branching point, OR 

b. the edge appears before an outgoing 
branching point. 

3. Delete states which have no incoming and outcoming 
edges anymore. 

Repeat this process (including step 1, 2 and 3) until no 
more alternative paths can be found. We assume that the 
procedure responsible for finding groups of equivalent 
paths starts with the shortest paths, so that the abstraction 
is done bottom-up.  



The unless-conditions in step 2 of the algorithm are 
necessary to prevent deletion of an edge when this would 
also cut off other paths than the ones abstracted.  
Using this technique, both states and transitions are 
abstracted, thereby reducing the number of paths, or 
apparent ambiguities.  
 
Aggregation of sequence 
In this step of the aggregation process, path segments 
(sequences of states without branching points) are 
chunked into one aggregated sequence transition (the 
algorithm is straightforward, and omitted to save space). 
This technique further reduces the number of states and 
transitions, but not the number of paths.  

3.2. Aggregation of causal models 
With the term causal model, we mean essentially the set 
of causal relationships between quantities occurring in the 
simulation on the state level, but in a broader sense, also 
the causal relationships between higher level events.  
On the state level, we have influences and 
proportionalities between pairs of quantities. Because the 
network consisting of these dependencies may be 
complex (involving tens to hundreds of relationships) it’s 
useful to consider meaningful portions of it: 

1. A quantity Qx (indirectly) influencing quantity 
Qy. Special cases of this include feedback loops, 
and/or mediating quantities; 

2. A quantity Qx directly influencing all quantities 
Qy1 to Qyn; 

3. All quantities Qx1 to Qxn directly influencing 
one quantity Qy.  

These three cases enable highlighting of linear 
propagation of an influence, an influence spreading in 
multiple directions, and multiple influences combining, 
respectively. In combination, they can be used to explain 
why any quantity Qx is increasing, steady, or decreasing.  
When besides the dependencies themselves, also the 
quantities’ values and derivatives are considered, this 
creates more potential for abstraction, as demonstrated by 
the aggregation technique of De Koning et al. (2000). 
First of all, the status of each dependency can be labeled 
dominant, submissive, or balanced. This indicates 
whether their effect is as expected, is dominated by other 
effects, or balanced out, respectively. The distinction is 
used to abstract from all submissive dependencies, and 
focus only on the effects that lead to actual value events. 
Second, causal chains are constructed in which non-
branching sequences are chunked, and fully 
corresponding quantities (i.e., which behave in exactly the 
same way) are grouped together as one. Third, the causal 
chains which do not directly lead to a state transition from 
the current state, are discarded.  
The goal of De Koning’s abstraction method was to 
facilitate hierarchical diagnosis of learners’ reasoning, but 

we believe that this approach is also useful for 
explanation purposes. However, we propose the following 
changes to De Koning’s abstraction method, two minor, 
and two more important points.  
Leaving out submissive relationships simplifies things a 
lot, but we think this should only be done when a learner 
is already familiar with these relationships. Chunking 
sequences of relationships and grouping of fully 
corresponding quantities are both useful, too, but when 
the aggregated quantities belong to different entities, this 
may be a reason for keeping them separate. A more 
important point, however, regards discarding the causal 
chains which do not directly lead to a state transition. This 
is not desirable for explanation purposes, because it may 
disconnect an effect from its ultimate cause, as indicated 
by the following example. When an influence is 
introduced in staten, this causes some amount Q (whose 
value currently lies in some interval, e.g., low) to 
increase. This increase does not directly lead to a state 
transition, however (e.g., because other quantities reach 
another qualitative value first), but it does so three states 
later, only then reaching the border of the interval low, 
and changing to medium. De Koning’s mechanism would 
only include the causal chain from influence to the 
changing quantity in staten+3, although the trend was 
already started in staten. Instead, we propose that a causal 
chain is introduced as soon as the cause occurs, and that it 
is discarded only when it does not lead to any transition 
event later on in the simulation. As De Koning et al. note 
(2000), humans often make inferences and claims about 
events happening at some later point in time, not 
necessarily the first next state. Our suggestion addresses 
this concern. 
The second significant change with respect to De 
Koning’s mechanisms, is that we do not only include state 
transitions as events, but also other types of events, most 
notably derivative changes. This allows us to explain, on 
the local level, why a quantity Qx starts to increase, 
reaches a (local) maximum, or any other such type of 
event. Although we include some extra information with 
respect to De Koning’s mechanism, we also allow further 
abstraction, by glossing over continuous developments. 
For example, in our view, it does not make much sense to 
explain why a quantity Qx keeps increasing, when the 
cause for it to start increasing has been explained already, 
as long as the same influences are applicable. 

4. Discussion, Conclusion and Further Work 
In our work we use qualitative simulations of system 
behaviour as interactive knowledge models. Such 
simulations are constructed by teachers, or with help of 
teachers, and capture insights that should be acquired by 
learners while interacting with these simulations. 
However, qualitative simulations include so much detail 



that learners may be overwhelmed by the amount of 
information. To fulfil the educational potential of 
qualitative reasoning in interactive learning environments, 
they need to be equipped with abstraction techniques to 
select the most interesting information from a qualitative 
simulation. To this end, we have presented a taxonomy of 
simulation events, and hierarchical aggregation methods 
to determine the most interesting behaviour of the 
simulated system. Our approach is more powerful than 
the work by De Koning et al. and Mallory et al., because 
it includes more types of events, and extends to 
aggregation levels above the local level to include path 
segments, paths and global views. It is less rigid than De 
Koning’s STARlight

 system because, like Mallory’s work, 
it transcends the low-level state-transition view to 
determine which events are interesting. It is also more 
flexible than Mallory’s method because (like De Koning’s 
methods) it does not require specification of user interests 
beforehand.  
 
The algorithms described in this paper have all been 
implemented in SWI-Prolog (Wielemaker & 
Anjewierden, 1992). The visualisation of the aggregated 
results is currently being implemented as part of the 
model inspection tool VisiGarp (Bouwer & Bredeweg, 
2001). Future work will focus on knowledge construction 
dialogues (e.g. Aleven et al., 2001) during which the 
learning environment takes the initiative and uses the 
hierarchically structured simulation model to actively 
support the learner in discovering the important behaviour 
features captured in the simulation. 
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