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Abstract

The problem of Systems Identification starts with a time-
series of observed data and tries to determine the simplest
model capable of exhibiting the observed behavior. This op-
timization problem searches the model from a space of pos-
sible models. In traditional methods, the search space is the
set of numerical values to be assigned to parameters. In our
approach we are constrained, and therefore limit the search
space, to Linear Time-Invariant models. In this paper, we
present the theory and algorithms to perform Qualitative Sys-
tems Identification for Linear Time Invariant Dynamic Sys-
tems. The methods described here are based on successive
elimination of the components of the system’s response. Si-
nusoidals of high frequencies are eliminated first, then their
carrying waves. We continue with the process until we ob-
tain a non-oscillatory carrier. At that point, we determine the
order of the carrier. This procedure allows us to determine
how many sinusoidal components, and how many exponen-
tial components are found in the impulse response of the sys-
tem under study. The number of components determines the
order of the system. The paper is composed of two important
parts, the statement of some mathematical properties of the
responses of Linear Time Invariant Dynamic Systems, and
the proposal of a set of filters that allows us to implement the
recognition algorithm.

Introduction
The problem of Systems Identification starts with a time-
series of observed data and tries to determine the simplest
model capable of exhibiting the observed behavior. This
optimization problem searches the model from a space of
possible models. In traditional methods, the process of
structural identification has received less attention than the
parametrization of the model. In most of cases the struc-
tural estimation is not generally made. The user selects the
model of a defined group of possibilities. The choice of an
appropiate model structure is most crucial for a successful
identification application. This choice must be based both
on an understanding of the identification procedure and on
insights and knowledge about the system to be identified.
An alternating way to infer a suitable structure, guided by
system knowledge and the collected data set, is presented
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in this paper. In our approach we limit the search space to
Linear Time-Invariant models.

The problem we are assessing in this paper is that of
Qualitative Systems Identification for Linear Time Invariant
(LTI) Dynamic Systems. This kind of systems can be repre-
sented by Linear ordinary Differential Equations with Con-
stant Coefficients. Although this problem may seem over-
constrained, there are many important problems in engineer-
ing and physics that can be expressed in mathematical terms
by this kind of differential equations. We could even as-
sess time-varying or even non-linear systems, if we consider
them as piece-wise decomposed by linear approximations
of the original systems. So, this is a limited yet interesting
domain to start with.

The Systems Identification process can be decomposed
in two steps: the first step called structural (or qualitative)
identification, involves determining the qualitative features
of the mechanism, i.e. the qualitative form of the sys-
tem inside the black box (Kay, Rinner, & Kuipers 2000;
Bradley & Stolle 1996; Bradley, Easley, & Stolle 2001;
Bellazzi, Guglielmann, & Ironi 1999); once we know the na-
ture of the mechanism, in the second step we proceed to de-
termine the numerical value of the parameters of the model
determined in the first step.

This second part can be done by any optimization pro-
cess (e.g. minimum square error (Ljung 1987; P. 1989),
genetic algorithms (Goldberg 1998; Haupt & Haupt 1998;
Hunt 1993; Pastor 2000; Zhang Zibo 1987), etc.). Some
algorithms use an optimization process to determine both
faces at the same time (e.g. genetic algorithms (Downinget
al. 1996; Kristinsson & Dumont 1992)).

Section 2 (Linear Time-Invariant Dynamic System) de-
scribes some properties of Linear Time-Invariant Dynamic
Systems. These properties will be used in section 3 (QSI
Algorith) to define an algorithm capable of determining the
structure of such a system. The process of determination of
the structure of a system is performed by repeated elimina-
tion of components of the impulse response of the system.
Finally, in section 6 (Conclusions), we conclude our work
and present the limitations and future work.

Linear Time-Invariant Dynamic Systems
As mentioned before, linear ODEs with constant coefficients
are the most studied kind of differential equations; they have



complete analytical solutions. Also, there is a good number
of problems that can be described by these kind of equations,
and more complicated cases can be reduced to one or several
of these equations.

In this section, the theory of solution of linear ODEs with
constant coefficients, and a qualitative interpretation is pre-
sented. The facts presented in this section are the basis for
the framework developed and presented in the next section.

Consider the homogeneousnth-order ODE given in
Equation 1.

an
dnx(t)

dtn
+ an�1

dn�1x(t)

dtn�1
+ � � �+ a1

dx(t)

dt
+ a0x(t) = 0

(1)
wherean; : : : ; a0 are real constants.

The solution represents the behavior of the system in
response to the forcing function and initial conditions
X(0); X 0(0); :::; X(n)(0).

It is quite natural to think of an exponential function as a
candidate solution to that equation. Substitutingx = ert in
Equation 1 and factoringert yields Equation 2.

ert(anr
n + an�1r

n�1 + � � �+ a1r + a0) = ertZ(r) (2)

x(t) is a solution of Equation 2, for those values of r that
satisfy the characteristic equation. i.e. the roots of poly-
nomialZ(r). The general solution of Equation 1 is of the
form:

x(t) = c1e
r1t + � � �+ cne

rnt (3)

We can see that the natural response of annth-order sys-
tem, is the sum ofn exponential terms. One for each root
of the characteristic equation of the ODE. If it has positive
roots, the system is unstable, otherwise, it is stable. If the
roots of the characteristic equation of the ODE are all real,
the system’s response is non-cyclic. If the characteristic
equation has complex roots, they come in conjugate pairs,
in which case, the general solution is still of the form of
Equation 3, only that each pair of complex roots (r � i!)
becomes an exponential sinusoidal function. This property
is known as Euler’s identity.

C1e
(r+i!)t+C2e

(r�i!)t = ert(A1 cos!t+A2 sin!t) (4)

So, if we restrict the kind of systems we are to analyze to
those that can be expressed by annth-order ordinary differ-
ential equation with constant coefficients, we know the kind
of responses we are to get. We can express the behavior of
a system in terms of the exponential and sinusoidal compo-
nents in the response. We define

Em(t) =
X

1�i�m

aie
rit (5)

as a summation with at most n exponential terms, and

ESm(t) =
X

1�i�m

aie
rit sin!it (6)

as a summation of exponentially decreasing sinusoidal func-
tions. Note that we are not interested in giving analytical so-
lutions to the differential equation, but a qualitative descrip-
tion of its behaviors. That is, all possible different qualitative
forms of the solution to Equation 1.

Theorem 1 Given a system of order n, the response can be
expressed as in Equation 7.

X(t) = En1(t) +ESn2(t) (7)

wheren1+2n2 = n. This result is evident from Equation 3,
Equation 4, and the definitions of Equations 5 and 6.

We see that if the second term of Equation 7 does not
exist, the response will be acyclic. Otherwise, it is a sinu-
soidal wave, whereEn1(t) represents its axis or attractor,
andESn2(t) its sinusoidal components.

Note that if we include a forcing function, the system’s
response would be decomposed into Natural (the solution
to the homogeneous equation) and Forced responses. If we
restrict the forcing functions to be of the forme�t sin�t
(i.e. constant, exponential, or sinusoidal), the forced re-
sponse always has the same qualitative form as the forcing
function (Boyce & DiPrima 1969). This would preserve the
qualitative form of the response, and only add one more ex-
ponential or sinusoidal term to the response.

Let us analyze the qualitative form of the responses, as
expressed by eq. 7. This qualitative form can be derived
from the qualitative form of its exponential and sinusoidal
components.

Exponential Components
The qualitative behavior of the exponential part of the re-
sponse is characterized by Theorem 2.

Theorem 2 X(t) = En(t) =
P

1�i�n aie
rit exhibits at

mostn extrema (maxima or minima), including the one when
t!1.

We will assume, without loss of generality, thatr1 > r2 >
: : : > rn. Theorem 2 is equivalent to saying that the deriva-
tiveX 0(t) has at mostn different zeroes. That is,

X 0(t) = �r1a1e
�r1t � : : :� rnane

�rnt = 0

= r1a1e
�r1t + : : :+ rnane

�rnt = 0 (8)

Performing the variable changez = e�t, Equation 8 be-
comes

�X 0(t) = r1a1z
r1 + : : :+ rnanz

rn = 0 (9)

Equation 9 is a polynomial inz of degreer1. Based on
Descartes’ theorem (Kurosch 1977; Rees, Sparks, & Reeds
1991), the number of roots of a polynomial are determined
by the sign changes in the polynomial coefficients. Since
we haven terms in polynomial 8, we can have at mostn�1
changes of sign, and thereforen � 1 roots. There is one
more root placed where the function becomes zero, and that
is whent!1.

Given we have at mostn roots for Equation 8, we can
therefore have at mostn extrema forEn(t).



Sinusoidal Components
As mentioned in (Flores & Farley 1995), if the frequencies
of the sinusoidal components of Equation 7 are equal, their
shapes are reduced to one. If their frequencies are differ-
ent, they can be seen as the faster sinusoidal mounted on the
slower one. If two frequencies of the sinusoidal components
are very close together, the resulting wave beats.

The results presented in this section fully characterizes all
possible responses of a LTI Dynamic System. In the next
section we will describe how to use these results to pro-
duce a framework for performing Systems Identification at
the qualitative level.

QSI Algorithm
The identification algorithm presented in this section is
based on the fact (see Equation 7) that the response of a
LTI system can be decomposed in a sumation of exponen-
tial terms. If some of those exponential terms are complex,
in which case they are conjugate complex pairs, each pair
forms a sinusoidal. If we can think of an algorithm capa-
ble of separating the terms of Equation 7 we can determine
the structure or qualitative form of the system exhibiting the
observed behavior. Separating the terms of the system’s re-
sponse can be performed by a filtering process.

Assume the observation of the system includes a number
of samples large and frequent enough to show all details of
the system’s behavior. If this assumption does not hold, we
can miss important events that would not let us identify the
system properly.

Also, assume the terms of Equation 7 are sorted in order
of increasing frequencies (i.e.w0 < w1 < : : : < wn),
where the firstn1 of those terms are non-oscillatory expo-
nentials, and are equivalent to a sinusoid of zero frequency.
The filtering process eliminates each component at a time,
starting by the component with the highest frequency. Each
time we eliminate one sinusoidal component, the remainder
X�(t), contains the summation of all the previous compo-
nents except the eliminated one. After the elimination ofj
sinusoidal components, the remainder is:

X�(t) = En1�1(t) (10)

The elimination of components continues until the rest of
the signal is non-oscillatory. Figure 1 shows the QSI algo-
rithm. QSI determines the order of the system by adding the
order of all eliminated components Function Filtering (see
next section) eliminates one component and returns the or-
der of the eliminated component and the remainder signal.

Figure 2illustrates the application of QSI to a sample sig-
nal.

Filtering eliminates the fastest sinusoidal component,
then the slower one, and then determines the order of the
non-oscillatory component. QSI has determined that the
simplest LTI system capable of exhibiting the observed be-
havior is of order 5. The resulting model is shown in Equa-
tion 11

a5
d5x(t)

dt5
+a4

d4x(t)

dt4
+ � � �+a1

dx(t)

dt
+a0x(t) = 0 (11)

QSI(X)
degree=0
repeat

(k,X)=TPAFilter(X)
degree+=k

until k=0
return degree

Figure 1: QSI Algorithm

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

M
ag

ni
tu

d

Figure 2: Component Elimination Process

Filters
Digital filters have been used mainly for two general pur-
poses: signal separation, for signals that have been previ-
ously mixed, and signal restoration, for signals that have
been distorted. In our application, we use filters to separate
the different components that form the impulse response of
a LTI system.

Preprocessing data

When the data has been collected from the identification ex-
periment, it is not in a usable form for the identification
algorithms. There are several possible deficiencies in the
data. The most common problem is the high-frequency dis-
turbances due to noise; such noise is typically of frequen-
cies above the natural frequencies of the system under study.
This problem can be solved applying a low pass filter to the
data. In this approach a Windowed-Sinc and Kalman filters
were used for preprocessing data.

Two-Point Average Filter

A modification to a two-point difference filter (Smith 1999)
is proposed as an alternative to perform the first step in the
filtering process. This first step of the filtering process de-
tects the points where the derivative of the observed time
series changes. The derivative can be computed using Equa-
tion 12

x0(t) =
x(t)� x(t � 1)

�t
(12)



where�t is the sampling period,x0(t) is the derivative ofx
at pointt, andx(t) is the input signal at time pointt.

Using the approximation given by Equation 12 we de-
termine the time points where the sign of the derivative
changes, i.e., we are detecting the extrema ofx.

Once the vector of extrema has been determined, we pro-
ceed to compute the average values between adjacent ex-
trema using Equation 13

mk =
x(tk)� x(tk�1)

2
(13)

This is a simple implementation of a low-pass filter. Using
this filter, the midpoint vector is computed.

Vector m represents the remainderX�(t) defined in
Equation 10. A spline approximation is used to smoothen
the form of the carrier and has proven to provide better re-
sults than the bare filtered data.

Figure 3 shows the Two-Point Average Filter Algorithm
(TPAFilter).

TPAFilter(X)
Xtr=determine extrema ofX
if oscillatory(X)

k=2
Computem, middle point vector
X�=Spline(m)

else
k=sizeof(Xtr)
X�=0

return (k;X)

Figure 3: TPAFilter Algorithm

Figure 3illustrates the procedure. Extrema are marked
with plus signs and the computed middle points with stars.
The signal formed by the middle points constitutes the car-
rier of the original wave (i.e. the remainder).

5 6 7 8 9 10

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4: Average Filtering

Gabor Filters

An alternative way to filtering of frequencies is by Ga-
bor Filters.These filters are defined by a harmonic function,
modulated by a gaussian distribution. In the frequency do-
main, the filtering function is given by Equation 14;

h (!; �) = g (!; �; 1) e�j(
2��

N
!) (14)

where

g (z; �; �) =
1

p
2��2

e
�
�
z2

2�2

�
(15)

� and� are the mean and standar deviation of the gaussian
distribution,! is the frequency we want to preserve, andN
is the number of points in the sample. The gaussian distribu-
tion determines the likelihood of components of frequencies
near to! to pass the filter.

Figure 4shows the filter profile in the frequency domain.
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Figure 5: Gabor Filter Profile

In the time domain, the filtering function is defined by
Equation 16.

h (t; �) = g (t; �; 1)
�
ej(

2��

N
t) + e�j(

2��

N
t)
�

h (t; �) = g (t; �; 1) cos

�
2��

N
t

�
(16)

The Gabor filters are considered as band-pass filters. The
filtering process is done by a convolution operation of the
original signalX(t), and the filtering signalh(t).

The first step in applying a Gabor Filter is to determine
the frequency components of the signal by fourier analysis.
Figure 4 shows the fourier spectrum of the observed data
x(t). The fourier spectrum shows all frequency components,
which are used to tune the filters at the target frequencies.
Figure 6shows a plot of the filter’s response tunned at! = 0,
Figure 7shows the output at! = 3, and Figure 8shows the
output at! = 20.
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Figure 6: Fourier Spectrum
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Figure 7: Response of Gabor Filter at!=0
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Figure 8: Response of Gabor Filter at!=3
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Figure 9: Response of Gabor Filter at!=20

Related Work
Systems identification plays an important role in Electrical
Engineering, specially in control theory. Aiming in that di-
rection, abundant results have arisen in what we call classi-
cal systems identification (Ljung 1987). Classical systems
identification focuses in what we know as paremetric iden-
tification. There are several methods to determine the pa-
rameters of a given function that makes that function best
fit the stream of observed data. Among others, we have
least squares and maximum likelihood estimators (Clarke &
Kempson 1997)

Within the area of Artificial Intelligence, several re-
searchers have developed methods to perform qualitative,
quantitative, and semi-quantitative system identification,
with applications in different disciplines.

Key et al (Kay, Rinner, & Kuipers 2000) developed
SQUID, a system for system identification which searches in
the space of semi-quantitative diferential equations. Given
a stream of observations, WQUID tries to find the most
specific envelop functions for monotonic constraints in the
SQDE, as well as determining intervals for the model’s pa-
rameters. SQUID presents statistical methods to determine
overall qualitative trends on intervals of data. This charac-
teristic makes it tolerant to noise. Instead, we are experi-
menting with different filters, which will provide a similare
tolerance to noise.

SQUID is more general than our approach, but it needs
a pre-identified model in the form of a SQDE, and refines
its functions and parameters as much as possible. Our ap-
proach is more limited in scope (only linear, time invariant
systems), but all it needs is the raw observation data.

Bradley and Stolle (Bradley & Stolle 1996) developed a
system known as PRET, which constructs an ODE-based
model of the black box, based on the user’s hypothesis,
observations, specifications, and physical measurements.
PRET construct a set of candidate models applying domain
rules to the user’s hypothesis. Models are filtered using sym-
bolic techniques and checking against specifications and ob-
servations. If a model fails to pass those tests, it is refined



introducing another hypothesis. Process repeats until either
a successful model is found or the process fails. In the latter
case, power-series expansion methods are used to determine
a model from scratch.

Conclusions
We have presented the analysis, algorithms, and implemen-
tation of a framework to perform Qualitative Systems Iden-
tification for Linear Time-Invariant Systems.

Once identified the structure of the system we send it to
a parametric identification module to complete the identifi-
cation process. The parametric identification part has been
implemented using genetic algorithms, which have proven
to be efficient.

The system has been successful in determining the sinu-
soidal components of different test systems we have fed it
with. Nonetheless, the filters still need some work on the
detection of non-oscillatory components. Since the middle
points of a damped sinusoidal do not exactly match the car-
rier, when we join them, they present small oscillations even
when we have removed all the oscilatory components. This
fact has lead us to higher the order of the system by two in
some cases.

The current status on implementation is the following.
The Systems Identification algorithm, including filters have
been implemented using Matlab. In our implementation, the
input is the observed signal, and the output is the structure
of the black-box system.

It is obvious that the limitation of this system identifica-
tion technique is related to the availability of good data and
good model structures. Without a reasonable data record not
much can be done, and there are several reasons why such a
record cannot be obtained in certain applications. Therefore,
a bad model structure cannot offer a good model, regardless
of the amount and quality of the available data.

An expression for the time complexity is also needed. We
need to compare how our algorithm behaves with respect to
traditional approaches.
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