
On Supporting Dynamic Constraint Satisfaction
with Order of Magnitude Preferences

Jeroen Keppens and Qiang Shen
Centre for Intelligent Systems and their Applications

The University of Edinburgh
{jeroen,qiangs}@dai.ed.ac.uk

Abstract

Many application problems can be formulated as dynamic
preference constraint satisfaction problems. Such a problem
employs activity constraints that govern what attributes and
constraints are part of the current problem description, and has
a preference associated with each of the domain values. The
preferences can be combined using any commutative, associa-
tive and monotonic operator to compute the preference of the
overall solution. The important problem of expressing user
preference under incomplete knowledge and combining them
has not been addressed however. This paper introduces an or-
der of magnitude preference (OMP) calculus to handle reason-
ing with preferences. The benefits of this calculus are twofold.
Firstly, it allows for a partial ordering of preferences, rather
than the usually imposed total ordering, thereby simplifying
the knowledge required for problem formulation. Secondly,
computational efficiency can be improved in solving complex
problems as the OMP calculus ignores those preferences that
are an order of magnitude lower than the ones that make a real
difference to the overall quality of an emerging solution.

Introduction
A relatively recent trend in constraints research has been
the enrichment of the existing representation framework, and
the corresponding solution techniques, in order to be able to
solve more sophisticated problems. A particular approach
addresses the valued constraint satisfaction problems where
valuations of emerging solutions are computed. Thus, a best
quality solution can be searched instead of merely one that
satisfies hard constraints (Schiex, T., Fargier, H., & Verfail-
lie, G. 1995). Another approach concerns about dynamic
constraint satisfaction problems (DCSPs) in which activity
constraints are employed to determine which attributes to
become part of the problem (Mittal, S. & Falkenhainer, B.
1990).

This paper proposes an integrated approach to jointly han-
dle dynamic and valued constraint satisfaction problems,
which are hereafter referred to as dynamic preference con-
straint satisfaction problems (DPCSPs). Such a problem
is a DCSP similar to that defined in (Mittal, S. & Falken-
hainer, B. 1990), but the individual attribute-value assign-
ments each have a corresponding preference. Each candi-
date solution of the CSP is associated with an overall pref-
erence, by combining the preferences of the individual as-
signments. The potential application of this approach covers

a broad range of synthesis problems, including configuration
problems (Mittal, S. & Falkenhainer, B. 1990), compositional
modelling problems (Falkenhainer, B. & Forbus, K.D. 1991;
Keppens, J. & Shen, Q. 2001) and planning problems (Blum,
A. & Furst, M. 1997).

In recent work on compositional modelling of ecological
systems (Keppens, J. & Shen, Q. 2000), for example, the suit-
ability of DCSPs in efficiently guiding the selection of model
fragments was explored. However, due to the incomplete
knowledge of the laws that govern the ways in which eco-
logical systems evolve over time, different ecologists usually
have a distinct set of preferences over the choice of different
approaches. The development of representational schemes
and their associated solution mechanisms of DPCSPs will al-
low the existing DCSP-based compositional modelling tech-
niques to be of a more general utility (although compositional
modelling is itself not addressed here in detail).

Expressing human preferences and combining them in a
consistent way can be very difficult. Indeed, it is well-known
that when experts or users are requested to provide a total or-
dering of their options, either numerically or symbolically,
they often find the rational consequences of their choices
inconsistent or paradoxical (Green, D. & Shapiro, I. 1995;
Tversky, A. & Thaler, R.H. 1990). For example, a prefer-
ence ordering of population growth models could be totally
unrelated to a given preference ordering of climate models.

To address the issue of incomplete knowledge on pref-
erence values, basic ideas of order of magnitude reasoning
(OMR) (Raiman 1991) are employed. However, existing or-
der of magnitude calculi are deeply rooted in the real-number
line, and, as argued above, humans have great difficulty in
reasoning about their preferences in a single totally ordered
domain. Therefore, a new OMR calculus is suggested that
can deal with a partially ordered underlying domain.

Problem Specification

Dynamic preference constraint satisfaction
problems

A classical hard CSP is specified by

• a set of attributes X = {x1, . . . , xn},

• a set of domains D = {D1, . . . ,Dn} with Di = {di1, . . . , dini }

for each attribute xi, and

• a set of compatibility constraints Cc, where a compatibility
constraint c over attributes xi, . . . , x j is a relation c : Di ×

. . . × D j → {>,⊥}.

A set of assignments {x1 : d1k1 , . . . , xi : diki , . . . , x j :
d jk j , . . . , xn : dnkn } is said to satisfy this compatibility con-
straint c if c(diki , . . . , d jk j) = >.

A DCSP, as defined in (Mittal, S. & Falkenhainer, B.
1990), is an extension of a hard CSP in which attributes
can be active and inactive. An attribute xi is said to be ac-
tive (denoted by active(xi)) if and only if it is assigned a
value from its domain. The activity of attributes is gov-
erned by a set of activity constraints Ca, which are defined
via implications that establish conditions under which cer-
tain attributes become active. A set of assignments {x1 :
d1k1 , . . . , xm : dmkk ,¬active(xm+1), . . . ,¬active(xn)} is said to
satisfy an activity constraint a if the conjunction of assign-
ments is not inconsistent with a, that is (x1 : d1k1 ∧ . . . ∧ xm :
dmkk ,¬active(xm+1) ∧ . . . ∧ ¬active(xn)), a 0 ⊥.

The present work enriches the notion of DCSP, allow-
ing the representation and thereforth the solution of dynamic
preference constraint satisfaction problems (DPCSPs), by in-
troducing to it elements from valued constraint satisfaction
problems (Schiex, T., Fargier, H., & Verfaillie, G. 1995).
More formally, a DPCSP extends a DCSP with a preference
valuation p(xi : di j) ∈

�
for each assignment xi : di j, where�

denotes the domain of preference valuations. The prefer-
ence of a (partial) solution {xi : diki , . . . , x j : d jk j } is computed
as

p(xi : diki , . . . , x j : d jk j) = p(xi : diki) ⊕ . . . ⊕ p(x j : d jk j)

where ⊕ is a commutative, associative, closed binary opera-
tion on

�
. The preference values in

�
are partially ordered

by ≺, where pi ≺ p j, pi, p j ∈
�

is interpreted so that the as-
signment associated with p j has a higher preference over the
assignment associated with pi.

The solution of such a CSP consists of all sets of assign-
ments {xi : diki , . . . , x j : d jk j } that satisfy all given compati-
bility and activity constraints, such that no other sets of as-
signments {xp : dpkp , . . . , xq : dqkq } satisfy the compatibility
and activity constraints with p(xi : diki , . . . , x j : d jk j) ≺ p(xp :
dpkp , . . . , xq : dqkq).

DPCSPs differ from existing types of CSP in two respects.
Firstly, they integrate the features of dynamic CSPs with
those of valued CSPs, thus providing a richer representa-
tional framework. Secondly, unlike the vast majority of val-
ued CSPs, which are types of so-called semiring-based CSPs
(Bistarelli, S., Montanari, U., & Rossi, F. 1997), the prefer-
ence combination operator ⊕ employed in this work is not
assumed to be idempotent (a ⊕ a = a). Idempotent combi-
nation operators are commonly employed in valued CSPs be-
cause they enable the use of existing local consistency algo-
rithms (Schiex, T., Fargier, H., & Verfaillie, G. 1995), which
are known to be effective and efficient. However, the se-
mantics of idempotent combination operators are not always
suitable for synthesis problems. In DPCSPs, the preferences
express utility contributions of individual attribute-value as-
signments, and each of these utility contributions is presumed
to add to the overall utility (and therefore a⊕a should be pre-
ferred over a, rather than a ⊕ a = a).

Because of these feature, a DPCSP can be applied to
address various synthesis problems, including for example,
configuration, compositional modelling and planning prob-
lems. The reasons that the present approach is applicable to
such problems are summarised in table 1 to save space.

Order of magnitude reasoning

As formalised in (Raiman 1991), order of magnitude reason-
ing (OMR) systems perform inferences based on a calculus
of coarse values. Coarse values are abstract representations
of precise values taken from a totally ordered set, usually the
set of real numbers � . A typical OMR calculus is then de-
signed in such way that it generalises computations over pre-
cise values to computations over coarse values. This is of
course the same approach taken by any qualitative reasoning
system. What makes OMR distinct is that the coarse values
are generally of different order of magnitude.

Depending on the way the coarse values are defined, differ-
ent OMR calculi can be generated. This can be illustrated by
means of a number of important examples. In FOG (Raiman
1986) and extensions to FOG such as O[M] (Mavrovouniotis,
M.L. & Stephanopoulos, G. 1987; 1988), ROM(K) (Dague
1993b) and ROM(�) (Dague 1993a), coarse values are de-
fined by means of ordering relations that express the distance
between coarse values on a totally ordered domain in relation
to the range they cover on that domain. NAPIER groups pre-
cise values in the same coarse value if they have the same
logarithm with respect to a given base (Nayak, P.P. 1992;
1993).

These approaches employ one or more domain specific
values to determine the grain size by which coarse values
are defined and differentiated from one another. Other ap-
proaches, such as the work presented in (Murthy 1988) and
(Travé-Massuyès, L. & Piera, N. 1989) generalise this notion
of granularity. In particular, the latter defines coarse values
as subsets or supersets of other coarse values, thus making
an explicit link between algebra over � (or an abstraction
thereof) and sign algebra.

OMR work has been applied in many areas. However, as
before, when human preferences are projected onto a totally
ordered domain, a judgement is made by comparing prefer-
ences that are unrelated and with which the human experts
may not agree. To preserve the incomplete knowledge that
is inherent to reasoning with preference a partially ordered
domain is required. This work introduces such an OMR cal-
culus.

Order of magnitude preference calculus
In DPCSPs valuations are attached to individual attribute as-
signments and combined to obtain a preference valuation for
an emerging CSP solution. The actual “values” of these pref-
erences do not matter, however, all that is useful is that they
can be compared and combined with one another to derive
an overall most preferred solution. Nevertheless, expressing
preferences and combining them in a totally consistent man-
ner throughout a complex CSP can be very difficult. Thus,
only a partial order is employed in the development of the
preference calculus herein.

Configuration Compositional Modelling Planning
X Components Assumptions Activities at time instance
D Component options Assumption classes Enabled activities at given state
Cc Inconsistent combinations and

requirements
Inconsistent parts of models and
requirements

Inconsistent states and require-
ments

Ca Component prerequisites Model fragment prerequisites Prerequisite states�
Utility/costs Utility contributions Rewards, resource/time costs

Table 1: Applications of dynamic preference constraint satisfaction

Theoretical foundation
In this work, it is presumed that the user specifies a space �
of basic preference quantities (BPQs). BPQs are the smallest
units of preference valuation and are partially ordered.

Employing some of the underlying ideas of OMR, BPQs
are related to one another by the “order of magnitude smaller
than” relation �, the “equivalent order of magnitude as” re-
lation ∼ and by the “smaller than within the same order of
magnitude” relation <. Note that the latter relation also im-
plies that the BPQs have an equivalent order of magnitude.
Therefore, ∀p1, p2 ∈ � , p1 < p2 → p1 ∼ p2. Naturally, order
of magnitude smaller than relations are shared by all BPQs
within the same order of magnitude. That is,

∀p1, p2, p3 ∈ � , p1 ∼ p2 ∧ p2 � p3 → p1 � p3

∀p1, p2, p3 ∈ � , p1 ∼ p2 ∧ p3 � p2 → p3 � p1

BPQs are combined with one another to form so-called or-
der of magnitude preferences (OMPs). In general, the im-
plicit value of an OMP P equals the combination p1⊕ . . .⊕ pn
of its constituent BPQs p1, . . . , pn. In what follows, an ap-
proach will be presented to compute a partial ordering rela-
tion ≺ over the OMPs, based on the constituent BPQs of the
OMPs. Generally speaking, the calculus is based on the fol-
lowing assumptions:

• The combination operator ⊕ is assumed to be commuta-
tive, associative and strictly monotonic (P ≺ P ⊕ P). The
latter assumption is made to better reflect the ideas under-
pinning conventional utility calculi.

• A combination of BPQs is never an order of magnitude
greater than its constituent BPQs. That is, given the fol-
lowing ordering of BPQs p1 ∼ p2 ∼ . . . ∼ pn � p, then

p1 ⊕ p2 ⊕ . . . ⊕ pn ≺ p

• Distinctions at higher orders of magnitude are considered
to be more significant than those at lower orders of mag-
nitude. That is, given an ordering of BPQs p1 ∼ . . . ∼

pm−1 ∼ pm ∼ . . . ∼ pn � pa < pb, then

p1 ⊕ . . . ⊕ pm−1 ⊕ pa ≺ pm ⊕ . . . ⊕ pn ⊕ pb

This assumption is commonly made in OMR. In terms of
OMPs it means that the DPCSP algorithm will prioritise
the optimisation associated with preferences of higher or-
der of magnitude.

• Even though distinctions at higher orders of magnitude are
more significant, distinctions at lower orders of magnitude
are not negligible. That is, given an ordering of BPQs

p1 < p2 and an OMP P, then p1⊕P ≺ p2⊕P, irrespective of
the orders of magnitude of the BPQs that constitute P. This
is a departure from conventional OMR. If the OMPs asso-
ciated with two (partial) DPCSP solutions contain equal
BPQs at a higher order of magnitude, it is usually desir-
able to compare both solutions further in terms of the (less
important) constituent BPQs at lower orders of magnitude.

• Conventional OMR is motivated by the need for abstract
descriptions of real-world behaviour, whereas the OMP
calculus is motivated by incomplete information. As op-
posed to conventional OMR, OMPs do not map onto the
real number line. This implies that, when the user states,
for example, that p1 < p2 < p and that p3 < p4 < p,
the explicit absence of ordering information between the
BPQs in {p1, p2} and those in {p3, p4} means that the user
can not compare them (e.g. because they are entirely dif-
ferent things). Consequently, p1 ⊕ p2 would be deemed
incomparable to p3 ⊕ p4 (i.e. p1 ⊕ p2?p3 ⊕ p4), rather than
roughly equivalent.

These assumptions can be formalised in a more general
definition of the ordering relation ≺. Let an OMP P =
p1⊕. . .⊕pn be defined as a function fP : � → � : p 7→ fP(p)
where � is the set of BPQs, � is the set of natural num-
bers and fP(p) calculates the number of occurrences of p in
p1, . . . , pn. For example, given that P = pa ⊕ pb ⊕ pb, then
fP(pa) = 1 and fP(pb) = 2. Let � (p), p ∈ � , be the subset
of � that contains the BPQs of the same order of magnitude
as p, i.e. � (p) = {pi | pi ∈ � , pi ∼ p}. Then, the constituent
BPQs of an OMP P1 that are within the same order of mag-
nitude as a given BPQ p, are less than or equal to those of an
OMP P2 if ∀pi ∈ � (p):

(fP1 (pi) +
∑

p j∈ � ,pi<p j

fP1 (p j)) ≤ (fP1 (pi) +
∑

p j∈ � ,pi<p j

fP1 (p j))

This is denoted by P1 4p P2. The constituent BPQs of an
OMP P1 that are within the same order of magnitude as a
given BPQ p, are less than but not equal to those of an OMP
P2 if P1 4p P2 ∧ ¬(P2 4p P1). This is denoted by P1 ≺p P2.

More generally, an OMP P1 is less than an OMP P2 if, for
each distinct order of magnitude, either P1 is less than P2 for
the BPQs within this order of magnitude, or there are BPQs
at a higher order of magnitude for which P1 is less than P2:

P1 ≺ P2 ← ∀pa ∈ � , (P1 ≺pa P2)∨ (∃pb ∈ � , pa � pb∧P1 ≺pb P2)

It can be shown that this definition of ≺ results in a partial or-
dering of OMPs that meets the aforementioned assumptions.
It allows for the case where two OMPs P1 and P2 are incom-
parable, denoted by P1?P2, meaning ¬(P1 ≺ P2) ∧ ¬(P2 ≺

small �

low �

large�

<< med

�v low high� � v high

� ex large
� big � v big

�ex small

l med h med

Figure 1: Sample OM preference scale

P1) ∧ (P1 , P2) holds. Note that P1 = P2 if P1 and P2 are a
combination of the same collection of BPQs.

Figure 1 shows a sample set of BPQs and ordering rela-
tions between them. Based on it, the following comparisons
can be made between OMPs:

h med ⊕med ≺ high (1)

h med ⊕med � med ⊕ l-med (2)

high ⊕ large?big ⊕ small (3)

Relation (1) is true because high is an order of magnitude
greater than h med and med. Relation (2) is justified by
(h med > med) and (med > l med). The OMPs in (3) are
incomparable because there is no path between big and high
or between big and large.

Comparison of order of magnitude preferences
To show the decidability of the above theory, this subsection
describes an algorithm to compare two OMPs. First, some
further definitions must be introduced.
• The ordering relations < and�, which are responsible for

the ordering of BPQs are redefined for presentational sim-
plicity as sets of pairs:

O< = {(p1, p2) | p1 < p2}, O� = {(p1, p2) | p1 � p2}

• A cross-over quantity p with respect to an ordering rela-
tion O ∈ {O<,O�}, which is expressed by co(p,O), is a
BPQ for which O defines at least two BPQs to be greater
or smaller than it. That is:

∀p,∃p1, p2, ((p1, p) ∈ O ∧ (p2, p) ∈ O)∨

((p, p1) ∈ O ∧ (p, p2) ∈ O)→ co(p,O)

In the ongoing example, small and med are the two cross-
over quantities.

• A set of BPQs {p1, p2, . . . , pn} is regarded as a path from
pb to pe with respect to an ordering relation O, denoted by
path(O, pb, pe), if (pb, p1) ∈ O, (p1, p2) ∈ O, . . ., (pn, pe) ∈
O. For example, {med, high} is a path(O�, small, v high).

• The distance of a path equals the number of BPQs in it.
That is, the distance d(O, pb, pe) between two BPQs pb and
pe with respect to an ordering relation O equals the largest
distance of any paths between pb and pe. When there is a
path from pe to pb, then d(O, pe, pb) = −d(O, pb, pe). For
example, d(O�, small, v high) = 2.

• The space of BPQs � is partitioned into totally ordered
subsets of BPQs. That is, given an ordering relation O, a
strand str(O, p1, p2) is a path(O, p1, p2) such that

(co(p1,O) ∨ @p′ ∈ � , (p′, p1) ∈ O)∧

(co(p2,O) ∨ @p′ ∈ � , (p2, p
′) ∈ O)

and that path(O, p1, p2) does not contain any cross-over
quantities. Additionally, each cross-over quantity pc is said

str(O�,med,med)

str(O�,small,med)str(O�,v low,med)

str(O�,med,v high) str(O�,med,ex large)

str(O�,ex small,small)

str(O<,low-med,high-med) str(O�,small,v big)

≺ ≺

≺ ≺

≺

≺

Figure 2: Ordering of strands

to be the only member of the strand str(O, pc, pc). It can
be shown that the strands defined by an ordering relation
entail a unique partition of � .
The strands can be compared with one another based on
the BPQs within them. A strand s1 is smaller than a strand
s2, denoted s1 < s2, if:

∀p1, p2 ∈ � , p1 ∈ s1 ∧ p2 ∈ s2 → path(O, p1, p2)

Figure 2 shows the strands in the ongoing example and their
ordering.

Each BPQ p ∈ � can now be uniquely identified by the
strand str(O, p1, p2) of which it is a member and by the dis-
tance d(O, p1, p). The tuple 〈str(O, p1, p2), d(O, p1, p)〉 is
said to be the label L(p,O) of p within O.

Continuing with the example, the following BPQ labels
can be computed:

L(small,O�) = 〈str(O�, small, small), 0〉

L(big,O�) = 〈str(O�, small, v big), 1〉

From this, BPQs can be compared in terms of their labels
with respect to an individual ordering O. Given two BPQ
labels L(p1,O) = 〈s1, d1〉 and L(p2,O) = 〈s2, d2〉, 〈s1, d1〉 ≥
〈s2, d2〉 if:

(s1 < s2) ∨ (s1 = s2 ∧ d1 ≥ d2)

It can be shown that if L(p1,O) ≥ L(p2,O) a path(O, p1, p2)
exists. For instance, in the ongoing example, L(small,O�) ≤
L(big,O�).

For a given OMP P = p1 ⊕ . . . ⊕ pn, where p1, . . . , pn ∈
� , a label can be computed by counting the number of each
strand-distance pair in the labels of the constituent BPQs:

L(P,O) = {〈s, d, n〉 | (n =
∑

p∈P,L(p,O)=〈s,d〉

1) ∧ (n ≥ 1)}

For example,

L(small ⊕ big,O�) = {

〈str(O�, small, v big), 1, 1〉,

〈str(O�, small, small), 0, 1〉}

In this way, two labelsL(P,O�) andL(P,O<) can be com-
puted for each OMP P. Both labels are related to one another
through the underlying set of BPQs they represent. In par-
ticular, each strand-distance pair 〈s�, d�〉 under O� corre-
sponds to a set of strand-distance pairs under O< that provide
finer grain distinctions between quantities. Therefore, a la-
bel L(P,O<, L) can be obtained, which contains the subset of

L(P,O<) that corresponds to a subset L ⊂ L(P,O�), such
that:

L(P,O<,L) = {〈s<, d<, n<〉 | 〈s<, d<, n<〉 ∈ L(P,O<)∧

(∃〈s�, d�, n�〉 ∈ L,

∃q, 〈s<, d<〉 ∈ L(q,O<) ∧ 〈s�, d�〉 ∈ L(q,O�))}

Algorithm 1: (P1, P2)

co ←
′=′; O1 ← L(P1,O�); O2 ← L(P2,O�);

while ¬(O1 = ∅ ∨ O2 = ∅)

do



























































































































































































B1 ← {〈s, d, n〉 ∈ Ø1 | @〈s′, d′, n′〉 ∈ O1, 〈s, d〉 < 〈s′, d′〉};
B2 ← {〈s, d, n〉 ∈ Ø2 | @〈s′, d′, n′〉 ∈ O2, 〈s, d〉 < 〈s′, d′〉};
H1 ← {〈s, d, n〉 ∈ B1 | @〈s′, d′, n′〉 ∈ B2, 〈s, d〉 ≤ 〈s′, d′〉};
H2 ← {〈s, d, n〉 ∈ B2 | @〈s′, d′, n′〉 ∈ B1, 〈s, d〉 ≤ 〈s′, d′〉};
if (H1 , ∅) ∧ (H2 , ∅)

then return (′?′);

else



























































if (H1 , ∅)

then
{

cn ←
′�′; E ← B1 − H1;

(O1,H1); (O2,H1);

else



























if (H2 , ∅)

then
{

cn ←
′≺′; E ← B2 − H2;

(O1,H2); (O2,H2);
else cn ←

′=′; E ← H1;
if (co = cn) ∨ (co =

′=′)

then



























(co,H)← -(E, P1, P2,O<, cn);
if co =

′?′

then return (′?′)′;
(O1,H); (O2,H);

else return (′?′);
O1 ← O1 − B1; O2 ← O2 − B2;

return (co);
procedure -(E, P1, P2,O<, co)
H ← {};
for each e ∈ E

do































































































L1 ← L(P1,O<, {e}); L2 ← L(P2,O<, {e});
if ≥value (L1, L2)

then



























if ¬ ≥value (L2, L1)

then



















if co ∈ {
′=′,′ �′}

then co ←
′�′; H ← H ∪ {e};

else return (′?′,H);

else



































if ≥value (L2, L1)

then



















if co ∈ {
′=′,′ ≺′}

then co ←
′≺′; H ← H ∪ {e};

else return (′?′,H);
else return (′?′,H);

return (co,H);

By means of their respective labels, two OMPs can then be
compared using the algorithm (P1, P2). This algo-
rithm iterates through the O� labels of P1 and P2. At each it-
eration, the sets of the highest remaining strand-distance pairs
in the labels of P1 and P2, respectively denoted B1 and B2,
are considered. The algorithm systematically compares the
tuples 〈s, d, n〉 of B1 and B2 with one another:

• Each 〈s, d, n〉 ∈ B1 (〈s, d, n〉 ∈ B2), such that 〈s, d, n〉 is
either greater than or incomparable to the tuples in B2 (B1),
is stored in a set H1 (H2), with H1 , ∅ (H2 , ∅) indicating
that P1 � P2 (P2 � P1) for the tuples involved, i.e. ∀p ∈
H1, P2 ≺p P1 (∀p ∈ H2, P1 ≺p P2).

• The tuples 〈s, d, n〉 ∈ B1 (〈s, d, n〉 ∈ B2), such that a tuple
〈s, d, n′〉 ∈ B2 (〈s, d, n′〉 ∈ B1) exists are stored in a set E.
Because the BPQs referred by the tuples in E can not be
compared with one another by means of the O� labels, the
corresponding O< labels L1 and L2 are computed and com-
pared in -(). In order to determine whether L1

is greater than L2, this procedure employs the ≥value func-
tion:

≥value (L1, L2)← ∀〈s2, d2, n2〉 ∈ L2,
∑

〈s,d,n〉∈L1 ,〈s2 ,d2〉≤〈s,d〉

n ≥
∑

〈s,d,n〉∈L2 ,〈s2 ,d2〉≤〈s,d〉

n

The results of these comparisons may be contradictory
when at least one tuple from B1 is greater than anything in B2
and at least one tuple from B2 is greater than anything in B1.
In that case, the algorithm terminates with returning incom-
parable (′?′). If the comparisons are not contradictory, then
the tuples in B1 and B2 which yielded a strict ordering ′ ≺′ or
′ �′ (i.e. H1 or H2), need to be differentiated from the ones
for which no such ordering could be established. All tuples
in the labels of P1 and P2 that are smaller than H1 or H2 are
removed. For the remaining tuples, the algorithm considers
the next highest ones, that are still part of the labels, in the
subsequent iteration or it terminates if there are no remain-
ing tuples. The variables co and cn are used in the algorithm
to store the outcome of partial comparisons with respect to
BPQs in other parts of the partial ordering.

For example, when applying this algorithm to compare
P1 = big ⊕ small with P2 = high ⊕ large, the highest
strand-distance pairs from the O� labels are compared first.
This leads to H1 = {〈str(O�,med, v big), 1, 1〉} and H2 =
{〈str(O�,med, v high), 1, 1〉, 〈str(O�,med, v large), 1, 1〉}
and hence, the algorithm returns them as incomparable.
When comparing P1 = h med⊕med with P2 = med⊕ l med,
H1 = H2 = ∅ and E = {〈str(O�,med,med), 0, 2〉}. Therefore,
-(E, P1, P2,O<,′ =′) is called where

L1 = {〈str(O<, l med, h med), 2, 1〉,

〈str(O<, l med, h med), 1, 1〉}

L2 = {〈str(O<, l med, h med), 1, 1〉,

〈str(O<, l med, h med), 0, 1〉}

Because, ≥value (L1, L2) holds, the procedure returns ′ �′.
As O1 and O2 are now empty, ′ �′ becomes the result of the
algorithm, meaning P1 � P2.

Solution Techniques

This section presents two algorithms for solving DPCSPs.
Although OMPs are used in this work, both algorithms can
take any DPCSP provided that it employs a preference cal-
culus with a commutative, associative and monotonic com-
bination operator. However, the use of OMPs provides a
convenient way of specifying incomplete preference informa-
tion and yields efficiency improvements as a total ordering of
preferences is not artificially imposed when none exists.

Basic algorithm

Algorithm 2: (X,D,C, A, P)

n← createNode(nil, Xa); Xa(n)← {xi | {}, A ` active(xi)};
O← createOrderedQueue(); CP(n)← 0;
PP(n)← ⊕x∈X maxd∈D(x) P(x : d);
(first(Xa), Xa, n,C, A, P,O);
while O , ∅

do























































































































n← dequeue(O);
if Xu(n) , ∅

then
{

x← first(Xu(n));
(x, n,C, A, P,O);

else















































































Xu(n)← {xi | solution(n), A ` active(xi)} − Xa(n);
if Xu(n) = ∅

then







































nnext ← first(O);
if CP(n) ⊀ PP(nfirst)

then return (S (n));

else
{

PP(n)← CP(n);
enqueue(O, n,CP(n), PP(n));

else
{

x← first(Xa(n));
(x, n,C, A, P,O);

procedure (x, nparent,C, A, P,O)
for d ∈ D(x)

do



































































if solution(nparent) ∪ {x : d},C 0 ⊥

then























































nchild ← new node;
solution(nchild)← solution(nparent) ∪ {x : d};
Xd ← deactivated(solution(nchild), X(nparent));
Xnd(nchild)← Xnd(nparent) − {x} − Xd ;
Xa(nchild)← Xa(nparent) ∪ {x}; Xu(nchild)← Xu(nparent) − {x};
CP(nchild)← CP(nparent) ⊕ P(x : d);
(x, nchild, nparent, P,O);

procedure (x, nchild, nparent, P,O)
PP(nchild)← CP(nchild) ⊕ (⊕x∈Xnd (n) maxd∈D(x) P(x : d));
enqueue(O, nchild, PP(nchild),CP(nchild));

This algorithm is somewhat similar to that presented in
(Mittal, S. & Falkenhainer, B. 1990), but it implements a
best first search (BFS) by means of a priority queue O of
nodes n. For each node n, a set Xu(n) of remaining active
but unassigned attributes is maintained. At each iteration, a
node n is taken from O, and the assignments of the first at-
tribute x ∈ Xu(n) are processed. For every assignment x : d
that is consistent with the solution of the current node n (i.e.
solution(n) ∪ {x : d},C 0 ⊥), a new child node is created. If
Xu(n) is empty, the activity constraints are fired in order to
find a new set of active but unassigned attributes. That is,

Xu(n) = {xi | solution(n), A ` active(xi)} − Xa(n)

where Xa(n) represents the active, but already assigned at-
tributes in node n.

In the priority queue O, nodes are maintained by means of
two heuristics: committed preference (CP(n)) and potential
preference (PP(n)). These are defined as follows. Given a
node n,

CP(n) = ⊕x:d∈solution(n)P(x : d)

PP(n) = CP(n) ⊕ (⊕x∈Xnd(n) max
d∈D(x)

P(x : d))

where Xnd(n) is the set of unassigned attributes that can still
be activated given the partial assignment solution(n) (the
actual implementation employs an assumption-based truth
maintenance system (de Kleer, J. 1986) to efficiently deter-
mine which attribute’s activity can no longer be supported).
In other words, CP(n) is the preference associated with the

partial attribute-value assignment in node n and PP(n) is
CP(n) combined with the highest possible preference assign-
ments taken from all the values of the domains of the at-
tributes in Xnd. Thus, PP(n) computes an upper boundary on
the preference of a DPCSP solution that includes the partial
attribute value assignments corresponding to n.

Theorem 1 (X,D,C, A, P) is admissible
Proof: (X,D,C, A, P) is a BFS guided by a heuristic
function PP(n) = CP(n) ⊕ h(n), where CP(n) is the actual
preference of node n and h(n) = ⊕x∈Xnd(n) maxd∈D(x) P(x : d).
It follows from the previous discussion that h(n) is greater
than or equal to the combined preference of any value-
assignment of unassigned attributes that is consistent with
the partial solution of n. In this BFS, the nodes n are main-
tained in a priority queue in descending order of PP(n). Let
δ be a distance function that reverses the preference ordering
such that δ(P1) ≺ δ(P2) ← P1 � P2. (X,D,C, A, P) can
then be described as a BFS guided by δ(PP(n)) = δ(CP(n))⊕
δ(h(n)), where the nodes n are maintained in a priority queue
in ascending order of δ(PP(n)) and where δ(h(n)) is a lower
bound on the distance between n and the optimal solution.
Therefore, (X,D,C, A, P) is an A* algorithm, guaran-
teed to find a solution S with a minimal δ(P(S)) or a maximal
P(S).

Improved algorithm

Procedure 3: (x, nchild, nparent, P,O)

PP(nchild)← CP(nparent);
for y ∈ successors(x, Xa)

do







































if D>(y, n,C) , ∅

then
{

vmax ← maxv∈D>(y,n,C) P(y : v);
PP(nchild)← PP(nchild) ⊕ vmax;

else PP(nchild)← nil
if PP(nchild) , nil

then



























for y ∈ X(nchild)

do
{

vmax ← maxv∈D>(y,n,C) P(y : v);
PP(nchild)← PP(nchild) ⊕ vmax;

enqueue(O, nc, PP(nchild),CP(nchild));

Forward checking, a technique commonly used for early
detection of failing search paths, can be applied to extend the
basic algorithm. In this work, it enables more accurate es-
timates of PP and hence focuses the search and potentially
improves efficiency (Tsang, E. 1993). This variation of the
basic algorithm works as follows: for each of the unassigned
but active or potentially active attribute y, the set D>(y, n,C)
of all domain values that are consistent with the partial solu-
tion of the current node n is computed:

D>(y, n,C) = {v ∈ y.D | solution(n) ∪ {x : d} ∪ {y : v},C 0 ⊥}

When computing PP for the current node, only the assign-
ments in D>(y, n,C) are considered for each unassigned at-
tribute y. When D>(y, n,C) is empty, there is no consistent
assignment for attribute y. In particular, if y is not active, no
inconsistency will arise for the partial solution found so far.
If, however, y is already active, no child nodes will be cre-
ated for n because the problem then contains an attribute (y)
that has no consistent assignment. As such, the modified al-
gorithm combines an improved computation of PP with the
standard early failure feature of conventional forward check-
ing.

200000

250000

300000

350000

400000

450000

500000

550000

600000

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(m
ill

is
ec

on
ds

)

Number of CSPs

fc
std

(a) Multiple CSPs

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(m
ill

is
ec

on
ds

)

Number of orderings

FC
STD

(b) Partial ordering

1.4e+06

1.45e+06

1.5e+06

1.55e+06

1.6e+06

1.65e+06

1.7e+06

1.75e+06

1.8e+06

1.85e+06

1.9e+06

0 1 2 3 4 5 6 7 8 9

R
un

tim
e

(m
ill

is
ec

on
ds

)

Number of orders of magnitude

FC
STD

(c) Order of magnitude

Figure 3: Experimental results: runtimes

Results
This section briefly discusses preliminary results of applying
the above algorithms to randomly generated DPCSP prob-
lems. The random DCSP generator used produces DPCSPs
with a certain number of each of the following: sub-CSPs,
attributes per sub-CSP, values per domain, attributes per an-
tecedent of each activity constraint and attributes per compat-
ibility constraint, and with the probabilities of a combination
of attributes/values occurring in a compatibility/activity con-
straint. Then, a given set of preferences is assigned to the
values of each domain according to a preset distribution.

Overall, the results obtained have shown that a DPCSP in-
volving a numerical, or totally ordered, preference calculus
is very complex. This conforms to the findings of (Schiex,
T., Fargier, H., & Verfaillie, G. 1995): A valued CSP with a
strictly monotonic combination operator (p ⊕ p � p) is a far
more complex problem than valued CSPs using idempotent
operators (p⊕ p = p). Nevertheless, this can be an important
class of problems since strict monotonicity may express well
the combination of utility, costs or preferences appropriately
in some domains.

The use of activity constraints and the partial orderings at
different degrees of coarseness (provided by the OMP calcu-
lus), however, is not only beneficial to the descriptiveness of
the problem specification, but it is also able to improve the re-
quired runtime performance. Figure 3(a) shows average run-
times for sets of simple CSPs (with 3 attributes each) linked
by activity constraints (approximately 25% of attribute value
combinations activate one or more attributes in the next sub-
CSP). The x-axis of the figure shows the number of CSPs.
Initially, adding sub-CSPs to the DPCSP severely increases
runtime costs until a depth of about 3 levels of sub-CSPs.
From then onwards, the increase in runtime is not very signif-
icant because further sub-CSPs are rarely instantiated. If this
DPCSP were implemented as a valued CSP without explicit
use of activity constraints, the low likelihood of activation
of attributes would translate to high constrainedness and this
would significantly affect the efficiency of the solution algo-
rithms. This shows the importance of research into dynamic
valued CSPs.

Figure 3(b) illustrates the average runtime performance (to
the first solution) of applying the basic and improved algo-

rithms to sets of 50 random DCSPs with different sets of
preferences. The domain preference values in all these prob-
lems were randomly assigned one of 20 different OMPs. The
OMPs consisted of a random number (up to 10) of single
BPQs. The number of scales (shown in the x-axis) represents
the number of BPQs for which OMPs were constructed. For
example, in the case of X = 4, four unordered BPQs were
created and five different OMPs were generated for each of
them.

A total ordering of valuations corresponds to X = 1, and
no two OMPs are incomparable in this case. As mentioned
earlier, a partial ordering is a more appropriate structure in
which to represent expert/user preferences. In addition, the
results of test runs such as figure 3(b) indicate that the use
of partial orderings is beneficial to the algorithms runtime as
well. The reason for this is obviously that the space of best
solutions increases as many solutions become incomparable.

Dividing the set of 20 quantities into different orders of
magnitude improves performance only slightly, as is shown
in figure 3(c) and only for certain partitionings. Again, this is
due to the fact that the preference calculus is non-monotonic.
When two OMPs have equivalent BPQs of higher orders of
magnitude, a comparison proceeds with checking BPQs at
lower orders of magnitude and this affects performance. A
further approximate approach could just ignore the lower or-
ders of magnitude in order to improve efficiency.

Conclusions
This paper has introduced a novel type of constraint satisfac-
tion problem (CSP), the dynamic preference CSP (DPCSP)
that incorporates features from dynamic and valued CSPs.
From dynamic CSPs, a DPCSP takes activity constraints that
govern which attributes and the corresponding constraints
are part of the problem to be solved. From valued CSPs, a
DPCSP borrows the concept of assigning valuations to do-
main values which can be combined to compute the overall
valuation of an emerging solution.

To allow efficient representation and solution of DPCSPs,
a preference calculus based on order of magnitude reasoning
has been introduced. This calculus produces a partial order-
ing of valuations and distinguishes between different degrees
of coarseness. Thus, it better suits the expression of user pref-

erences than approaches employing preferences that are to-
tally ordered. Also, it helps improve search efficiency as the
potential solution space would be larger if less distinctions
can be made between solution valuations.

Following the idea of order of magnitude based DPCSPs,
two solution algorithms have been presented. The first per-
forms best-first search, adapted to deal with activity con-
straints, by working with a preference estimator that prevents
it from getting stuck in local optima. The second is an exten-
sion of the first that employs forward checking techniques to
fail inconsistent paths early.

Future work includes the development of alternative solu-
tion techniques for DPCSPs. One source of inefficiency of
the algorithms presented herein is their insistence on find-
ing an optimal solution. However, for many practical ap-
plications, finding a close to optimal solution often suffices
(Tsang, E. & Warwick, T. 1990). Therefore, a future focus
of this research is to investigate the use of genetic algorithms
for solving a DPCSP.

The solution techniques for DPCSPs can be employed in
various synthesis problems such as compositional modelling,
configuration, planning and scheduling, though the actual ap-
plications are beyond the scope of this paper. Currently, this
work is being employed by a compositional modeller for eco-
logical systems. A knowledge base of model fragments is
being built based on a large model, known as MODMED
(Legg, C.J., Muetzelfeldt, R.I., & Heathfield, D.N. 1995),
which describes how Mediterranean vegetation is being af-
fected by various climate-related factors, managed and acci-
dental fires and cattle farming. Such model-building tasks are
dynamic and of various preferences over the choice of model
fragments.

Acknowledgements
The first author has been supported by a scholarship of the
Faculty of Science and Engineering of the University of Ed-
inburgh.

References
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
based constraint satisfaction and optimization. Journal of
the ACM 44(2):201–236.
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90(1–2):281–
300.
Dague, P. 1993a. Numeric reasoning with relative orders of
magnitude. In Proceedings of the National Conference on
Artificial Intelligence, 541–547.
Dague, P. 1993b. Symbolic reasoning with relative orders
of magnitude. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence, 1509–1514.
de Kleer, J. 1986. An assumption-based TMS. Artificial
Intelligence 28:127–162.
Falkenhainer, B., and Forbus, K.D. 1991. Compositional
modeling: finding the right model for the job. Artificial In-
telligence 51:95–143.
Green, D., and Shapiro, I. 1995. Pathologies of Rational
Choice Theory. New Haven: Yale University Press.

Keppens, J., and Shen, Q. 2000. Towards compositional
modelling of ecological systems via dynamic flexible con-
straint satisfaction. In Proceedings of the 14th Interna-
tional Workshop on Qualitative Reasoning about Physical
Systems, 74–82.
Keppens, J., and Shen, Q. 2001. On compositional mod-
elling. Knowledge Engineering Review 16(2):157–200.
Legg, C.J.; Muetzelfeldt, R.I.; and Heathfield, D.N. 1995.
Modelling vegetation dynamics in mediterranean ecosys-
tems: Issues of scale. In Proceedings of the 39th Symposium
of the International Association for Vegetation Science.
Mavrovouniotis, M.L., and Stephanopoulos, G. 1987. Rea-
soning with orders of magnitude and approximate relations.
In Proceedings of the National Conference on Artificial In-
telligence, 626–630.
Mavrovouniotis, M.L., and Stephanopoulos, G. 1988. For-
mal order-of-magnitude reasoning in process engineering.
Computer and Chemical Engineering 12(9/10):867–881.
Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proceedings of the 8th National
Conference on Artificial Intelligence, 25–32.
Murthy, S. 1988. Qualitative reasoning at multiple resolu-
tions. In Proceedings of the National Conference on Artifi-
cial Intelligence, 296–300.
Nayak, P.P. 1992. Order of magnitude reasoning using log-
arithms. In Proceedings of the 3rd International Conference
on Principles of Knowledge Representation and Reasoning,
201–210.
Nayak, P.P. 1993. Order of magnitude reasoning using log-
arithms. In Proceedings of the International Workshop on
Qualitative Reasoning about Physical Systems.
Raiman, O. 1986. Order of magnitude reasoning. In Pro-
ceedings of the National Conference on Artificial Intelli-
gence, 100–104.
Raiman, O. 1991. Order of magnitude reasoning. Artificial
Intelligence 51:11–38.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued
constraint satisfaction problems: Hard and easy problems.
In Proceedings of the 14th International Joint Conference
on Artificial Intelligence, 631–637.
Travé-Massuyès, L., and Piera, N. 1989. The orders of
magnitude models as qualitative algebras. In Proceedings
of the 11th International Joint Conference on Artificial In-
telligence, 1261–1266.
Tsang, E., and Warwick, T. 1990. Applying genetic algo-
rithms to constraint satisfaction optimization problems. In
Proceedings of the 9th European Conference on Artificial
Intelligence, 649–654.
Tsang, E. 1993. Foundations of Constraint Satisfaction.
London and San Diego: Academic Press.
Tversky, A., and Thaler, R.H. 1990. Anomalies preference
reversal. Journal of Economic Perspectives 4:201–211.

