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Abstract 
This paper lies within the domain of learning algorithms 
based on kernels of Support Vector Machines. A kernel is 
constructed over the discrete structure of absolute orders of 
magnitude spaces. This kernel is based on an explicit 
function, defined from the space of k-tuples of qualitative 
labels to a feature space, which captures the remoteness 
between the components of the patterns by using certain 
weights exponentially. A simple example that allows 
interpreting the kernel in terms of proximity of the patterns 
is presented. 
Keywords: Learning Algorithms, Support Vector 
Machines, Orders of Magnitude Reasoning. 

 
1. Introduction 

The construction of machines cable to learn from data is 
one of the main goals of Artificial Intelligence. Lately, 
different learning machines based on kernels, such as 
Support Vector Machines (SVM), have been developed 
and studied in depth because of their numerous 
applications and their efficiency in the learning process. 
One of the most important steps in the construction of 
Support Vector Machines is the development of kernels 
adapted to the different structures of the data in real world 
problems [2], [3], [5]. 
Within the frame of Artificial Intelligence, a key factor in 
situations in which one has to obtain some conclusions 
from imprecise data, is to be able to use variables 

described via orders of magnitude. One of the goals of 
Qualitative Reasoning is just to tackle problems in such a 
way that the principle of relevance is preserved [7]; that is 
to say, each variable involved in a real problem is valued 
with the required level of precision. 
In classification processes the situation in which the 
numerical values of some of the data are unknown, and 
only their qualitative descriptions are available - given by 
their absolute or relative orders of magnitude - is not 
unusual. In other situations, the numerical values, even 
though they might be available, are not relevant for solving 
the proposed problem. This paper starts from absolute 
orders of magnitude models [8], [9], which work with a 
finite set of symbols or qualitative labels obtained via a 
partition of the real line, where any element of the partition 
is a basic label. These models provide a mathematical 
structure which unifies sign algebra and interval algebra 
trough a continuum of qualitative structures built from the 
rougher to the finest partition of the real line. This 
mathematical structure, the Qualitative Algebras or Q-
Algebras, have been studied in depth [1], [9]. 
In recent studies, some kernels have been constructed over 
certain discrete structures, for example for linguistic text 
classification [5] and [6]; nevertheless, there is no kernel 
available to work with data described in a space of orders 
of magnitude. 
This work presents a kernel over a qualitative space of 
absolute orders of magnitude, based on an explicit function 
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defined over labels. This kernel will be used for 
classification in learning algorithms based on kernels, in 
particular in Support Vector Machines, as a part of the 
development of the MERITO (Analysis and Development 
of Innovative Soft-Computing Techniques with Expert 
Knowledge Integration. An Application to Financial Credit 
Risk Measurement) project, in which different tools for the 
measurement of the financial credit risk are analysed. 
Often, the classification function cannot be expressed as a 
simple linear combination of the attributes or input 
variables. Support Vector Machines are learning systems, 
which use linear functions in a feature space of higher 
dimension as classification functions by using several 
kernels [4], [10] and [11]. 
The mapping between the initial space and the feature 
space can be defined explicitly in advance, in order to 
construct an inner product that will give raise to the kernel. 
However, it is also possible, on the contrary, to construct a 
kernel directly, which allows for the implicit definition of 
the function from the data space into the feature space, in 
which linear learning machines operate. In this work the 
kernel is constructed following the first option mentioned 
above. 
 
In Section 2 the absolute orders of magnitude model with 
granularity n, OM(n), constructed via a symmetric 
partition of the real line, is presented. Section 3 gives the 
basic concepts of Support Vector Machines and highlights 
the importance of kernels for these kinds of learning 
algorithms. In Section 4 an explicit function from the 
quantity space into the feature space is defined; in Section 
5, this function allows the construction of a kernel to be 
able to work in spaces OM(n). The paper ends with several 
conclusions and outlines some proposals for future 
research. 
 

2 The absolute orders of magnitude model 

In this section the absolute orders of magnitude model is 
described [1]. The model we use is a generalisation of the 
model introduced in [9]. The number of labels chosen for 
describing a given real problem depends on  its 
characteristics. 
The absolute orders of magnitude model of granularity n, 
OM(n), is defined from a symmetric partition of the real 
line in 2n+1 classes: 
 

a1-a1-an-2-an-1 an-2 an-1... ...
Nn PnPn-1Nn-1 P1N1N2 P2 ...... 0  

Fig.1. Partition of the real line 

 
where Ni=[-ai,-ai-1), 0={0} and Pi=(ai-1,ai]. 
Each class is named basic description or basic element, 
and, using the notation intruduced in [1], is represented by 
a label of the set S1: 

S1={Nn, Nn-1, ..., N1, 0, P1, ..., Pn-1, Pn}. 

Finally, once the partition that defines S1 is fixed, the 
quantity space S is the set of labels in the form [X,Y] for 
all X,Y∈ S1, with X<Y (i.e., x<y for all x∈X and y∈Y): 
 

[ ]















≠≠

=

0.Y and 0X if
Y, and X containinginclusion  to

respect with intervalsmallest  the

0;=X  ifY,

0;=Y  ifX,

YX,

 

An order relation ≤P is defined in S, to be more precise 
than: given X,Y∈ S, X is more precise than Y (X≤PY) if 
X⊆Y. In Figure 2 this order relation is represented 
graphically: 
 

Fig. 2. The order relation ≤P 

 

For all X∈ S-{0}, the basis of X is the set 
{ }{ }XB:0SBB p1X ≤−∈= ; and for all X∈S, the extended 

basis of X is the set { }XB:SBB p1
*
X ≤∈= . 

The qualitative equality relation is defined as follows: 
given X,Y∈ S, they are q-equals, X≈Y, if there exists  
Z∈S such that Z≤PX and Z≤PY. This means that they have 
a common basic element, i.e., ∅≠∩ **

YX BB . The pair (S, 
≈) is called a qualitative space of orders of magnitude; 
and, taking into account that it has 2n+1 basic elements, it 
is said that  (S, ≈) has granularity n. 
In (S, ≈) it is considered the mapping || || from S to Í+∪
{0} defined by: 

||X|| = Card BX0
− Card BX. 

Where for each X∈S it is considered X0 as the 0-expansion 
defined as ψ0(X)= X0=Min{Y∈S: X≤ Y and 0≤Y}, and 
Card means the number of elements in a set. It has been 
shown that under certain conditions on the given partition, 
the mapping || || satisfies the following properties: 

1) ||X||≥0, and ||X||=0 if, and only if X≈0. 
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2) ||X||=||VX||. 
3) ||X⊕Y||≤||X||+||Y||. 

Note that || || satisfies the classical properties of norms 
except the first one where equality is changed by 
qualitative equality. The pair (S, || ||) is called qualitative 
normed space. 
 
Finally, in order to work with qualitative and quantitative 
data simultaneously, it is useful to consider the qualitative 
expression of a set A, denoted by [A] and that it is defined 
by the smallest element of S with respect to inclusion that 
contains A. 
 

3. Kernels in Support Vector Machines 

In this work we preopose a methodology, which will allow 
SVM to be used when the input data are described by their 
orders of magnitude. 
Before building an appropriate kernel for this kind of 
discrete spaces, let us remind ourselves of the basic 
concepts of Support Vector Machines and kernel 
functions, introduced by Vapnik in 1979 [10]. 
The SVM are used in learning problems, where the input 
data are not linearly separable. From a non-linear mapping 
the input data are imbedded into a space named feature 
space, potentially of higher dimension, in which the 
separability of the data can be obtained in a linear manner. 
In Figure 3 a scheme of this process can be observed. 
 

Fig.3. An application from the input space to the feature space 
 
That is to say, noting the input space by X and the feature 
space by F, a machine of non-linear classification is built 
in two steps. 
First, a non-linear mapping φ:X→ F transforms the input 
data to the feature space, and afterwards an algorithm of 
linear separation is used in this new space. 
An important characteristic of the learning process of a 
SVM is the fact that only a few elements of the training set 
are meaningful for the classification. These elements, 
named support vectors (SV), are ones closest to the 
separator hyperplane. In Figure 4 the support vectors are 
doubly marked. 

 
Fig.4. Binary classification of non linearly separable patterns by 

means of  SVM 

 
Let T be the set of input-output training data pairs: 

T = { (xi, yi), xi ∈ X, yi={-1,+1 } },  

where labels +1 and -1 represent the two different classes 
of objects in X.  
Let’s assume that the training set is separable by a 
hyperplane; then the linear decision function can be 
written as: 
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for all x in X, where αi and b are the hyperplane 
coefficients and xi are the elements in T closest to the 
hyperplane, which have been chosen as support vectors in 
the learning process. But the choice of a linear function 
seems to be very restrictive. In the general case of non-
linear separability, the decision function turns out to be a 
non-linear function which appears by substituting the inner 
product in X by an inner product in the feature space F, 
given by the function K such that: 

K(xi,xj) = φ(xi)·φ(xj). 

Such a function K is called a kernel. The name kernel is 
derived from Integral Operation Theory, and a 
characterization of this kind of functions is given by 
Mercer’s theorem [11]. 
This leads to the non-linear decision function: 
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A very important advantage of this methodology is that it 
is not necessary to have an input space with an inner 
product, i.e. it works for non-Euclidean spaces. Special 
kernels of that type have been used with many different 
kinds of data in the input space: to categorize text 
documents, for protein classification, to classify images, 
etc., mapping data into a feature space F, which is a 
Euclidean space. Different applications can be found in [5] 
and [6]. 
 

4. An explicit feature mapping φ from a space 
[OM(n)]k 

Following the method used in [5] to obtain a kernel over a 
discrete space, and in particular to define a kernel over the 
space Sk, in this section we define explicitly a feature 
function φ from the quantity space Sk to a feature space F. 
Further on, in section 5, the kernel will be obtained by the 
composition of φ with the inner product in F.  
This process begins with the definition of the functions’ 
basic expansions, introduced in section 2 in the particular 
case of the expansion of zero. Such a function, associated 
to a given basic element U, maps each element X in S to 
the minimum label that is less precise than X and, at the 
same time, than U.  

 φ  φ(  ) φ(  ) φ(  ) φ(  )
φ(  )

φ(  ) 

φ(  ) 
φ(  )

φ(  ) 
φ(  ) φ(  ) 

φ(  ) 

X F 

 



Given U∈ S1 we call U-expansion the map SS:U →ψ , 
such that: 

( ) { }YUandYX:SYMinX PPU ≤≤∈=ψ =[X » U]. 

It is the smallest interval with respect to the inclusion 
containing X and U. 
From now on XU will mean the image of X by ΨU. It’s 
easy to see that this map is well defined in the sense that 
the minimum that is used in the definition exists and it is 
unique for all X∈ S. The map satisfies: 

 a) X=XU, if, and only if, X≈U (i.e. U Õ X) 

 b) X≈XU and U≈XU 

It is necessary to note that XU does not depend on the 
values of the landmarks used to determine the real line 
partition. 
As an example to illustrate this map, considering the 
absolute orders of magnitude model with granularity 2, 
OM(2), then: 

S1={N2, N1, 0, P1, P2} 
 and S=S1»{[N2,N1],[N1,P1],[P1,P2],[N2,P1],[N1,P2],?}.  
Choosing U=N1, therefore, it is obtained: 
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Related to this map, and inspired in the definition of 
qualitative norm [1] explained in section 2, it is defined in 
S, for a fixed U∈S1, the map “remoteness with respect to 
U”, NS:a U → , such that: 

( ) ( )XXU BCardBCard)X(a
U

−= . 

For all U∈ S1, the map Ua  satisfies: 

 a) UXifonlyand,if,0)X(aU ≈=  

 b) )B(aMin)X(a UBBU
X∈

=  

For any X∈ S, the “further” the basics in BX are with 
respect to the basic  element U in the ordered set S1, the 
greater is the value of aU(X), with the exception of zero. 
Considering again the space OM(2) and the basic  element 
U=N1 to show how aU works: 
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Looking to the basic elements in S1-{0}, the basic P2 is the 
“furthest” with respect to N1, and it has, by the map aU 

defined over the space OM(2), the greatest value 
2)P(a 2N1

=  
 
Finally, and as a prior step for the definition of φ, the map 
φU associated to any basic element U∈ S1, over the space 
Sk  is defined by: 

φU (X)= φU (X1,...,Xk) = ( ))X(a)X(a kU1U ,, λλ K , 

for some λ∈ ]0,1[. The decay factor λ between 0 and 1 is 
used in each component to weight the remoteness between 
two elements in S. 
The map φU transforms each element in Sk into an element 
in [0,1]k , which reflects the remoteness of X’s components 
with respect to the basic element U. In this way, the 
components in X that are qualitatively equal to U take the 
value 1 in the corresponding component in φU (X), and less 
than 1 if they are not. In general, values near 1 in the 
components of φU (X) mean that their respective 
components of X are “close” to U. 
Now the explicit feature mapping can be defined, 

F→φ kS: , which will allow moving data from the 
quantity space Sk to the feature space F.  
For all X∈Sk, the vector ( )Xφ  is: 

( ) ( )( )
1SUU ∈φ=φ XX = ( ) ( )( )XX

nn PN ,, φφ K  

where the feature space F of vectors φ(X) is a subset of 
[0,1]k(2n+1). 
 

5. Construction of a kernel in an orders of magnitude 
space 

Once the explicit function φ has been defined on the space 
Sk, the kernel is defined via the Euclidean product existing 
in the space F; for all X,Y belonging to Sk, it is considered: 

K(X,Y) = )(),( YX φφ  

The explicit kernel expression is as follows: given two k-
tuples of qualitative labels, X = (X1,...,Xk) and Y = 
(Y1,...,Yk): 
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From its own definition the function K defined over Sk× Sk 
is a kernel and it is not necessary to verify that Mercer 
conditions are fulfilled [11]. 
Next, an example with an effective calculus with the 
kernel considered is given. This example will allow 
interpreting the results obtained in terms of “remoteness”. 
 



Example. Consider an OM(2) space with basic labels {N2, 
N1, 0, P1, P2} and three patterns X, Y, Z, given by terns of 
S3.  
Let be, X=(P1,[N2,N1],[N1,P2]), Y=([P1, P2], N1,0) and 
Z=(N2, P1,[ N2, N1]), then: 

φNG(X)=(λ2,λ0,λ1), φNP(X)=(λ1,λ0,λ0), φ0(X)=(λ1,λ1,λ0), 
φPP(X)=(λ0,λ1,λ0), φPG(X)=(λ1,λ2,λ0). 

φNG(Y)=(λ2,λ1,λ3), φNP(Y)=(λ1,λ0,λ2), φ0(Y)=(λ1,λ1,λ0), 
φPP(Y)=(λ0,λ1,λ2), φPG(Y)=(λ0,λ2,λ3). 

φNG(Z)=(λ0,λ2,λ0), φNP(Z)=(λ1,λ1,λ0), φ0(Z)=(λ2,λ1,λ1), 
φPP(Z)=(λ2,λ0,λ1), φPG(Z)=(λ3,λ1,λ2). 

Therefore, it is: 

K(X,Y) = )(),( YX φφ = (λ4+λ1+λ4) + (λ2+λ0+λ2) + 
(λ2+λ2+λ0) + (λ0+λ2+λ2) + (λ1+λ4+λ3) = 
3λ4+λ3+6λ2+2λ+3, 

K(Y,Z)= )(),( ZY φφ = (λ2+λ3+λ3) + (λ2+λ1+λ2) + 
(λ3+λ2+λ1) + (λ2+λ1+λ3) + (λ3+λ3+λ5) = 
λ5+6λ3+5λ2+3λ 
 
As can be seen the kernel has been constructed from a 
function φ, which has been defined by means of a set of 
weights used exponentially. Those exponents capture the 
concept of “remoteness” of each pattern component with 
respect to each one of the basic labels. Therefore, the more 
qualitatively near components two patterns are, the more 
similar they will be considered to be, because their 
Euclidian product will be higher. 
In the given example, X and Y are two patterns very 
similar (qualitatively equal component by component); on 
the contrary, the components of Y and Z very distant. In 
Figure 5, the values taken by K(X,Y) and K(Y,Z) can be 
seen. 
 

  
Fig.5. Comparison of the values given by the kennel with respect 

to parameter l. 
 

If the functions that represent the values given by the 
kernel are observed in both cases, it can be seen that, for 
any value between 0 and 1 given to λ, a greater value is 
always obtained in the case of the more similar patterns. 
 

6. Conclusions and future research 

The present work belongs to a wider project, which aims at 
motivating, defining, and analysing the viability of the use 
of learning machines in structures defined in orders of 
magnitude spaces. 
The focus of this paper is the construction of a kernel to be 
used in problems for which the input variables are 
described in terms of qualitative values of orders of 
magnitude. For this reason the kernel has been built from a 
set of weights considered exponentially by an evaluation 
of its qualitative information. This set of weights captures 
the known information about de “remoteness” between 
qualitative values. 
Although this paper has focused on a classification 
problem by using Support Vector Machines, the 
methodological aspects considered and given can be used 
in any learning system based on kernels.  
As a future work, the implementation of the given method 
to be applied in problems of classification and multi-
classification might be considered.  
In particular, and within the MERITO project, supported 
by the Spanish Ministry of Science and Technology, the 
methodology given in this paper is going to be used. The 
project addresses the prediction and measurement of 
financial credit risk. The results obtained by using input 
variables defined over orders of magnitude spaces will be 
compared with the ones obtained by using numerical 
values. 
Considering an OM(n), several concepts can be analysed 
to measure the degree of “remoteness” or “closeness” 
between labels, it seems to be reasonable to look for other  
suitable kernels in these kinds of sets. With regard to open 
problems and future work, the following comments can be 
made: 

• To define new concepts to measure the degree of 
“remoteness” or “closeness” between qualitative 
labels. 

• To choose different parameters of decay λ in the 
Euclidean product expression depending on the length 
of the intervals defining the basic labels. 

• To define new kernels combining numeric and 
qualitative data. 
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