
Debugging With an Enriched Dependency-based Model or How to
Distinguish Between Aliasing and Value Assignment

Rong Chen1,2 and Franz Wotawa1

1 Technische Universitaet Graz, Institut for Software Technology, Inffeldgasse 16b/2, A-8010 Graz, Austria
{chen,wotawa}@ist.tu-graz.ac.at}

2 Institute of Software Research, Zhongshan University, Guangzhou 510275, China

Abstract
This paper introduces a new model for debugging of Java
programs. This model is based on previous functional
dependency models that have been developed for the same
purpose. In contrast the model makes not only use of
dependency information but also of aliasing information.
Therefore, the results are better for a large class of examples.
The model is basically a qualitative model where values of
variables are ignored. Hence, the approach can be seen as an
application of qualitative reasoning for debugging software.
In the paper we further discuss the compilation of Java
programs to a constrained value-flow graph, and the
mapping from the graph to its logical representation.

1 Introduction
Debugging is a procedure for detecting, locating, and
repairing faults in a program throughout the whole software
development process. The increasing complexity of
software systems has led to an increasing demand for
computer aided debugging. However, traditional debugging
tools which have been in use for the last couple of decades
mainly use testing techniques to detect incorrect behavior
for a given program. They are either specific to a
programming language, use specialized checking
algorithms, or require explicit user-interaction to detect a
bug. Thus traditional debugging tools are only partly able
to serve the designated purpose of debugging. As a
consequence, various approaches have been proposed to
build automatic debuggers (see (Ducasse 1993) for an
overview). A different line of research follows the concept
of Model-based software debugging, which is the
application of techniques taken from model-based
diagnosis (MBD). Model-based diagnosis (Reiter 1987, de
Kleer and Williams 1987) is a process for locating faulty
components in a technical system solely on the basis of its
structural and behavioral model. The model-based
approach provides a general framework that allows for a
static, formal, and automatic debugging of programs (see
(Stumptner and Wotawa 1998) for an overview and
references therein).

The basic idea behind model-based debugging is (1) to
automatically build a logical model that describes the
structure and the behavior of a program, and (2) to compute
the diagnosis candidates by asking the model-based
diagnosis engine why the program does not behave as

expected. Each diagnosis candidate corresponds to a certain
syntactic entity (e.g. a statement or expression) in the
original source code. Diagnosis candidates can be further
discriminated by using additional measurements, e.g.,
values of variables that are know at a specific position in
the program's source code, or assertions. In the last years
our colleagues have developed two categories of models
for debugging Java programs: (1) The functional
dependency model (FDM) (Mateis, Stumptner and Wotawa
2000a), and (2) the value-based model (VBM) (Mateis,
Stumptner and Wotawa 2000b). Since the VBM can
eliminate wrong diagnoses by using additional run-time
information, e.g., the values of variables, the VBM
achieves better results than the FDM (Stumptner, Wieland
and Wotawa 2001) in most cases. However, whereas the
VBM heavily relies on low-level information, the FDM can
reason at a higher level of abstraction. Moreover, the
dependency-based representation is expected to scale up
well to large-sized programs, as is shown in (Stumptner
and Wotawa 2000, Das 2000). In this paper, we focus on
extending our previous research on model-based program
debugging with the dependency-based representation.

Our main goal is the use of cheap one-level pointer
analysis information to achieve better results in the context
of dependency-based program debugging.

We can illustrate our approach using a small Java
program shown in Figure1. The demo method consists of
new instance creations, assignments and a conditional. If
we know some information about the expected value of
a.value, b.value, c.value, and d.value, then we can ask our
debugging tool, JADE debugger to debug this input
program. For example, we may know that the values of
b.value, c.value, d.value are correct, but a.value is wrong.
Diagnosing with the FDM of the input program, we get 6
diagnosis candidates for this fault. Among these 6
diagnoses, some are unreasonable ones like the conditional
(line 5) and assignments (line 2 and line 6), and some are
imprecise like assignments in line 1. The reason is that the
functional dependency introduced in (Stumptner, Wieland
and Wotawa 2001) cannot capture the behavior of a
statement block precisely, for example, FDM cannot find
that statements in line 1, 3, and 5 show a conditional alias
relationship between a and c. Instead our approach can
achieve this by using enriched dependencies with

Editors
QR2003

17th International Workshop on Qualitative Reasoning
Hosted by University of Brasília Brasília, Brazil

20-22 August, 2003

Editors Paulo Salles & Bert Bredeweg

constraints produced by a points-to analysis which thus
lead to an improved result.

The proposed approach can be seen as a standard
qualitative reasoning approach. In contrast to the VBM
which requires the knowledge of the variables' values at
specific lines in the code, the dependency-based models
make only use of qualitative information like a value is
correct or two variables are aliased. Hence, debugging
using abstract models are good examples for the use of
qualitative knowledge to solve real-world problems
efficiently and as precise as required.

. class Value {

. int value;
 Value(int v) {
0. value = v; }
. static void demo(boolean choice)
. {
1. Value a = new Value(1); /*l1*/
2. Value b = new Value(2); /*l2*/
3. Value c = a;
4. Value d = b;
5. if (choice)
5.1 a = b;
. else
5.2 b = new Value(3); /*l3*/
6. b.value = 4;
7. c.value = 3;

Figure 1: A Small Java Program

2 Modeling Programs for Debugging
In this section, we describe how to model java programs by
means of enriched dependencies. We further show the
conversion of these dependencies into a logical
representation, which can be directly used by a standard
model-based diagnosis engine. As a result we obtain
diagnoses that correspond to syntactical parts of the
program's source code, i.e., statements and expressions.

2.1 Computing Enriched Dependency for Simple
Assignment Statements
Our algorithm for computing enriched dependencies is
basically an extension of Das's one level flow algorithm
(Das 2000), which is a simple extension of Steensgaard's
unification-based approach (Steensgaard 1996). In Das's
algorithm, flow edges suffice to depict dependencies at
expression level that only arise from variable assignments.
However, in the setting of java programs some
dependencies are possibly conflicting, method calls may
give rise to implicit dependencies, and selection statements
and loop statements produce inherent conditional
dependencies. So we have to take these factors into account
to extend Das's algorithm.

 Basically our concern in our algorithm is to use an
enriched points-to graph to record the semantic information

implied by input programs. The nodes of this graph
correspond to program variables and memory locations
which they point to, and the edges fall into two categories:
one represents the value flows between program variables,
and the other represents accessing either by reference or
selector. In the next section this graph will be augmented
with some annotations deriving from expressions.

In order to have a better understanding of our algorithm,
we like to illustrate the underlying ideas on simple
examples. The main idea of our algorithm is the conversion
of an input program into a value-flow graph. We assume
that each variable regardless whether it is class, instance, or
local has a corresponding node in the induced points-to
graph. Since we intend to collect strong knowledge at the
low-level location nodes, it is convenient to assume that
each node n has an edge pointing to its location node n.lc.
For example, a reference variable x induces a structure
outlined in Figure 2 (a). The reason is that a variable may
refer to an object, and the content of that object may point
to other memory locations which can be accessed by field
selector. For the sake of uniformity, we also regard objects
as memory locations and the edges directing from nodes to
their location nodes are uniformly called access edges (e.g.
solid edges in Figure 2 (a)). We use also flow edges to
depict basic dependencies that are produced by assignment
statements. For example, consider a simple variable
assignment, x=y. Firstly, reference variables x and y induce
a structure that is outlined in Figure 2 (b). Secondly, we
create a dashed edge (i.e. flow edge) because the operand =
implies that a value flows from y to x. This is depicted in
Figure 2 (c). Finally, the assignment statement induces the
unification of contents of x and y which is shown in Figure
2 (d).

Figure 2: The graph induced by a variable assignment statement.

For the sake of clarity, each time a variable or a constant
is used in an assignment statement, we create a source
node (labeled by the variable or the constant, e.g., node x in
Figure 2), a corresponding location node (represent the
memory location, e.g., dashed circles in Figure 2). Some
location nodes are called alias nodes since they represent
the content that is referenced via different variables (e.g.,
node n in Figure 2 (d)). Because of the fact that we collect
the knowledge from alias and location nodes with multiple
ingoing flow edges we call them uniformly summary
nodes. For example, the assignment x y is represented at

x

x.lc

x.lc.lc

…

(a)

x

x.lc

x.lc.lc

…

y

y.lc

y.lc.lc

…

(b)

x

x.lc

…

y

y.lc

y.lc.lc

…

(c)

x

x.lc

…

y

y.lc

(d)

x.lc.lc
n

the alias node n in Figure 2 (d), which means either “x and
y refer to the same object” or simply “x equals to y”.
 In the following we consider the more complicated case:
how to convert statement 1 of method demo that is depicted
in Figure 1 (i.e. Value a = new Value(1)), which is an
assignment with a constructor on the right side. For this
example we focus on the handling of the constructor. For
this purpose we first convert the constructor of the
statement. The result of this process is shown in Figure 3
(a). Because an object may influence several variables due
to its state change we use named locations to represent a
newly-created object; each location l has a type, i.e., the
class type of the instance modeled by l, and a unique index,
which non-ambiguously identifies location l within a
modeled method. To record these object influences, we
next link the named location to each instance/class
variables of the object (shown in Figure 3 (b)). Afterwards
we convert the rest of the assignment which is now
simplified to be an assignment of a named location to a
variable, i.e. a=l1 (see Figure 3 (c) for the induced graph).

Figure 3: The graph for statement 1 (Value a = new Value(1)).

 In fact, we can read out some information at alias nodes,
for example, in Figure 3 (c) we can read “a is an alias of
l1” and “a.value = 1” at node n1 and n2 respectively.
Moreover we can observe from Figure 3 that:
1: Alias nodes are those with multiple points-to ingoing

edges and one outgoing edge, while location node one
ingoing edge and one outgoing edge.

2: A source node and a location node can both access
their location nodes by either their reference or field
selector (e.g. a.value).

3: A source node can become a location node. For
example, node n1 in Figure 3 (c) is not only a source
node a.value but also a location node.

 The main idea of our algorithm is the conversion of input
statements into such an enriched points-to graph, which
comprises of source nodes and summary nodes, as well as
access edges and flow edges. Whereas flow edges at
non-summary nodes represent the functional dependency
between two program variables, edges at summary nodes
represent more precise knowledge of multiple program
variables. The goal of this representation is to characterize
strong knowledge implied by a sequence of relevant
statements. And it is computable to gain debugging

knowledge by traversing the induced graph, and thus the
strong knowledge is used to construct the qualitative model
for methods.

2.2 Algorithm for Computing Enriched
Dependencies
In the last section, we informally introduced an enriched
points-to graph. In this section, we describe an algorithm
that converts Java programs to extended points-to graphs.
The extension is due to the labeling of edges with
constraints. We call the extended graph a constrained value
flow graph (CVFG). The constraints can be Boolean
expressions that occur as conditional expressions in loops
and conditionals as well as conditional assertions.

 The CVFG for a given program is constructed by calling
two functions. The function convert compiles one
statement into a basic CVFG. The function summarize
summarizes the alias information and the conflicting
dependencies in the induced CVFG. The function convert
calls summarize whenever an assignment statement is
processed.

 To simplify our discussion of these two functions, we
introduce a number of functions and notations that are used
throughout the discussion. For this purpose we use the
following notational conventions:

Id denotes either a variable name or a method identity.

Id.f denotes the field selector f of Id.

n denotes a node in the induced graph.

nId denotes the corresponding location node for Id.

rNode denotes the single returned node.

rNodes denote the list of returned nodes.

lc denotes the abstract reference. We use n.lc to follow
access edges for each node n in the induced graph.

MethodCall denotes the method call.

constraints(i) denotes the constraints associated with
nId with respect to a statement index i.

sumNodes(nId) denotes a set of summary nodes for
node nId, which are used to record the information to
be summarized.

t:j.k(l) denotes the inner statement index, where j is
the prime statement index (as shown in Figure 1); k
the sub-index of statements in the block of selection
statements; l the sub-index of statements in method
calls or constructors; t is used to label the type of the
modeling statement: t =1, if it is a loop statement,
otherwise t = 0 for modeling method declarations. It is
certain the information in our indexing mechanism
corresponds to the statement types; sometimes we will
neglect the unimportant part if the context is
unambiguous.

l11

a

1

1(0)

.value

…

(a)

1

1(0)

.value

…

(b)

l1

1

1(0)

.value

…
(c)

n1

n2

Some auxiliary functions are defined to retrieve values
of variables as well as nodes and their associated
constraints:

match(t:j.k(l), i) returns the value of t, j, k, l for a
statement index i.

access(Id.f) goes down along the access edges of node
Id and return a node corresponding its field f.

lookup(Id) returns the corresponding location node
nId for Id if it exists.

lookup(i) returns the corresponding location node nId
if statement i is in the form “Id = Expr”.

lookup(MethodCall) determines the receiver(s) of the
MethodCall, returns the corresponding the method
identities Id(s) of the called method(s).

MethodDec(Id) returns the declaration “Type
Id(FormalParList) {S1, …, Sn}”of the method Id.

output(Id) returns nodes related to the returned values
of a method call with respect to a method identity Id.

input(Id) returns a list of nodes for the actual
parameters of a method call with respect to a method
identity Id.

locations(nId) returns a list of location nodes of node
nId if Id is a method identity.

copy(nId) copies the induced graph, which can be
done by traversing from the starting node nId,
renaming node nId as nId in the copied graph,
returning the renamed node nId .

visiable(nId, i) returns true if either (1) Id is an
attribute of an object and statement i is one of the
statements of constructors, or (2) statement i is one of
the statements in the declaration of a method call and
Id is an formal parameter; otherwise returns false.

The basic functionality of the conversion algorithm can
be explained by explaining its behavior for different Java
statements. We first describe the conversion of an
assignment via the function convert.

convert(Id = Expr, i)
tag := false ;
if (not (nId = lookup(Id))) then

create a named source node nId and its location
node nId.lc;
tag := true ;

rNodes := convert(Expr, i);
for each node n rNodes,

create a flow edge directed from n to node nId.lc,
label this edge with the index i and constraints(i);
if ((tag) and constraints(i) {}) then

for each constraints conj in constraints(i)
create a new location node nId.lc for node nId;
create an access edge directed from nId to

nId.lc , label with the index i and conj;
create an access edge directed from nId.lc to
n.lc.

else create an access edge directed from nId.lc to
n.lc;
sumNodes(nId) := sumNodes(n.lc);
for each node n in sumNodes(nId)

if (constraints(i) {} or i=0) then
summarize(i, n).

if (visiable(nId, i)) then return nId.lc else return {}.

Algorithm 1: Converting an assignment statement.

If an assignment involves a field access (e.g. Id.f = Expr),
we call access(Id.f) to return a node corresponding Id’s
field f, afterwards the processing is similar to that of
Algorithm 1.

And we convert an expression as follows:

convert(Expr, i)
case Expr=Id:

if (not lookup(Id)) then
create a named source node nId, its location
node nId.lc, and nId.lc 's location node
nId.lc.lc;
create access edges directed from each node
to its location node.

return nId.lc.
case Expr=Const:

create a source node nId , its location node nId.lc,
and nId.lc 's location node nId.lc.lc;
create access edges directed from each node to its
location node;
return nId.lc.

case Expr=(Expr1):
rNode := convert(Expr1, i).

case Expr= Id.f:
return access(Id.f).

case Expr=Expr1 Op Expr2:
rNodes := convert(Expr1, i) convert(Expr2,
i);
return rNodes.

case Expr=new MethodCall:
create a named location node li;
if (not (Id = lookup(MethodCall))) then

rNodes := convert(MethodDec(Id), i);
for each n rNodes create an access directed
from li to n.

else
nId := lookup(Id);
li := copy(nId);

return li.lc.
case Expr=MethodCall:

if (not (Id = lookup(MethodCall))) then
rNodes := convert(MethodDec(Id), i);

else

nId := lookup(Id);
n := copy(nId);
rNodes := locations(n);

for each node nj list input(Id) and its
corresponding node n j list rNodes, create a
flow edge directing from nj.lc to n j.lc.
return output(nId).

Algorithm 2: Converting an expression.

When modeling the selection statement and loop
statement, we assume that we have pre-processed their
corresponding expressions by introducing additional
statements with auxiliary variables if expressions contain
constructors like arithmetic operator or method calls. That
is, we assume that expressions are simple conditions. So
the selection statement (e.g. an if-then-else statement) and
the loop statement (e.g. a while-statement) are converted by
Algorithm 3 and Algorithm 4 as follows:

convert(if (Expr) {S1, …, Sn} else {S1 , …, Sn }, i)
constraints(i.1) := constraints(i) {Expr};
rNodes := convert({S1, …, Sn}, i.1);
constraints(i.2) := constraints(i) { Expr};
rNodes := convert({S1 , …, Sn }, i.2).
Algorithm 3: Converting a selection statement.

convert(while (Expr) {S1, …, Sn}, i)
constraints(1:i) := constraints(i) { Expr};
rNodes := convert({S1, …, Sn}, 1:i);
Algorithm 4: Converting a loop statement.

 Since we convert a statement sequence statement by
statement, we can in the same way convert the body of a
method declaration and record the conversion of this
method by creating an identity node as well as some access
edges (as shown in Algorithm 5).

convert(MethodDec(Id), i)
 create node nId for the method identity Id.

rNodes := convert({S1, …, Sn}, 0:i);
for each n rNodes create an access directed from nId
to n.
return rNodes.
Algorithm 5: Converting a method declaration.

Since method calls might modify external variables, thus
we have to consider side effects which stem from
statements in the method to be modeled. We achieve this in
by focusing on the nodes that can be reached through input
formal parameters and the returned variables (as shown in
Algorithm 2). And we prune any unreachable nodes in the
induced graph.

Algorithms 1~5 formally define the compilation process
of Java programs into CVFGs. These algorithms might
(implicitly) call the function summarize (e.g. in the
conversion of assignment statements). The basic idea

behind summarize is to collect knowledge at summary
nodes that is represented by consistent constraints. The
collected knowledge, represented by equalities, is strong
because it represents several dependencies coming from the
nodes that are one level higher than the summary node. We
can always create such summary nodes by creating the
node and a flow edge directing to itself. For this purpose
we have to be sure that there are no constraints annotated
and that there are no conflicts in related flow edges (as
shown at the summary nodes in Figure 2). Whenever two
flow edges are directed to the same summary node, we call
them conflicting. To resolve any conflicts, we compare
related statement indexes at a summary node and select the
one that has been executed at the latest. Regarding the
summary nodes of a while statement, we can also obtain
strong knowledge by using some sort of fix-point
computation, i.e., calling summarize until no new
knowledge can be obtained.

Using the above mentioned convert and summarize, we
can convert Java programs into a constrained value-flow
graph. As an example, Figure 4 shows the final AVFG of
our example in Figure 1. Note that this AVFG contains all
dependencies that can be computed in the demo method.

Figure 3: The induced graph for the small Java program in Figure 1.

2.3 Constrained Value-Flow Model
After computing all dependencies, i.e., the constrained
value-flow graph, we map them to a logical representation,
which can be directly used by a standard model-based
diagnosis engine. For this purpose, we have to introduce a
predicate Ab(i) to denote that a statement i is assumed to
be correct where i is the index of this statement. The
mapping of dependencies to their logical model was
described elsewhere (Mateis, Stumptner and Wotawa
2000a). In the context of CVFGs this mapping is similar to
the mapping of dependencies at non-summary nodes to
logical sentences. From the standard functional dependency
model we receive the following (simplified) rules for
variables a and c:

c a

l1

3 1 2 4 3

l2

d b

3 1

1(0) 7

1,3

1,3,7

5.1 choice

5 choice5 choice
5 choice 5 choice

5.2 choice24

2(0)
5.2(0)

choice
6 choice6 choice

choice

2,4,5.1,6
choice 2,4

2,4
choice
2,4,5.1

5.2
choice

5.2,6
choice

n1

l3

Ab(1) ok(a1)
Ab(3) ok(a1) ok(c3)

Ab(7) ok(c3) ok(c7) ok(c7)

where vi denotes the state of the variable v after
executing the statement in line i. If we now assume that
ok(c7) and ok(a7) is valid, i.e., c is computed correctly by
the program demo whereas a is not, then we can compute 3
single-fault diagnosis candidates: {1}, {3}, {7}, which is
not a good result as explained previously.

In order to improve this result we made some slight
changes to the model. We only consider the following
rules:

Ab(1) ok(a1)
Ab(7) ok(c7)

and add some additional rules that are for handling the
aliasing relationship between a and c. The first rule that can
be easily extracted from the CVFG captures aliasing.

Ab(3) choice a c

We further add some rules that allow us to derive new
information from the aliasing knowledge.

a c ok(ai) ok(ci)
a c ok(ci) ok(ai)

When using these rules and the above observations and
the fact choice, we now obtain the diagnosis {3} as the
only single-fault diagnosis.

In general the process of generating the aliasing rules can
be expressed as follows. For each summary node n where
there exists a flow edge between parent nodes add the
following rule to the system description:

Ab(i) Cns(n) v w

where i denotes the maximum value of the statement
indices IDX(n) that are associated with n, v and w denotes
the variables that corresponds to the parent nodes, and
Cns(n) denotes the constraints that are associated with n.

This sentence basically means that v and w denotes the
same memory location if the constraints are fulfilled.

For example, the summary node n1 in Figure 4 (in the
dashed rectangle) will lead to the rule:

Ab(3) choice a c

because IDX(n1) = {1, 3}, 3 = max{ IDX(n1) }, and
Cns(n1) = { choice}.

In (Mateis, Stumptner and Wotawa 2000a) the authors
conclude that a model based purely on dependencies is too
weak to discriminate between all possible program errors.
As shown with our running example the new model really
helps to improve the diagnosis results whenever aliasing
occur within a program. A more detailed analysis of the
model and a formal comparison with previous research is
left for future research.

3 Related Work
Our algorithm for dependency analysis is an extension of
Das's one level flow algorithm. Das's algorithm (Das 2000)
is a simple extension of Steensgaard's unification-based
approach (Steensgaard 1996), which is described as a set of
type inference rules over a language of pointer related
assignments. The focus of Das's approach is to provide a
practical method for obtaining better points-to information
on large program. Unfortunately, the Das's algorithm
cannot fully meet our needs that are required for debugging
Java programs. For example, in some cases faults in
programs rely heavily on the order of statements, however
flow-insensitive analysis assume that statements can be
execute in any order (Das 2000), i.e., the control structures
of the languages are irrelevant (Steensgaard 1996).
Moreover, some flow-insensitive dependencies are possibly
conflicting. Method calls may give rise to implicit
dependencies, and selection statements and loop statements
produce inherent conditional dependencies. All these facts
have to be taken into account for debugging. Hence, our
algorithm extends the Das's algorithm in this respect and
presents a constrained value-flow graph to model Java
programs in an appropriate way.

Several automatic debugging approaches have been
proposed so far to help programmers solving the debugging
task. Among them are program slicing(Weiser 1982,
Weiser 1984), algorithmic debugging (Shapiro 1983),
dependency-based techniques (Jackson 1995, Kuper 1989),
and others (see (Ducasse 1993) for an overview). Another
approach that makes use of a model checker to produce
error trace in order to find a fault is described in (Ball, Naik
and Rjajamani 2003). In this paper the authors discuss the
localization of a fault in the source code of a program using
error traces. Finally, there is a body of work on
model-based debugging approaches, which makes use of
model-based diagnosis for locating faults in software
(Stumptner and Wotawa 1998). In (Wotawa 2002) F.
Wotawa shows that model-based debugging in the context
of functional dependencies provides at least the same
capabilities than program slicing for locating bugs.
Moreover, in the same paper the author proves that the
model-based debugging approach can provide better
results.

The functional dependency model (FDM) (Stumptner
and Wotawa 2000a, Wieland 2001) and value-based model
(VBM) (Mateis, Stumptner and Wotawa 2000b) have
successfully been applied to debug Java programs in the
Jade project. A comparison of the models and their
effectiveness was given in (Stumptner, Wieland and
Wotawa 2001). The empirical results show that the VBM
achievers better results than the FDM in general. The main
reason is the VBM can eliminate wrong diagnoses by using
additional run-time information like the values of variables
(Stumptner, Wieland and Wotawa 2001).

4 Conclusion
In this paper we introduce the use of a cheap one-level
pointer analysis for debugging in the context of
model-based diagnosis. This approach achieves better
results than previous model-based approaches that only
make use of dependencies. Our model is a purely
qualitative model that captures not only the dependencies
between variables but also the aliasing relationship between
the variables. Thus it provides more information that can be
successfully used to reduce the number of computed
diagnoses during debugging. The necessary aliasing
information can be obtained by traversing the CVFG which
is a graph that represent the flow of values within a
program.

Also we introduce an algorithm that compiles Java
programs into a CVFG. Moreover, we show how the
CVFG can be used in order to obtain a logical model that
can be directly used by a standard model-based diagnosis
engine. Although, we have currently almost no empirical
results that would allow to draw a statement regarding the
usefulness of the approach in a real-world setting, we have
analyzed the model using examples where other functional
dependency model does not provide good results.

In summary, the contributions of this paper include:

The use of one-level pointer analysis for debugging.

An extension of basic value-flow representations
that allow extracting useful debugging information.

Handling of aliasing information in the context of
debugging which leads to better debugging results
in several cases.

Future research should include an empirical analysis of
the proposed model and an alternative representation of the
underlying ideas using abstract program semantics.
Moreover, the development and handling of alternative
models for debugging should be in the focus of attention.

Acknowledgment
The work presented in this paper was funded by the
Austrian Science Fund (FWF) Project P15265-N04, and
partially supported by the National Natural Science
Foundation of China (NSFC) Project 60203015 and the
Guangdong Natural Science Foundation Project 011162.
And the authors would like to thank Roderich Bloem for
his comments.

References
Ball T.; Naik M.; and Rajamani S. K. 2003. From Symptom
to Cause: Localizing Errors in Counterexample Traces. In
Proceedings of the Seventh ACM Symposium on Principles
of Programming Language (POPL). New Orleans, USA.

Das M. 2000. Unification-based Pointer Analysis with

Directional Assignments, In PLDI 2000, Vancouver,
Canada.

de Kleer, J.; Williams, B. C. 1987. Diagnosing multiple
faults. Artifical Intelligence 32(1): 97 130.

Ducassé, M. 1993. A pragmatic survey of automatic
debugging. In Proceedings of the 1st International
Workshop on Automated and Algorithmic Debugging,
AADEBUG ’93, 1–15, Springer LNCS 749.

Jackson D. 1995. Aspect: Detecting Bugs with Abstract
Dependences. ACM Transactions on Software Engineering
and Methodology 4(2):109–145.

Kuper R. I. 1989. Dependency-directed localization of
software bugs. Technical Report AI-TR 1053, MIT AI Lab.

Mateis C.; Stumptner M.; and Wotawa F. 2000a. Modeling
Java Programs for Diagnosis, In the 14th European
Conference on Artificial Intelligence, Berlin, Germany.

Mateis C.; Stumptner M.; and Wotawa F. 2000b. A
Value-Based Diagnosis Model for Java Programs, In the
Eleventh International Workshop on Principles of
Diagnosis (DX), Morelia, Mexico.

Reiter, R. 1987. A theory of diagnosis from first principle.
Artifical Intelligence 32(1): 57 95.

Shapiro E. 1983. Algorithmic Program Debugging. MIT
Press, Cambridge, Massachusetts.

Steensgaard B. 1996. Points-to analysis in almost linear
time. In Conference Record of the Twenty-Third ACM
Symposium on Principles of Programming Languages.

Stumptner M.; Wieland D.; and Wotawa F. 2001.
Comparing Two Models for Software Debugging. In
Proceedings of the Joint German/Austrian Conference on
Artificial Intelligence (KI), Vienna, Austria.

Stumptner M.; Wotawa F. 1998. A Survey of Intelligent
Debugging, The European Journal on Artificial
Intelligence (AICOM) , 11(1).

Stumptner M.; and Wotawa F. 2000. Using Model-Based
Reasoning for Locating Faults in VHDL Designs.
Künstliche Intelligenz, 14(4):62–67.

Weiser M. 1982. Programmers use slices when debugging.
Communications of the ACM, 25(7):446–452.

Weiser M. 1984. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357.

Wieland D. 2001. Model-Based Debugging of Java
Programs Using Dependencies. PhD thesis, Vienna
University of Technology.

Wotawa 2002. On the Relationship between Model-Based
Debugging and Program Slicing. Artificial Intelligence
135(1–2):124–143.

	page541: 55
	page551: 56
	page561: 57
	page571: 58
	page581: 59
	page591: 60
	page601: 61

