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Abstract 
This paper introduces a new model for debugging of Java 
programs. This model is based on previous functional 
dependency models that have been developed for the same 
purpose. In contrast the model makes not only use of 
dependency information but also of aliasing information. 
Therefore, the results are better for a large class of examples. 
The model is basically a qualitative model where values of 
variables are ignored. Hence, the approach can be seen as an 
application of qualitative reasoning for debugging software. 
In the paper we further discuss the compilation of Java 
programs to a constrained value-flow graph, and the 
mapping from the graph to its logical representation. 

1 Introduction 
Debugging is a procedure for detecting, locating, and 
repairing faults in a program throughout the whole software 
development process. The increasing complexity of 
software systems has led to an increasing demand for 
computer aided debugging. However, traditional debugging 
tools which have been in use for the last couple of decades 
mainly use testing techniques to detect incorrect behavior 
for a given program. They are either specific to a 
programming language, use specialized checking 
algorithms, or require explicit user-interaction to detect a 
bug. Thus traditional debugging tools are only partly able 
to serve the designated purpose of debugging. As a 
consequence, various approaches have been proposed to 
build automatic debuggers (see (Ducasse 1993) for an 
overview). A different line of research follows the concept 
of Model-based software debugging, which is the 
application of techniques taken from model-based 
diagnosis (MBD). Model-based diagnosis (Reiter 1987, de 
Kleer and Williams 1987) is a process for locating faulty 
components in a technical system solely on the basis of its 
structural and behavioral model. The model-based 
approach provides a general framework that allows for a 
static, formal, and automatic debugging of programs (see 
(Stumptner and Wotawa 1998) for an overview and 
references therein).   

The basic idea behind model-based debugging is (1) to 
automatically build a logical model that describes the 
structure and the behavior of a program, and (2) to compute 
the diagnosis candidates by asking the model-based 
diagnosis engine why the program does not behave as 

expected. Each diagnosis candidate corresponds to a certain 
syntactic entity (e.g. a statement or expression) in the 
original source code. Diagnosis candidates can be further 
discriminated by using additional measurements, e.g., 
values of variables that are know at a specific position in 
the program's source code, or assertions. In the last years 
our colleagues have developed two categories of models 
for debugging Java programs: (1) The functional 
dependency model (FDM) (Mateis, Stumptner and Wotawa 
2000a), and (2) the value-based model (VBM) (Mateis, 
Stumptner and Wotawa 2000b). Since the VBM can 
eliminate wrong diagnoses by using additional run-time 
information, e.g., the values of variables, the VBM 
achieves better results than the FDM (Stumptner, Wieland 
and Wotawa 2001) in most cases. However, whereas the 
VBM heavily relies on low-level information, the FDM can 
reason at a higher level of abstraction. Moreover, the 
dependency-based representation is expected to scale up 
well to large-sized programs, as is shown in (Stumptner 
and Wotawa 2000, Das 2000). In this paper, we focus on 
extending our previous research on model-based program 
debugging with the dependency-based representation. 

Our main goal is the use of cheap one-level pointer 
analysis information to achieve better results in the context 
of dependency-based program debugging. 

We can illustrate our approach using a small Java 
program shown in Figure1. The demo method consists of 
new instance creations, assignments and a conditional. If 
we know some information about the expected value of 
a.value, b.value, c.value, and d.value, then we can ask our 
debugging tool, JADE debugger to debug this input 
program. For example, we may know that the values of 
b.value, c.value, d.value are correct, but a.value is wrong. 
Diagnosing with the FDM of the input program, we get 6 
diagnosis candidates for this fault. Among these 6 
diagnoses, some are unreasonable ones like the conditional 
(line 5) and assignments (line 2 and line 6), and some are 
imprecise like assignments in line 1. The reason is that the 
functional dependency introduced in (Stumptner, Wieland 
and Wotawa 2001) cannot capture the behavior of a 
statement block precisely, for example, FDM cannot find 
that statements in line 1, 3, and 5 show a conditional alias 
relationship between a and c. Instead our approach can 
achieve this by using enriched dependencies with 
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constraints produced by a points-to analysis which thus 
lead to an improved result. 

The proposed approach can be seen as a standard 
qualitative reasoning approach. In contrast to the VBM 
which requires the knowledge of the variables' values at 
specific lines in the code, the dependency-based models 
make only use of qualitative information like a value is 
correct or two variables are aliased. Hence, debugging 
using abstract models are good examples for the use of 
qualitative knowledge to solve real-world problems 
efficiently and as precise as required. 

.   class Value { 

.       int value; 
   Value(int v) { 
0.          value = v;     } 
.      static void demo(boolean choice) 
.       { 
1.          Value a = new Value(1); /*l1*/ 
2.          Value b = new Value(2); /*l2*/ 
3.          Value c = a; 
4.          Value d = b; 
5.          if (choice) 
5.1             a = b; 
.           else
5.2             b = new Value(3); /*l3*/ 
6.          b.value = 4; 
7.          c.value = 3; 

Figure 1: A Small Java Program 

2 Modeling Programs for Debugging 
In this section, we describe how to model java programs by 
means of enriched dependencies. We further show the 
conversion of these dependencies into a logical 
representation, which can be directly used by a standard 
model-based diagnosis engine. As a result we obtain 
diagnoses that correspond to syntactical parts of the 
program's source code, i.e., statements and expressions.   

2.1 Computing Enriched Dependency for Simple 
Assignment Statements 
Our algorithm for computing enriched dependencies is 
basically an extension of Das's one level flow algorithm 
(Das 2000), which is a simple extension of Steensgaard's 
unification-based approach (Steensgaard 1996). In Das's 
algorithm, flow edges suffice to depict dependencies at 
expression level that only arise from variable assignments. 
However, in the setting of java programs some 
dependencies are possibly conflicting, method calls may 
give rise to implicit dependencies, and selection statements 
and loop statements produce inherent conditional 
dependencies. So we have to take these factors into account 
to extend Das's algorithm. 

  Basically our concern in our algorithm is to use an 
enriched points-to graph to record the semantic information 

implied by input programs. The nodes of this graph 
correspond to program variables and memory locations 
which they point to, and the edges fall into two categories: 
one represents the value flows between program variables, 
and the other represents accessing either by reference or 
selector. In the next section this graph will be augmented 
with some annotations deriving from expressions. 

In order to have a better understanding of our algorithm, 
we like to illustrate the underlying ideas on simple 
examples. The main idea of our algorithm is the conversion 
of an input program into a value-flow graph. We assume 
that each variable regardless whether it is class, instance, or 
local has a corresponding node in the induced points-to 
graph. Since we intend to collect strong knowledge at the 
low-level location nodes, it is convenient to assume that 
each node n has an edge pointing to its location node n.lc.
For example, a reference variable x induces a structure 
outlined in Figure 2 (a). The reason is that a variable may 
refer to an object, and the content of that object may point 
to other memory locations which can be accessed by field 
selector. For the sake of uniformity, we also regard objects 
as memory locations and the edges directing from nodes to 
their location nodes are uniformly called access edges (e.g. 
solid edges in Figure 2 (a)). We use also flow edges to 
depict basic dependencies that are produced by assignment 
statements. For example, consider a simple variable 
assignment, x=y. Firstly, reference variables x and y induce 
a structure that is outlined in Figure 2 (b). Secondly, we 
create a dashed edge (i.e. flow edge) because the operand =
implies that a value flows from y to x. This is depicted in 
Figure 2 (c). Finally, the assignment statement induces the 
unification of contents of x and y which is shown in Figure 
2 (d). 

Figure 2: The graph induced by a variable assignment statement. 

For the sake of clarity, each time a variable or a constant 
is used in an assignment statement, we create a source 
node (labeled by the variable or the constant, e.g., node x in 
Figure 2), a corresponding location node (represent the 
memory location, e.g., dashed circles in Figure 2). Some 
location nodes are called alias nodes since they represent 
the content that is referenced via different variables (e.g., 
node n in Figure 2 (d)). Because of the fact that we collect 
the knowledge from alias and location nodes with multiple 
ingoing flow edges we call them uniformly summary
nodes. For example, the assignment x  y is represented at 
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the alias node n in Figure 2 (d), which means either “x and 
y refer to the same object” or simply “x equals to y”.
  In the following we consider the more complicated case: 
how to convert statement 1 of method demo that is depicted 
in Figure 1 (i.e. Value a = new Value(1)), which is an 
assignment with a constructor on the right side. For this 
example we focus on the handling of the constructor. For 
this purpose we first convert the constructor of the 
statement. The result of this process is shown in Figure 3 
(a). Because an object may influence several variables due 
to its state change we use named locations to represent a 
newly-created object; each location l has a type, i.e., the 
class type of the instance modeled by l, and a unique index, 
which non-ambiguously identifies location l within a 
modeled method. To record these object influences, we 
next link the named location to each instance/class 
variables of the object (shown in Figure 3 (b)). Afterwards 
we convert the rest of the assignment which is now 
simplified to be an assignment of a named location to a 
variable, i.e. a=l1 (see Figure 3 (c) for the induced graph). 

Figure 3: The graph for statement 1 (Value a = new Value(1)). 

  In fact, we can read out some information at alias nodes, 
for example, in Figure 3 (c) we can read “a is an alias of 
l1” and “a.value = 1” at node n1 and n2 respectively. 
Moreover we can observe from Figure 3 that: 
1: Alias nodes are those with multiple points-to ingoing 

edges and one outgoing edge, while location node one 
ingoing edge and one outgoing edge.  

2: A source node and a location node can both access 
their location nodes by either their reference or field 
selector (e.g. a.value). 

3: A source node can become a location node. For 
example, node n1 in Figure 3 (c) is not only a source 
node a.value but also a location node. 

  The main idea of our algorithm is the conversion of input 
statements into such an enriched points-to graph, which 
comprises of source nodes and summary nodes, as well as 
access edges and flow edges. Whereas flow edges at 
non-summary nodes represent the functional dependency 
between two program variables, edges at summary nodes 
represent more precise knowledge of multiple program 
variables. The goal of this representation is to characterize 
strong knowledge implied by a sequence of relevant 
statements. And it is computable to gain debugging 

knowledge by traversing the induced graph, and thus the 
strong knowledge is used to construct the qualitative model 
for methods. 

2.2 Algorithm for Computing Enriched 
Dependencies 
In the last section, we informally introduced an enriched 
points-to graph. In this section, we describe an algorithm 
that converts Java programs to extended points-to graphs. 
The extension is due to the labeling of edges with 
constraints. We call the extended graph a constrained value 
flow graph (CVFG). The constraints can be Boolean 
expressions that occur as conditional expressions in loops 
and conditionals as well as conditional assertions. 

  The CVFG for a given program is constructed by calling 
two functions. The function convert compiles one 
statement into a basic CVFG. The function summarize
summarizes the alias information and the conflicting 
dependencies in the induced CVFG. The function convert
calls summarize whenever an assignment statement is 
processed. 

  To simplify our discussion of these two functions, we 
introduce a number of functions and notations that are used 
throughout the discussion. For this purpose we use the 
following notational conventions: 

Id denotes either a variable name or a method identity. 

Id.f denotes the field selector f of Id. 

n denotes a node in the induced graph. 

nId denotes the corresponding location node for Id.

rNode denotes the single returned node. 

rNodes denote the list of returned nodes. 

lc denotes the abstract reference. We use n.lc to follow 
access edges for each node n in the induced graph. 

MethodCall denotes the method call. 

constraints(i) denotes the constraints associated with 
nId with respect to a statement index i.

sumNodes(nId) denotes a set of summary nodes for 
node nId, which are used to record the information to 
be summarized. 

t:j.k(l) denotes the inner statement index, where j is 
the prime statement index (as shown in Figure 1); k
the sub-index of statements in the block of selection 
statements; l the sub-index of statements in method 
calls or constructors; t is used to label the type of the 
modeling statement: t =1, if it is a loop statement, 
otherwise t = 0 for modeling method declarations. It is 
certain the information in our indexing mechanism 
corresponds to the statement types; sometimes we will 
neglect the unimportant part if the context is 
unambiguous. 
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Some auxiliary functions are defined to retrieve values 
of variables as well as nodes and their associated 
constraints:

match(t:j.k(l), i) returns the value of t, j, k, l for a 
statement index i.

access(Id.f) goes down along the access edges of node 
Id and return a node corresponding its field f.

lookup(Id) returns the corresponding location node 
nId for Id if it exists.

lookup(i) returns the corresponding location node nId
if statement i is in the form “Id = Expr”.

lookup(MethodCall) determines the receiver(s) of the 
MethodCall, returns the corresponding the method 
identities Id(s) of the called method(s).

MethodDec(Id) returns the declaration “Type 
Id(FormalParList) {S1, …, Sn}”of the method Id.

output(Id) returns nodes related to the returned values 
of a method call with respect to a method identity Id.

input(Id) returns a list of nodes for the actual 
parameters of a method call with respect to a method 
identity Id.

locations(nId) returns a list of location nodes of node 
nId if Id is a method identity. 

copy(nId) copies the induced graph, which can be 
done by traversing from the starting node nId, 
renaming node nId as nId  in the copied graph, 
returning the renamed node nId .

visiable(nId, i) returns true if either (1) Id is an 
attribute of an object and statement i is one of the 
statements of constructors, or (2) statement i is one of 
the statements in the declaration of a method call and
Id is an formal parameter; otherwise returns false.

The basic functionality of the conversion algorithm can 
be explained by explaining its behavior for different Java 
statements. We first describe the conversion of an 
assignment via the function convert.

convert(Id = Expr, i)
tag := false ; 
if (not (nId = lookup(Id))) then

create a named source node nId and its location 
node nId.lc;
tag := true ; 

rNodes := convert(Expr, i); 
for each node n rNodes,

create a flow edge directed from n to node nId.lc,
label this edge with the index i and constraints(i);
if ((tag) and constraints(i)  {}) then

for each constraints conj in constraints( i)
create a new location node nId.lc  for node nId;
create an access edge directed from nId to

nId.lc , label with the index i and conj;
create an access edge directed from nId.lc  to
n.lc.

else create an access edge directed from nId.lc to
n.lc;
sumNodes(nId) := sumNodes(n.lc);
for each node n in sumNodes(nId)

if (constraints(i) {} or i=0) then
summarize(i, n ). 

if (visiable(nId, i)) then return nId.lc else return {}. 

Algorithm 1: Converting an assignment statement. 

If an assignment involves a field access (e.g. Id.f = Expr), 
we call access(Id.f) to return a node corresponding Id’s 
field f, afterwards the processing is similar to that of 
Algorithm 1.  

And we convert an expression as follows: 

convert(Expr, i)
case Expr=Id:

if (not lookup(Id)) then
create a named source node nId, its location 
node nId.lc, and nId.lc 's location node 
nId.lc.lc;
create access edges directed from each node 
to its location node. 

return nId.lc.
case Expr=Const: 

create a source node nId , its location node nId.lc,
and nId.lc 's location node nId.lc.lc;
create access edges directed from each node to its 
location node; 
return nId.lc.

case Expr=(Expr1): 
rNode := convert(Expr1, i). 

case Expr= Id.f:
return access(Id.f).

case Expr=Expr1 Op Expr2: 
rNodes := convert(Expr1, i) convert(Expr2, 
i);
return rNodes.

case Expr=new MethodCall:
create a named location node li;
if (not (Id = lookup(MethodCall))) then  

rNodes := convert(MethodDec(Id), i);
for each n rNodes create an access directed 
from li to n.

else
nId := lookup(Id);
li := copy(nId);

return li.lc.
case Expr=MethodCall:

if (not (Id = lookup(MethodCall))) then  
rNodes := convert(MethodDec(Id), i);

else



nId := lookup(Id);
n := copy(nId);
rNodes := locations(n);

for each node nj  list input(Id) and its 
corresponding node n j  list rNodes, create a 
flow edge directing from nj.lc to n j.lc.
return output(nId).

Algorithm 2: Converting an expression. 

When modeling the selection statement and loop 
statement, we assume that we have pre-processed their 
corresponding expressions by introducing additional 
statements with auxiliary variables if expressions contain 
constructors like arithmetic operator or method calls. That 
is, we assume that expressions are simple conditions. So 
the selection statement (e.g. an if-then-else statement) and 
the loop statement (e.g. a while-statement) are converted by 
Algorithm 3 and Algorithm 4 as follows: 

convert(if (Expr) {S1, …, Sn} else {S1 , …, Sn }, i)
constraints(i.1) := constraints(i) {Expr}; 
rNodes := convert({S1, …, Sn}, i.1);
constraints(i.2) := constraints(i) { Expr}; 
rNodes := convert({S1 , …, Sn }, i.2).
Algorithm 3: Converting a selection statement. 

convert(while (Expr) {S1, …, Sn}, i)
constraints(1:i) := constraints(i) { Expr}; 
rNodes := convert({S1, …, Sn}, 1:i);
Algorithm 4: Converting a loop statement. 

  Since we convert a statement sequence statement by 
statement, we can in the same way convert the body of a 
method declaration and record the conversion of this 
method by creating an identity node as well as some access 
edges (as shown in Algorithm 5).  

convert(MethodDec(Id), i)
 create node nId for the method identity Id.

rNodes := convert({S1, …, Sn}, 0:i);
for each n rNodes create an access directed from nId
to n.
return rNodes.
Algorithm 5: Converting a method declaration. 

Since method calls might modify external variables, thus 
we have to consider side effects which stem from 
statements in the method to be modeled. We achieve this in 
by focusing on the nodes that can be reached through input 
formal parameters and the returned variables (as shown in 
Algorithm 2). And we prune any unreachable nodes in the 
induced graph. 

Algorithms 1~5 formally define the compilation process 
of Java programs into CVFGs. These algorithms might 
(implicitly) call the function summarize (e.g. in the 
conversion of assignment statements). The basic idea 

behind summarize is to collect knowledge at summary 
nodes that is represented by consistent constraints. The 
collected knowledge, represented by equalities, is strong 
because it represents several dependencies coming from the 
nodes that are one level higher than the summary node. We 
can always create such summary nodes by creating the 
node and a flow edge directing to itself. For this purpose 
we have to be sure that there are no constraints annotated 
and that there are no conflicts in related flow edges (as 
shown at the summary nodes in Figure 2). Whenever two 
flow edges are directed to the same summary node, we call 
them conflicting. To resolve any conflicts, we compare 
related statement indexes at a summary node and select the 
one that has been executed at the latest. Regarding the 
summary nodes of a while statement, we can also obtain 
strong knowledge by using some sort of fix-point 
computation, i.e., calling summarize until no new 
knowledge can be obtained. 

Using the above mentioned convert and summarize, we 
can convert Java programs into a constrained value-flow 
graph. As an example, Figure 4 shows the final AVFG of 
our example in Figure 1. Note that this AVFG contains all 
dependencies that can be computed in the demo method. 

Figure 3: The induced graph for the small Java program in Figure 1. 

2.3 Constrained Value-Flow Model 
After computing all dependencies, i.e., the constrained 
value-flow graph, we map them to a logical representation, 
which can be directly used by a standard model-based 
diagnosis engine. For this purpose, we have to introduce a 
predicate Ab(i) to denote that a statement i is assumed to 
be correct where i is the index of this statement. The 
mapping of dependencies to their logical model was 
described elsewhere (Mateis, Stumptner and Wotawa 
2000a). In the context of CVFGs this mapping is similar to 
the mapping of dependencies at non-summary nodes to 
logical sentences. From the standard functional dependency 
model we receive the following (simplified) rules for 
variables a and c:
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Ab(1)  ok(a1)
Ab(3) ok(a1)  ok(c3)

Ab(7) ok(c3)  ok(c7) ok(c7)

where vi denotes the state of the variable v after 
executing the statement in line i. If we now assume that 
ok(c7) and ok(a7) is valid, i.e., c is computed correctly by 
the program demo whereas a is not, then we can compute 3 
single-fault diagnosis candidates: {1}, {3}, {7}, which is 
not a good result as explained previously. 

In order to improve this result we made some slight 
changes to the model. We only consider the following 
rules:

Ab(1)  ok(a1)
Ab(7)  ok(c7)

and add some additional rules that are for handling the 
aliasing relationship between a and c. The first rule that can 
be easily extracted from the CVFG captures aliasing. 

Ab(3) choice  a  c

We further add some rules that allow us to derive new 
information from the aliasing knowledge. 

a  c ok(ai) ok(ci)
a  c ok(ci) ok(ai)

When using these rules and the above observations and 
the fact choice, we now obtain the diagnosis {3} as the 
only single-fault diagnosis.  

In general the process of generating the aliasing rules can 
be expressed as follows. For each summary node n where 
there exists a flow edge between parent nodes add the 
following rule to the system description: 

Ab(i) Cns(n) v  w

where i denotes the maximum value of the statement 
indices IDX(n) that are associated with n, v and w denotes 
the variables that corresponds to the parent nodes, and 
Cns(n) denotes the constraints that are associated with n.

This sentence basically means that v and w denotes the 
same memory location if the constraints are fulfilled. 

For example, the summary node n1 in Figure 4 (in the 
dashed rectangle) will lead to the rule: 

Ab(3) choice  a  c

because IDX(n1) = {1, 3}, 3 = max{ IDX(n1) }, and 
Cns(n1) = { choice}.

In (Mateis, Stumptner and Wotawa 2000a) the authors 
conclude that a model based purely on dependencies is too 
weak to discriminate between all possible program errors. 
As shown with our running example the new model really 
helps to improve the diagnosis results whenever aliasing 
occur within a program. A more detailed analysis of the 
model and a formal comparison with previous research is 
left for future research. 

3 Related Work 
Our algorithm for dependency analysis is an extension of 
Das's one level flow algorithm. Das's algorithm (Das 2000) 
is a simple extension of Steensgaard's unification-based 
approach (Steensgaard 1996), which is described as a set of 
type inference rules over a language of pointer related 
assignments. The focus of Das's approach is to provide a 
practical method for obtaining better points-to information 
on large program. Unfortunately, the Das's algorithm 
cannot fully meet our needs that are required for debugging 
Java programs. For example, in some cases faults in 
programs rely heavily on the order of statements, however 
flow-insensitive analysis assume that statements can be 
execute in any order (Das 2000), i.e., the control structures 
of the languages are irrelevant (Steensgaard 1996).  
Moreover, some flow-insensitive dependencies are possibly 
conflicting. Method calls may give rise to implicit 
dependencies, and selection statements and loop statements 
produce inherent conditional dependencies. All these facts 
have to be taken into account for debugging. Hence, our 
algorithm extends the Das's algorithm in this respect and 
presents a constrained value-flow graph to model Java 
programs in an appropriate way. 

Several automatic debugging approaches have been 
proposed so far to help programmers solving the debugging 
task. Among them are program slicing(Weiser 1982, 
Weiser 1984), algorithmic debugging (Shapiro 1983), 
dependency-based techniques (Jackson 1995, Kuper 1989), 
and others (see (Ducasse 1993) for an overview). Another 
approach that makes use of a model checker to produce 
error trace in order to find a fault is described in (Ball, Naik 
and Rjajamani 2003). In this paper the authors discuss the 
localization of a fault in the source code of a program using 
error traces. Finally, there is a body of work on 
model-based debugging approaches, which makes use of 
model-based diagnosis for locating faults in software  
(Stumptner and Wotawa 1998). In (Wotawa 2002) F. 
Wotawa shows that model-based debugging in the context 
of functional dependencies provides at least the same 
capabilities than program slicing for locating bugs. 
Moreover, in the same paper the author proves that the 
model-based debugging approach can provide better 
results. 

The functional dependency model (FDM) (Stumptner 
and Wotawa 2000a, Wieland 2001) and value-based model 
(VBM) (Mateis, Stumptner and Wotawa 2000b) have 
successfully been applied to debug Java programs in the 
Jade project. A comparison of the models and their 
effectiveness was given in (Stumptner, Wieland and 
Wotawa 2001). The empirical results show that the VBM 
achievers better results than the FDM in general. The main 
reason is the VBM can eliminate wrong diagnoses by using 
additional run-time information like the values of variables 
(Stumptner, Wieland and Wotawa 2001).   



4 Conclusion 
In this paper we introduce the use of a cheap one-level 
pointer analysis for debugging in the context of 
model-based diagnosis. This approach achieves better 
results than previous model-based approaches that only 
make use of dependencies. Our model is a purely 
qualitative model that captures not only the dependencies 
between variables but also the aliasing relationship between 
the variables. Thus it provides more information that can be 
successfully used to reduce the number of computed 
diagnoses during debugging. The necessary aliasing 
information can be obtained by traversing the CVFG which 
is a graph that represent the flow of values within a 
program. 

Also we introduce an algorithm that compiles Java 
programs into a CVFG. Moreover, we show how the 
CVFG can be used in order to obtain a logical model that 
can be directly used by a standard model-based diagnosis 
engine. Although, we have currently almost no empirical 
results that would allow to draw a statement regarding the 
usefulness of the approach in a real-world setting, we have 
analyzed the model using examples where other functional 
dependency model does not provide good results.  

In summary, the contributions of this paper include: 

The use of one-level pointer analysis for debugging. 

An extension of basic value-flow representations 
that allow extracting useful debugging information. 

Handling of aliasing information in the context of 
debugging which leads to better debugging results 
in several cases. 

Future research should include an empirical analysis of 
the proposed model and an alternative representation of the 
underlying ideas using abstract program semantics. 
Moreover, the development and handling of alternative 
models for debugging should be in the focus of attention. 
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