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Abstract 
 

Because diagrams are often created incrementally, a qualitative 
diagrammatic reasoning system must dynamically manage a po-
tentially large set of spatial interpretations. This paper describes 
an architecture for handling spatial relations in an incremental,  
nonmonotonic diagrammatic reasoning system. The architecture 
represents jointly exhaustive and pairwise disjoint (JEPD) spatial 
relation sets as nodes in a dependency network. Examples of these 
spatial relation sets are interval relations, relative orientation rela-
tions, and connectivity relations.  The network caches dependen-
cies between low-level spatial relations, allowing those relations 
to be easily assumed or retracted as visual elements are added or 
removed from a diagram. We also describe how the system sup-
ports high-level reasoning, including support for creating default 
assumptions. Finally, we show how this system was integrated 
with an existing drawing program and discuss its possible use in 
diagrammatic and geographic reasoning. 

  
1.  Introduction 

Diagrams are useful across a wide variety of reasoning 
tasks. Because a single diagram conveys many spatial rela-
tions at a glance, it provides a rich medium for many do-
mains, including geography, architecture, and engineering. 
A body of research exists showing how diagrams are used 
in many cognitive tasks (Glasgow, Narayanan, & 
Chandrasekaran, 1995).  

These characteristics are more interesting when we con-
sider that the spatial relations in a diagram may not be 
static. Diagrams frequently change over time. The addition, 
removal, and modification of elements also changes the set 
of spatial relations. Handling such incremental changes 
without significant reprocessing of previously established 
spatial relations is key to making spatial and diagrammatic 
reasoning efficient.  

An incremental processing approach is also be moti-
vated other factors. For example, problem solving may 
drive changes to a particular diagram as new ideas or sub-
tasks emerge. Also, if the conceptual interpretation of the 
spatial relations is computationally expensive, we do not 
want to recompute the interpretation when only minor 
changes are made. Finally, a more practical benefit of in-
cremental processing is that it distributes the processing 
burden evenly over the extent of the task, which is useful 
on low-end devices, such as personal digital assistants. 

In this paper, we describe an architecture for the main-
tenance of incremental, nonmonotonic changes to a dia-

gram. This work extends the GeoRep diagrammatic rea-
soner (Ferguson & Forbus, 2000), which is described in 
section 3. After describing GeoRep, we discuss how Ge o-
Rep was modified to allow incremental processing, and 
cover a number of implementation issues: how to handle 
composite objects, the interface between low-level and 
high-level reasoning, and a modified default assumption 
mechanism. We also describe extensions to a user interface 
allowing a user to create diagrams and update the infer-
ences of the reasoner.  We then discuss future challenges 
for this architecture. 

2. Related Work 
In qualitative spatial reasoning, researchers have explored 
how to process qualitative spatial vocabularies incremen-
tally. Notably, Hernández (1993) proposed mechanisms for 
maintaining consistent spatial knowledge that include a 
propagation heuristic for inserting relations and reason 
maintenance mechanisms for deleting relations.  These 
mechanisms use a dependency network, similar to that in a 
truth-maintenance system.  The system uses a combined set 
of orientation and topological spatial relations to represent 
qualitative 2-D positions.  

Other research has explored the use of conceptual 
neighborhoods (Freksa, 1992) and topological distances 
(Egenhofer & Al-Taha, 1992) to understand gradual change 
in the context of qualitative spatial vocabularies. Egenhofer 
and Al-Taha, for example, show how an analysis of topo-
logical distance between members of a relation set can be 
used to construct a graph that links the closest qualitative 
spatial relations. This graph can be used to show the set of 
necessary intervening qualitative states that must occur be-
tween two given states. 

Along with this research in qualitative spatial reasoning, 
there are a number of sketching systems that must maintain 
knowledge of the links between individual visual elements 
and the inferred relations, although few of them have ex-
plicit frameworks for handling dependencies between spa-
tial relations. A family of sketch interpretation systems by 
Davis and colleagues (Davis, 2002) use blackboard systems 
to integrate a low-level reasoner with a high-level descrip-
tion language, as with GeoRep, but can handle sketched 
shapes as well as vector graphics.  

Another approach is found in the Geometer’s Sketchpad, 
which uses a constraint system to dynamically enforce a set 
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of constraints over abstract geometric 
elements, including lines, rays, and cir-
cles (Scher, 2000).  These constraints 
include geometric relations such as the 
attachment of a segment endpoint along 
a circle perimeter and the bisection of 
an angle.  The user can then move 
points in the figure as desired, subject 
only to the geometric constraints.  This 
allows visualization of simple geomet-
ric conjectures, such as the (true) con-
jecture that the bisectors of a triangle’s 
angles intersect at a single central point. 
However, unlike those in GeoRep, the 
spatial relations in Geometer’s Sketch-
pad are not discovered by the system, 
but are entered explicitly by the user. 
 
3.  The GeoRep Reasoner 

This work extends an existing dia-
grammatic reasoner, GeoRep, to make 
processing incremental. GeoRep 
(Ferguson & Forbus, 2000) has been 
used in a numb er of diagrammatic rea-
soning domains, including military dia -
grams  (Ferguson, Rasch, Turmel, & 
Forbus, 2000), simple physical diagrams  (Ferguson & For-
bus, 1998), and logic circuits (Ferguson, 2001). In addition, 
it has been used as the visual representation system for sev-
eral cognitive mo deling simulations (Ferguson, 2000; Fer-
guson, Aminoff, & Gentner, 1996).   

GeoRep’s input is a line-drawn diagram, given as a vec-
tor graphics file. The vector graphics file may contain a va-
riety of visual element types, including line segments, cir-
cles, ellipses, arcs, spline curves and positioned text. 
GeoRep’s output is a predicate calculus representation. The 
representation has three parts: the low-level spatial rela-
tions, the high-level interpretation of the diagram, and in-
termediate spatial and conceptual relations that are pro-
duced in the process of interpretation. 

To generate this representation, GeoRep uses a two-
stage architecture (Figure 1). 

The first stage, the Low-Level Relational Describer 
(LLRD; Figure 2) represents a set of low-level visual rela-
tions.  These low-level relations are generated starting with 
proximity calculations and ending with more complex rela-
tions, such as  interval relations between parallel line seg-
ments. 

These particular spatial relations are also designed to 
model those qualitative spatial relationships that are de-
tected in early vision. For example, it is well-known that 
humans are sensitive to relative angles (such as perpendicu-
lar lines), indentations in figure boundaries (Hoffman & 
Richards, 1984), and to vertical and horizontal orientations 
in the assumed frame of reference (Rock, 1973). Interest-
ingly, one relation set used that has not been tested for early 
vision is interval relations (Allen, 1983) between parallel 
lines. In practice, these relations are extremely useful in 
modeling aspects of visual perception such as the detection 
of qualitative symmetry (Ferguson, 1994). A simple atten-
tion model uses a proximity detector to limit visual relation 
tests to proximate visual elements. This  acts as a limited 
focusing mechanism that keeps processing tractable.  

The system also models some aspects of attention and 
perceptual organization, though in a domain-dependent 
fashion.  Grouping rules can be used to simulate simila rity-
based grouping, and multiple LLRDs can be used to simu-
late visual separation based on preattentive factors such as 
color (Ferguson, 2001). 

The second stage, the High-Level Relational Describer 
(HLRD; Figure 3) uses these low-level relations and a rule-
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Figure 1: Simplified GeoRep architecture, containing stages 
for low-level and high-level visual reasoning 
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Figure 2: Data flow diagram of GeoRep’s Low-Level Relation Describer (LLRD). The 
top portion shows the collections of visual operators and the visual elements they proc-
ess.  The lower portion shows the set of spatial relations produced by each set of visual 
operators. 



based visual domain theory to produce a description of the 
diagram. The output of the HLRD describes the diagram 
using domain-dependent high-level relations. For example, 
using domain-dependent rules, the HLRD produces the de-
scription of the logic circuit in Figure 4, which includes the 
gates, the inputs and outputs, and the input and output la-
bels. It has also been used in map-based military diagrams, 
called Course of Action (COA) diagrams.  

The HLRD rules use a pattern-directed inference system 
that is supported by a logic-based truth maintenance system 
(LTMS) (Forbus & de Kleer, 1993; McAllester, 1990).  
HLRD rules use the LLRD’s low-level visual relations as 
well as domain knowledge, such as an ontology of logic 
gate types .  HLRD rules are typically constrained to run 
only on proximate visual elements and can call visual op-
erations within the LLRD. 

Once the HLRD has generated a high-level description, 
it can either be retrieved directly, or filtered by relation 
type to simulate different diagrammatic representation lev-
els (Ferguson & Forbus, 2000). 

4.  Making GeoRep Incremental 
One limitation of GeoRep is its processing model. 
GeoRep processes figures in batch mode on static dia-
grams. This is due to limitations of the LLRD rather 
than the HLRD. The HLRD is inherently incremental 
because it is based on an LTMS. Visual relations can be 
assumed or retracted at any time, and the consequences 
of these relations will also be assumed or retracted ac-
cordingly. However, once the LLRD detects a visual re-
lation between elements, it cannot retract it. The LLRD 
does not store information about which visual elements 
are used in particular spatial relations.  

Therefore, making GeoRep incremental requires an 
incremental LLRD. The following sections describe 
how we modified the LLRD and extended GeoRep to 
process diagrams incrementally.  

 
4.1 Creating the LLRD dependency network  

The dependency network we developed for the incremental 
LLRD draws on previous research on the mathematical 
character of qualitative spatial vocabularies that are jointly 
exhaustive and pairwise disjoint (JEPD) (Cohn, 1997). By 
ensuring the JEPD character of each node’s relation set, 
this network can take advantage of a number of such vo-
cabularies shown to be JEPD, such as interval relations 
(Allen, 1983) and RCC (Cohn, 1995; Cohn, Randell, Cui, 
& Benett, 1993). The logical properties of these JEPD sets 
are important because they allow the dependency network 
to isolate a set of spatial relations relative to other possible 
relations. 

The incremental LLRD includes a dependency network 
(Figure 5) that tracks the low-level relations supported by 
each visual element, maintaining consistency as visual ele-
ments are added or removed and storing the necessary in-
formation to allow reconsideration when elements are 
modified. 
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Figure 3: The HLRD architecture, which reasons over the low-
level description to produce a domain-specific interpretation 
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Figure 4: SR-Latch logic diagram and the representation produced by GeoRep 



Each relation node in the network 
has five key parts: a relation type, a 
set of internal relations, a selected in-
ternal relation, antecedents and con-
sequences. Each node also has a set 
of internal relations based on its rela-
tion type.  

Each node in the network repre-
sents a set of alternative spatial rela-
tions, a single relation set that is 
JEPD. The node may be IN or OUT. 
If the node is IN, then one internal re-
lation in the set is true. If the node is 
OUT, none of the internal relations 
are true. For example, each relative-
angle node in Figure 5 must select 
one of three possible internal rela-
tions: perpendicular, parallel , or 
skew to describe an angle relation-
ship. Similarly, the interval  node in-
dicates that two line segments have 
one of seven interval relations (Allen, 
1983). The propagation algorithm is 
similar to truth-value propagation in 
a justification-based truth mainte-
nance system (Forbus & de Kleer, 
1993). 

The links between nodes allow an-
tecedent relations to support conse-
quent nodes . In this network, antece-
dent nodes represent how some 
spatial relations support the existence 
of one of a set of mutually exclusive 
alternatives.  

Each internal re lation in a node 
supports zero or more successor 
nodes. For example, a parallel  inter-
nal relation supports the construction 
of an interval node. In other words, 
the internal relation combined with a visual test supports 
the whole truth value and labeling of the successor node.   

Let M be the set of nodes in the LLRD dependency net-
work.  Each node m ∈ M has a truth value (IN or OUT). If 
m is IN, it also has an internal relation, which is one of n 
possible relations in a JEPD set. 

In contrast to a JTMS, it is  important to note that the 
truth value of the network is not a direct function of the 
truth values of the antecedent nodes, but between the 
nodes, their antecedents, and the visual tests that are per-
formed for each node’s set of internal relations. For exam-
ple, for the interval-equal relation over segments L1 and 
L3, we can decompose the set of relations using the de-
pendency network as follows: 

 
 

interval- equal (L1,L3) ≡  
    parallel(L1,L3) ^ interval-test(L1,L3,interval-equal). 
parallel(L1,L3) ≡  
    proximate(L1,L3) ^ relative-angle-test(L1,L3,parallel). 
proximate(L1,L3) ≡ L1 ^ L3 ^ proximate-test(L1,L3). 
 
Therefore: 

interval-equal(L1,L3) ↔  
    L1 ^ L3 ^ proximate-test(L1,L3)  
         ^ relative-angle-test(L1,L3,parallel)  
         ^ interval-test(L1,L3,interval-equal). 
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Figure 5: Subsection of the dependency network.  The selected internal relation for 
each node is shaded. 



This is equivalent to the set of tests applied to 
segments in the original version of the LLRD 
architecture. 

Other types of relations are handled somewhat 
diffe rently. Boolean relations are handled as JEPD 
sets with one element. Proximate is one relation 
handled in this fashion. 

 
4.2 Handling composite objects  

Composite objects (objects composed of multiple 
visual elements, such as polylines and polygons) 
are a special problem in incremental spatial rea-
soning.1  Composite objects are shapes, but can 
also be treated as relations, since composite ob-
jects are detected based on their constituent ele-
ments. As a result, they are the only visual objects 
that can be retracted due to the retraction of other 
elements. In addition, the retraction of a visual 
element can lead to the detection or re-assumption 
of other composite objects. For example, remo v-
ing a single line segment from a square will lead 
to its interpretation as a polyline. The LLRD cur-
rently handles two forms of composite objects: polylines 
and polygons. 

The LLRD performs polyline and polygon detection by 
using a vertex index table. As new line segments are added, 
the LLRD maintains the table of added segments indexed 
by endpoint. This table is then used to determine which line 
segments share endpoints with others. Groups of line seg-
ments that are not closed form polylines. Once a polyline is 
detected, it is added to the dependency network, and its ver-
tices are removed from the table. Polygon detection uses 
the remaining entries in the table. If a set of vertices is 
closed, then a polygon is added to the dependency network 
and its vertices are removed from the table. 

A node in the network for a composite object is not a re-
lation node in our implementation. Instead, it represents the 
object by storing geometric information about the shape as 
well as linking the node to its constituent (subsumed) ele-
ments.  

The LLRD uses different methods to determine which 
elements to reconsider for composite objects depending on 
whether an element is added, removed, or restored. In the 
first case, when a line segment is created, a new node is 
added and set to IN. Exis ting elements that are proximate to 
the added segment are added to the vertex index table in 

                                                                 
1 It is, of course, possible to take an opposite strategy, treating 

composite elements as primary and non-decomposable. This 
avoids the problem with incrementality described here. GeoRep 
has a glyph element that works in this fashion, and which has 
been used to reason over figures with complex, but self-
contained shape descriptions (Ferguson & Forbus, 1998). How-
ever, composability is a hard problem to avoid entirely, and so 
we are using this simpler form of composability to delineate the 
challenges of more complex composability types. 

order to discover new polylines or polygons or changes to 
existing polylines. In contrast, when a line segment is re-
tracted, the dependency network is used to retract any af-
fected polylines and polygons. Lines that are part of the af-
fected polyline or polygon, yet remain IN (i.e., have not 
been removed) are re-analyzed, and new polylines may be 
assumed. Finally, when an element is restored, the depend-
ency network reactivates composite objects containing the 
restored element if all their subsumed elements are IN. 

An example of how the LLRD handles composite objects 
is given in Figure 6. In step 1, line segments are added to 
form a polyline. In step 2, another segment is added, clos-
ing this polyline to form a new polygon. The polyline com-
posite element is now OUT, and the new polygon is IN. In 
step 3, L4 is removed (becomes OUT), and the polygon be-
comes OUT. The polyline formed by {L1 L2 L3} is IN. If 
L1, L2 or L3 became OUT (instead of L4), the polygon 
would still become OUT and a polyline formed by the re-
maining segments would become IN. In step 4, L4 is re-
stored, and the polygon that contained L4 becomes IN 
again. The previous polyline containing L1, L2 and L3 be-
comes OUT because it is a subset of the polygon.   

 
4.3 Supporting high-level inferences 

Along with maintaining the set of spatial relations, the 
LLRD also supports the HLRD’s high-level reasoning. The 
LLRD continually provides a correct set of spatial relations 
for the HLRD. In addition, when relations change in the 
LLRD’s dependency network, these changes are propa-
gated directly to the HLRD so that it can change its dia-
gram interpretation accordingly. 

Figure 7 shows an example of how small visual changes 
can dynamically change the diagram interpretation. Here, 
gradual additions and deletions to a diagram change the 
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polyline element is marked OUT and a new polygon element (polygon
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Step 3 The most recently added line <L4> is removed, the polygon is
marked OUT and the remaining lines are processed.  The previous
polyline is detected and marked IN.
Step 4 The removed line <L4> is restored and marked IN, and its
component elements are processed, marking the polyline OUT and the
polygon IN.
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Figure 6: Handling polylines and polygons in the incremental LLRD 



diagram from an uninterpreted figure (A), to a NAND gate 
(B), then to an AND gate (C), back to a NAND gate (D), 
and then to a NOT gate (F). At each point, the LLRD’s de-
pendency network manages the set of spatial relations that 
are available to the HLRD. The HLRD, in turn, modifies its 
representation automatically. 

To make this work, the internal relations of nodes in the 
LLRD’s dependency network are linked with logic 
nodes (each representing a specific visual relation) in 
the HLRD’s LTMS. If a node in the LLRD is re-
tracted or if the selected internal relation is changed, 
these changes are propagated to the LTMS. Changes 
to an LTMS node’s truth value automatically triggers 
the Boolean Constraint Propagation algorithm 
(McAllester, 1990) to update the LTMS’s belief 
state. 

The LTMS is a more powerful reasoner than the 
LLRD’s dependency network, but the network is still 
an adequate foundation for the LTMS given the con-
straints of spatial domains. An LTMS makes infer-
ences based on both true and false nodes, while the 
LLRD’s dependency network is roughly equivalent 
to the nodes in a justification-based TMS (JTMS). 
Such nodes represent only Horn clauses, and unlike 
LTMS nodes, do not distinguish between false and 
unknown. However, for any JEPD set represented by 
a LLRD node, we can make a closed-world assump-
tion over the set of internal relations that allows us to 
treat the selected internal relation as true, and the rest as 
false. In addition, due to the nature of visual relation detec-
tion, when an LLRD node is OUT, all of its internal rela-
tions can be treated as false, and not simply unknown. This 
is because an LLRD node becomes OUT only when a nec-
essary visual precondition becomes invalid.  

 
4.4 Handling default assumptions  

Finally, to allow the HLRD to properly handle incremental 
LLRD information, we extended the default assumption 
mechanism in the HLRD’s LTMS (Figure 8). While the 
LTMS already supports simple incremental reasoning, it 
does not support dynamically changing the high-level in-
terpretation when it depends on default reasoning. 

For example, in Figure 7Figure(B), the current visual 
domain theory supports an interpretation of the figure as 
both a NAND gate as well as an AND gate. Both interpre-
tations are assumed, and when they are found to be in con-
flict, the AND gate interpretation is retracted. 

This system works well for a diagrammatic reasoner that 
functions in batch mode, where retracted assumptions do 
not need to be re-examined. In an incremental reasoner, 
however, the visual elements and relations that lead to an 
over-ruled default interpretation may themselves change. 
When the circle is removed as in Figure 7(C), the standard 
LTMS assumption mechanism cannot re-assume the AND 
interpretation because it has already been explicitly re-
tracted.  

To handle this problem, the new default assumption 
mechanism uses two additional node types: a default as-
sumption node and an interpretation-hypothesis node . The 
default assumption node is an extension to the existing 
LTMS node structure, with slots added to store alternative 
interpretations and to link to an interpretation-hypothesis 

node. The interpretation-hypothesis node is a standard 
LTMS node, created as an assumption and justified by the 
appropriate implicational structure.  

These nodes allow all potential interpretations to be 
available even if some have been previously rejected. 
When a new composite object is detected, it is default-
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Figure 8: A default assumption mechanism was added to the truth-
maintenance system in the HLRD to allow for clean retraction and 
re-assump tion of default interpretations. 
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Figure 7: Incremental changes to this figure (consisting of visual 
element additions (+) and deletions (-)) are dynamically re-
flected in the high-level interpretation of the figure (in bold). 



assumed, rather than assumed. This creates both a default 
assumption node for the new object as well as an interpreta-
tion-hypothesis node. Thus, for each potential interpreta-
tion, there will be a valid interpretation-hypothesis node. 
However, at any instance, only one valid interpretation ex-
ists for each set of interpretation hypotheses. The existence 
of multiple interpretation-hypothesis nodes causes a con-
tradiction within the LTMS, triggering the interpretation se-
lector.  

Selection between potential interpretations is handled in 
a domain -dependent fashion. For example, in the logic cir-
cuit domain, the maximally-preferred alternative (Doyle, 
1992) is the interpretation with the most elements. In the 
example, the NAND gate is  selected because the AND gate 
is a subset.  

This handles the case where one composite object has 
two possible interpretations.  However, to support dynami-
cally changing interpretations, we must also consider what 
happens when removing part of an object requires revising 
our interpretation again. In this case, we may want to revert 
to a previous interpretation that was discarded because it 
was not the maximally preferred.  

This is handled by activating the selector mechanism 
when an interpretation hypothesis node is retracted. In the 
example, this corresponds to remo ving the circle from the 
NAND gate, which causes a retraction of the NAND gate 
interpretation, and the reactivation of the AND gate inter-
pretation. The interpretation selector returns to the next -
best alternative interpretation, allowing the AND gate in-
terpretation (and all its high-level consequences) to be reac-
tivated.      

 
5.  Integration into a Drawing Program 

We use an existing drawing system, JFig (Hendrich, 1999), 
as an interface to the reasoner.  JFig is a Java implementa-
tion of the well-known XFig program (Smith, 1999), and is 
freely available on the web. We customized the JFig inter-
face (Figure 9) to notify the reasoner of visual element 
adds, deletes, and modifies. 

Whenever a new element is added or deleted from the 
diagram in JFig, the corresponding element in GeoRep is 
added or removed, and the dependency network is updated. 
The restore command works on the most recently removed 
object, and makes the corresponding element valid again in 
GeoRep. 
 

6.  Conclusions and Future Work 
We have presented an extensible architecture for incre-
mental reasoning over a variety of spatial relations. This 
framework employs jointly exhaustive and pairwise disjoint 
relations to encapsulate visual reasoning subtasks.  

Although the dependency network handles the addition, 
retraction, and restoration of visual elements, there are 
many ways in which the dependency network could be 

used to make more powe rful inferences. For example, it 
could aid in the re-evaluation of modified visual elements. 
Because each relation node depends on a procedural visual 
test to choose between its alternative internal relations, 
once a visual element is modified, the tests must be rerun to 
determine if the previously chosen internal relation remains 
valid.  If not, a chain of visual tests must be applied to the 
modified visual element and all proximate elements.  

Another potential use of this network is to let the HLRD 
influence the LLRD by, for example, setting test tolerance 
values (e.g., the margin for a perpendicular line test).  For 
example, it should be possible to have the HLRD detect 
quadrilaterals that are almost square, and then mo dify the 
relative-angle test so that the LLRD recognizes a necessary 
corner as perpendicular. 

Finally, there is the problem of tradeoffs between spatial 
reasoning and visual processing. Assuming that visual 

processing is extremely cheap, which spatial relations are 
really worth caching in this kind of mechanism? In this ar-
chitecture, we have assumed that even very low-level spa-
tial relations are worth caching in order to test the implica-
tions of the architecture. Clearly, however, the utility of 
caching these relations depends critically on the task and 
the power of the visual processing system (i.e., the visual 
operators available to the LLRD). 

Finally, we note that this work is only one part of a la r-
ger effort to create a next -generation diagrammatic rea-
soner. This reasoner will combine incremental spatial rea-
soning with other abilities, such as dynamic reinterpretation 
of diagrams. 

 
Figure 9: Drawing a figure in JFIG. An additional menu al-
lows the interface to control the link to the incremental ver-
sion of Ge oRep. 
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