
Subsystem Reduction for Qualitative Simulation

Silvia B. González-Brambila, Eduardo F. Morales

UAM-Azcapotzalco ITESM-Cuernavaca
02200, México, D. F. MÉXICO

Systems Department
062580, Temixco, Morelos, MÉXICO

Computer Science Department
sgb@correo.azc.uam.mx eduardo.morales@.itesm.mx

Abstract
Qualitative simulation (QS) is an area of artificial
intelligence that represent continuos and discrete aspects
like space, time and quantity with little information, and
makes inferences using symbolic data to represent
physical quantities. Tradicionally, QS uses a global state-
based representation to represent the behavior of the
system. To qualitative simulate a system, some initial
values are normally given, along with qualitative
differential equations (QDEs). With this information, a
qualitative simulation algorithm evaluates all possible
combinations of qualitative values and filters out
inconsistent states considering qualitatives constraints.
This is a combinational process which normally requires
exponential time. In this paper, a new algorithm is
described which simulates individual components
independently and joins their behavioral graphs together
until a global behavioral graph is obtained. This
algorithm achieves substantial reductions in time and it is
polynomial with respect to the number of components. It
is shown how with this algorithm is possible to simulate
industrial plants of hundreds of variables within a few
minutes.

1. Introduction
Communicating knowledge, in verbal of written form, is
an important human learning activity. In engineering,
explaining how a particular device works is relevant to
engineering students, designers and operators of
industrial plants. These explanations, however, are
normally given from a particular point of view and
without considering the user’s particular needs.
Explanations related to a particular device can be given
from different perspectives depending on different
needs. An engineer may be interested in knowing the
causal dependencies between different state variables.
She may be interested in observing how the state
variables evolve over time, or what is the main function
of a particular device. Her interests may focused on
particular state variables and/or particular subsystems.
We have developed a system called AGE (Automatic
Generation of Explanations) [3, 13] which automatically
produces explanations of engineering devices in natural
language considering different perspectives. The type of
explanations produced by AGE are causal, behavioral
and functional, considering user selected state variables
and subsystems.
AGE’s architecture is shown in Figure 1. Given a
qualitative model of a particular device, AGE generates a
global flow sheet that is used for functional explanations,

obtains causal dependencies from the qualitative model
to produce behavioral explanations, and uses this
simulations with functional analysis to produce
functional explanations.

Figure 1 AGE’s architecture

In order to create a qualitative model of a chemical
process, the user employs a graphical interface to join
engineering components, such as pumps, valves, tanks,
tubes, stoppers, reactors, etc., taken from a library [8] of
components. Each element of this library is associated
with a qualitative model. We adopted qualitative models
because they allow predictions about the behavior of the
system in the absence of exact quantitative information
and they tend to express more closely the type of
explanations we are interested in. A complete system is
constructed by connecting individual components and
producing a general model through a process known as
compositional modeling [9].
Chemical processes are useful to study problems in
existing plants and for the design of new installations,
are essential before working in the material balances and
for the improvement of the equipment and is a well
defined area.
Qualitative simulation is very important in AGE,
because functional and behavioral explanations are
generated from it. AGE produces a behavioral graph (a
graph where each node represent a particular qualitative
state and links represent time sequences) using a re-
implementation of QSIM [6], but the algorithm can be
very inefficient for large systems. For instance, Catino in
[4] simulated in 12 hours a nitric acid plant with 217
variables and 287 constraints in a 224 Mb Sun
SparcStation ELC using QSIM. In our re-implementation
of QSIM we were not able to simulate a chemical plant
with 88 components after 1 day of CPU time (Intel
Pentium III 993 MHz, 256 MB). In this paper, we
proposed an algorithm which divides each system into
smaller subsystems considering design principles of

Editors
QR2003

17th International Workshop on Qualitative Reasoning
Hosted by University of Brasília Brasília, Brazil

20-22 August, 2003

Editors Paulo Salles & Bert Bredeweg

process engineering. Individual components are
simulated qualitatively from which their behavioral
graph are produced. The algorithm joins this graphs and
continues until a complete simulation is obtained.
This paper is organized as follows. Section 2 gives an
overview of QSIM and presents some execution times of
components and simple systems. In section 3 the
subsystem reduction algorithm is described. Section 4
explains how using QSIM for individual components
simulation and the subsystem reduction algorithm it is
possible to find the behavior for large systems. Section 5
presents some of experimental results using this
approach. Related works are presented in Section 6.
Finally, conclusions and future research directions are
given in Section 7.

2. QSIM
QSIM is an approach to qualitative simulation that uses
qualitative differential equations (QDE) to represent a
system. QDE are relaxed versions of ordinary
differential equations [6]. QSIM predicts the possible
behavior set of a QDE.
A QDE model is qualitative in two senses. First, the
values of variables are described in terms of their ordinal
relations with a finite set of symbolic landmark values.
Second, functional relations may be described as
monotonic functions [7]. Landmark values are the
“natural joints” that break a continuous set of values into
qualitatively distinct regions. A landmark value is a
symbolic name for a particular real number, whose
numerical value may or not be known. It serves as a
precise boundary for a qualitative region.
QSIM starts with a QDE and a qualitative description of
an initial state. Given a qualitative description of a state,
it predicts the possible qualitative state descriptions that
can be direct successors of the current state description.
Repeating this process produces a graph of qualitative
descriptions, in which the paths starting from the root are
the possible qualitative behaviors. The resulting behavior
graph however can be huge.
The main step in the QSIM algorithm is to generate all
the successor states given a state. The successor
generation algorithm performs the following steps [6]:

1. Domain restriction
2. Node consistency
3. Arc consistency
4. Exhaustive search
5. Filtering
To guarantee that all possible behaviors are predicted, it
is required that all possible qualitative value transitions
are predicted, and that the combinations of qualitative
values are only deleted when they are inconsistent. The
exhaustive nature of the QSIM simulation can produce
excessive running times.
When a qualitative model of a component is defined is
very important to analyze the possible landmarks of each
variable, the initial conditions and the constraints with
the corresponding values because the execution time
depends on all of these factors.

Table 1 shows the number of variables and constraints of
some chemical components. The average execution time
considers 10 simulations in a Intel Pentium III 993 MHz,
256 MB.

Component #
vari
a
bles

constra
ints

land
marks

nodes
behavior
graph

Average
time
(msec)

Tank 4 4 9 10 69.1
Valve 5 6 15 4 1837.7
Separator 19 19 40 137 12087.3
Reactor 9 9 21 32 1672.5
Flash1 14 15 38 2 1978
Flash2 14 14 38 32 201430.7

Table 1 Number of variables and constraints of

some components

The execution time not only depends on the number of
variables and constraints. For example, the reactor
variables and constraints (9) is greater than the valve (5
and 6, respectively), but the average time of the first
(1672.5 milliseconds) is shorter than the second
(1837.7).

2.1 System composition

In systems composed of several units, it is convenient to
use the component-connection approach [6] to construct
complete system. The complete specification of a
physical component in AGE, requires, besides a
qualitative model, the semantic meaning of each state
variable and all of its landmark values, as well as its
input/output variables (called, terminalIn and
terminalOut) in order to connect it with another
component. Each component or unit is also associated
with a meaningful name to the user and the name of the
substance that it is carrying. AGE with this information
produce several explanations (see [15] for more details.
The relation between the number of variables, landmarks
and behavior graph nodes is not simple. But in the
majority of cases the initial values can significantly
reduce the execution time.
For example, in the case of a system composed by a
mixer and a reactor, called MR, the number of equations
is 15 and the variables are 14. If initial values are given
for mixer inflow, (q, θ), the average execution time is
44,446 milliseconds. If the mixer outflow is also fixed to
a particular value then the average time is reduced to
2003.8 milliseconds In both cases the behavior graph has
18 nodes.

3. Subsystem reduction
For the subsystem reduction process, principles from
classical design in process engineering [1], [2] were
considered, where the component’s system are
collocated in accordance of their type. This means that in
a new design the first components that are considered are
the reactors, then separators, energy transfers units,

material management units and lastly, the rest of the
equipment.
In our case, units are grouped together using the priority
list, showed in Table 2. For example, it is common to
mix two or more substances (mixer), heat the product
(heater) and finally introduced the product into a reactor.
These three units (mixer, heater and reactor) can be
merged in one subsystem whose purpose is to react.

PriorUnit type Examples
1 Reactor All types of reactors
2 Separator Filters, evaporators
3 Energy transfer Heaters, coolers
4 Material

management
Pumps, mixers,
compressors

5 Storage and
control

Tanks, valves

Table 2 Priority of unit type

Two units, A and B, can be merged in a subsystem A-B if
A is adjacent to B, A has a priority equal or smaller than
B, and A is topological smaller than B.
In the topological sort each node is associated with a
vertex and there is a directed edge from node x to node y
if y cannot start until x is finished.
A large system can go through several grouping
processes, so this is an iterative process. After the first
unit is selected the system tries to group it with its
neighbors. A unit is considered first if it has more
external substances, lower priority type and is first in the
topological sort of all system. For more details of this
algorithm see [3].
Consider the flow sheet of the hydrodealkylation of
Toluene shown in Figure 2. Grouping the units result in
the systems shown in Figures 3 and 4. Fig. 3 is the first
iteration of the algorithm, the reactor systems groups the
compressor, pump, mixer and the reactor; the separation
system adjacent to the reactor system contains the flash
and the separator, the separator system 1 groups valve1
and separtor1 and separator system 2 groups the rest of
the units. Note that the cycles in the reduced subsystems
are conserved.
Algorithm 1 shows the main steps to reduce subsystems,
it select the initial node without considering the
substances. When two or more units are grouped
together in one subsystem, they are inserted into a list in
order to save this information that is used later.

FlowDiagram SubsystemReduction ()
{
 initialNode select begin unit
 //Create a new empty diagram
 FlowDiagram newDiagram
 insert initialNode in newDiagram
 reduceUnits (initialNode, newDiagram)

//insert links in accordance to
//the previous flow diagram

 newDiagram.putLinks (this)
 //insert substances in accordance to
 //the previous flow diagram
 newDiagram.createSubstances (this)

}
Algorithm 1. Subsystem reduction

Figure 2. Hydrodealkylation of Toluene

Figure 3. Hydrodealkylation of Toluene first iteration
of de subsystems reduction

Figure 4 is obtained from Figure 3; here Reactor system,
Separation system and Separation system 2 are grouped
in one. With this reduction there are two subsystems:
reactor and separation, and nine substances.

Figure 4. Subsystems of the Hydrodealkylation of

Toluene

In Figure 5 all subsystems are grouped into one, where
input and products substances are the only considered.

Figure 5. Last iteration of the subsystem reduction of

the Hydrodealkylation of Toluene

4. Simulation by components
Our algorithm simulate individual behaviour of each
component in the system using QSIM. This process
produces behavioural graphs for each component. To
group two different behaviour nodes, both nodes must
correspond in their time tag and their qualitative values
of their corresponding terminalOut and terminalIn
values must be equal. Individual behaviour graphs are
grouped in subsystems, using the subsystem reduction
algorithm.
The main idea is to divide the system in subsystems at
different abstractions levels, use QSIM to simulate each
individual component and obtain their respective
behaviour graph considering different abstractions
levels. The behaviour graphs are grouped by the
connection nodes in the subsystems and only when all
their behaviour values are equals. Even though in the
component level is possible to generate more states than
necessary, they will be eliminated during the union
process and significant reductions in execution time are
obtained.
To group two different behaviour graph nodes, both
must correspond in time and the union qualitative values
must be equal (terminalIn or terminalOut).
For example, suppose we have a unit A with a behaviour
graph g1 with an initial node "a" with set values {v_a},
where {v_a} corresponds to all the qualitative variable
values of unit A at time t0. Now suppose we have a unit
B with behaviour graph g2 and an initial node "b" with
set values {v_b}. In addition, consider A to be before
unit B in the topological sort of the flow sheet. Since a
and b are initial states they both occur at time t0. If the
terminalOut qualitative values in {v_a} are equal to
terminalIn qualitative values in {v_b}, then they can be
merge into one state. This new state contains all the
values in {v_a} and all the values in {v_b}, except those
in the intersection of terminalIn in A and terminalOut in
B, that are considerer only once. The remaining nodes
are merge in a similar form (see Figure 6).

Figure 6 Joint two-behavior graphs

A final node is considered quiescent, if the variable
values are the same in the next time until a transition
occur, these nodes are called perdurables. In the case of
merging, a behaviour graph with only one state (with a
value set {a}) with another graph with several nodes, the
single node needs to be mapped with all the nodes of the
other behavioural graph (see Figure 7). So the mapping
process is in general 1 to N, because one node can be
consider more that one.

Figure 7 Considering a perdurable node

4.1 Example

Consider a system with a mixer and a reactor, called MR.
Suppose that the connecting variables are only the
outflow of the mixer (M-outflow) and the inflow of the
reactor (R-Fin). Suppose that the input flow of the mixer
is constant in order to reduce its possible behaviours.
The behaviour graph of each component is presented in
Tables 3 and 4, respectively. Table 4 shows part of the
behavioural graph represented in list form, some of the
initial states are R0, R1, R2, R3, R4, R5, R6. The QSIM
simulation produced 32 states.

State Adyacents
M0 -

(a) Behaviour graph

Variable State M0
M-amount half,θ
M-outflow q, θ
M-netflow 0, θ
M-inflow q, θ
M-Qin1 q, θ
M-Qin2 q, θ

(b) Values of the state

Table 3 Mixer behavior

Initially consider the state M0, the only mixer initial
state, and the reactor initial state R6. With this two states
we construct a new one (MR6) of the behaviour graph of
MR system. This is possible because M-outflow and R-
Fin have the same value (q, θ). First column of Table 5
shows the values of this state.

State Adjacents
R0 -
R1 -
...
R5 -
R6 17, 18
...
R13 19, 20
...
R17 13, 14, 8, 9, 10
...
R19 7, 12, 10
...

(a) Segment of the behaviour graph

Variable State
R0

State
R6

State
R13

State R17

R-dif 0, ↑ 0,↑ dif, θ <0, dif>,↑
R-Ca 0, ↑ 0, ↑ c, θ <0, c>,↑
R-Fin q, θ q, θ q, θ q, θ
R-Fout 0, ↑ 0, ↑ q, θ <0, q>,↑
R-Cb c, θ c, θ c, θ c, θ
R-k k, θ k, θ k, θ k, θ
R-kCa 0, ↑ 0, ↑ kc, θ <0, kc>,↑
R-MkCb 0, ↓ 0, ↓ -kc, θ <-kc, 0>, ↓
R-D 0, ↑ 0, θ 0, θ 0, θ

(b) Values of some states

Table 4 Segment of the reactor behaviour

Variables MR6 MR17 MR13
M-amount some,θ some,θ some,θ
M-outflow q, θ q, θ q, θ
M-netflow 0, θ 0, θ 0, θ
M-inflow q, θ q, θ q, θ
M-Qin1 q, θ q, θ q, θ
M-Qin2 q, θ q, θ q, θ
R-dif 0,↑ <0, dif>,↑ dif, θ
R-Ca 0, ↑ <0, c>,↑ c, θ
R-Fin q, θ q, θ q, θ
R-Fout 0, ↑ <0, q>,↑ q, θ
R-Cb c, θ c, θ c, θ
R-k k, θ k, θ k, θ
R-kCa 0, ↑ <0, kc>,↑ kc, θ
R-MkCb 0, ↓ <-kc, 0>, ↓ -kc, θ
R-D 0, θ 0, θ 0, θ

Table 5 Some states of the MR system

Next we consider state R17, because it is adjacent to R6.
With M0 and R17 another new node of the behaviour
graph is constructed. In this case MR6 and MR17 must
be adjacent, so the behaviour graph of the system is
constructed with these nodes linked together (see Figure
8 (a)). In the construction of this new state, M0 is
consider perdurable.
The construction process of the behaviour graph
continues with the adjacents of M0 and R17, which are
M0 (perdurable) and R13, respectively. These new states

are merged and a new state MR13, is created, adjacent to
MR17 (see Figure 8 (b)).

(a) First step

(b) Second step

Figure 8 Constructing behaviour graph of MR system

This process continues until all nodes are visited.
The algorithm is O(n2), without considering the QSIM
simulation of individual components, because uses a
depth first search in which the nodes of the second graph
can be visited more than once.
Although more states per component may be generated
at the simulation time, all the inconsistent states are
removed by this merging procedure. We have observed
in all of our experiments that our merging procedure
produces only qualitatively consistent behavioural
graphs, and as part of our future work, we are working
on a formal proof of this.
By joining individual behavioural graphs of single
components, we are able to substantially reduced the
computational time required by QSIM.

5. Evaluation
All the experiments in this section was done using Intel
Pentium III 993 MHz, 256 MB.
The execution time of the MRF system (presented in
section 4) using this algorithmis considerably reduced (it
uses 5.6% of the time used by QSIM), and most of this
time is consumed in the individual components
simulation. Another advantage of our approach, is that
we can store behavioural graphs of individual
components and re-use them in other systems. This
again, can produce significant time reductions.
AGE has been tested on a wide variety of engineering
systems ranging from single components to industrial
plants. For example, the average execution time of the
acyclic process [12] of Figure 9 is 57,893 milliseconds,
and the average execution time to simulate the cyclic
process [12] of Figure 10 is 76,579 milliseconds.

 Figure 9 Acyclic process

Figure 10 Cyclic process

The average time of the Hydrodealkylation of Toluene of
Figure 2 is 60,587 milliseconds.
As another examples, the normal paraffin extraction [5]
(see Figure 11) takes 162,688 milliseconds and the
production of nitric ammonium (see Figure 12) takes
97,431 milliseconds.

Figure 11 Normal paraffin extraction

Figure 12 Production of nitric ammonium

We illustrate the reductions achieve by our algorithm
and the capabilities of AGE qualitative simulation
algorithm with the Empress plant [5]. This plant, showed
in Figure 13. It has 132 flows, 88 units and are 638
variables in its qualitative representation. The average
execution time is 404343.4 milliseconds (6.74 minutes).
The average time to simulate individual components is
129868.7 milliseconds (2.16 minutes). This is a huge
reduction in processing time, considering that we were
not able to simulate this plant with our re-
implementation of QSIM after 1 day of simulation. This
time is very reasonable considering the size of the plant.

Figure 13 Empress plant

6. Related Work

Several improvements have been suggested on QSIM,
however, must of them have been oriented towards more
efficient filtering mechanism and extensions to combine
it with numerical data [7], [6], and little has been done
on component decomposition.
They however, do not reduce the combinational process
that QSIM follows to produce subsequent qualitative
states. So the related works are only a few.
Catino in [4] simulated a nitric acid plant with 217
variables and 287 constraints in a 224 Mb Sun
SparcStation ELC using QSIM. The approximated time
was 12 hours and some components could not be
simulated.
In terms of dividing systems into subsystems, Chong
[10] find the system functionality of a chemical
processes. The unit representation in based in

Chandrasekarans works [11] and uses a functionality
precedence to group immediately neighbors. This works
is similar to the subsystem reduction algorithm presented
but Chong work is not able to consider cycles, that are
very important to chemical engineers.
DecSIM [14] is a model decomposition and simulation
algorithm that uses a divide and conquer approach.
Variables with the system are partitioned into
components so that closely related variables are
constrained with the same partition describing the
relationships between variables with partition. Each
component is viewed as a separate system and is
simulate using a state-based representation limited to the
variables within the component. Interactions between
components are reasoned about as needed to constrain
each component. Two types of variables are constrained
within each sub-model, within-partition and boundary.
DecSIM uses QSIM.

7. Conclusions and future work

QSIM simulation can be very inefficient for large
systems due to its combinational components to generate
possible qualitative states. In order to scale-up QSIM to
larger devices, AGE divides each system into
subsystems at different abstraction levels. This algorithm
is used to simulate each individual component from
which their behavioral graph are obtained. Graphs of
contiguous components are joined together using
connecting nodes with the same state values and
corresponding time stamps. The same process continues
(without any further simulation) for contiguous
subsystems until a global behavioral graph is
constructed.
With this algorithm, it is possible to simulate chemical
plants with a large number of states in a reasonable time.
An important disadvantage of this approach is the strong
dependence of the component library, because the
representation of all components need to be correct,
sound and have compatibles terminalIn and terminalOut
variables. For this reason, components designers needs
to have knowledge of processes engineering and is very
desirable automatic tools for this task.
The generated behavior graphs were used in a system to
generate chemical process explanations in natural
language with success.
As part of our future work, we would like to produce a
formal proof that our reduction algorithm is able to
produce only qualitative consistent behaviors (sound)
and that it produces all the qualitative consistent
behaviors (complete). Also we plan try in other domains
such as electrical and mechanical.

Acknowledgements

This work is sponsor by grant 400200-5-34812-A of
CONACYT.

8. References

[1] Beltrán V., M., Delgado N., Ma. de Lourdes,
Quintana D., M.B. Guadalupe, Introducción a la
ingeniería química, Universidad Autónoma
Metropolitana, 1997
[2] Douglas, J. M., Conceptual design of chemical
processes, Mc Graw Hill, 1988
[3] Morales, E., González, S., Generation of
Explanations of Chemical Processes, Proc. of the 2nd.
IASTED International Conference ARTIFICIAL
INTELLIGENCE AND APPLICATIONS (AIA2002),
pp. 110-115, Benalmádena, Spain, September 9-12, 2002
[4] Catino, A. C., Automated modeling of chemical
plants with application to hazard and operability
studies, Ph. d. thesis, 1993
[5] Himmelblau, D. M., Bischoff, K. B., Análisis y
simulación de procesos, Reverté, 1992
[6] Kuipers, B., Qualitative simulation, modeling and
simulation with incomplete knowledge (The MIT Press,
Cambridge, Massachusetts, 1994).
[7] Kuipers, B., Qualitative simulation, Robert A.
Meyers, Ed., Encyclopedia of Physical Science and
Technology, 3rd. ed. NY Academic Press, pp. 287-300,
2001.
[8] Gruber, T. R., Oisen, G. R., An ontology for
engineering mathematics, Proc. fourth international
conference on principles of knowledge representation
and reasoning, San Mateo, CA., 1994, 258-269.
[9] Falkenhainer, B., Forbus, K., Compositional
modelling: finding the right model for the job. Artificial
intelligence 51, 1991, 95-143.
[10] Chong, T. T., Derivation and use of function in the
design of chemical processes, MSc Information
Technology, University of Edinburgh, 1995.
[11] Chandrasekaran, B., Josephson, J. R., Representing
function as effect: assigning functions to objects in
context and out, Working notes of the AAAI-96
Workshop on modeling and reasoning with function,
August 4, 1996, Portland, OR, 1996
[12] Felder, R. M., Rousseau, R. W., Elementary
principles of chemical process, John Wiley & Sons, Inc.,
3ed., pp. 556, 2000
[13] González-Brambila, S., Morales, E., Generation of
Explanations of Chemical Processes: a demo, XI
Congreso Internacional de Computación, Avances en
Ciencias de la Computación e Ingeniería de Cómputo
(CIC2002), Vol. II, pp. 333-342, Cd. de México, nov. 25
al 29 de 2002.
[14] Clancy, D. J., Kuipers, B. J., Model Decomposition
and Simulation: A component based qualitative
simulation algorithm. Proceedings from the 14th National
Conference on Artificial Intelligence (AAAI-97),
August, 1997.
[15] González-Brambila, S., Morales, E., Explaining
how Engineering Devices Work with AGE, The 17th.
International Workshop on Qualitative Reasoning
(QR03), August, 2003.

	page941: 95
	page951: 96
	page961: 97
	page971: 98
	page981: 99
	page991: 100
	page1001: 101

