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Abstract 
Qualitative simulation (QS) is an area of artificial 
intelligence that represent continuos and discrete aspects 
like space, time and quantity with little information, and 
makes inferences using symbolic data to represent 
physical quantities. Tradicionally, QS uses a global state-
based representation to represent the behavior of the 
system. To qualitative simulate a system, some initial 
values are normally given, along with qualitative 
differential equations (QDEs). With this information, a 
qualitative simulation algorithm evaluates all possible 
combinations of qualitative values and filters out 
inconsistent states considering qualitatives constraints. 
This is a combinational process which normally requires 
exponential time. In this paper, a new algorithm  is 
described which simulates individual components 
independently and joins their behavioral graphs together 
until a global behavioral graph is obtained. This 
algorithm achieves substantial reductions in time and it is 
polynomial with respect to the number of components. It 
is shown how with this algorithm is possible to simulate 
industrial plants of hundreds of variables within a few 
minutes. 

1. Introduction 
Communicating knowledge, in verbal of written form, is 
an important human learning activity. In engineering, 
explaining how a particular device works is relevant to 
engineering students, designers and operators of 
industrial plants. These explanations, however, are 
normally given from a particular point of view and 
without considering the user’s particular needs. 
Explanations related to a particular device can be given 
from different perspectives depending on different 
needs. An engineer may be interested in knowing the 
causal dependencies between different state variables. 
She may be interested in observing how the state 
variables evolve over time, or what is the main function 
of a particular device. Her interests may focused on 
particular state variables and/or particular subsystems. 
We have developed a system called AGE (Automatic 
Generation of Explanations) [3, 13] which automatically 
produces explanations of engineering devices in natural 
language considering different perspectives. The type of 
explanations produced by AGE are causal, behavioral 
and functional, considering user selected state variables 
and subsystems. 
AGE’s architecture is shown in Figure 1. Given a 
qualitative model of a particular device, AGE generates a 
global flow sheet that is used for functional explanations, 

obtains causal dependencies from the qualitative model 
to produce behavioral explanations, and uses this 
simulations with functional analysis to produce 
functional explanations. 
 

 
Figure 1 AGE’s architecture 

 
In order to create a qualitative model of a chemical 
process, the user employs a graphical interface to join 
engineering components, such as pumps, valves, tanks, 
tubes, stoppers, reactors, etc., taken from a library [8] of 
components. Each element of this library is associated 
with a qualitative model. We adopted qualitative models 
because they allow predictions about the behavior of the 
system in the absence of exact quantitative information 
and they tend to express more closely the type of 
explanations we are interested in. A complete system is 
constructed by connecting individual components and 
producing a general model through a process known as 
compositional modeling [9]. 
Chemical processes are useful to study problems in 
existing plants and for the design of new installations, 
are essential before working in the material balances and 
for the improvement of the equipment and is a well 
defined area. 
Qualitative simulation is very important in AGE, 
because functional and behavioral explanations are 
generated from it. AGE produces a behavioral graph (a 
graph where each node represent a particular qualitative 
state and links represent time sequences) using a re-
implementation of QSIM [6], but the algorithm can be 
very inefficient for large systems. For instance, Catino in 
[4] simulated in 12 hours a nitric acid plant with 217 
variables and 287 constraints in a 224 Mb Sun 
SparcStation ELC using QSIM. In our re-implementation 
of QSIM we were not able to simulate a chemical plant 
with 88 components after 1 day of CPU time (Intel 
Pentium III 993 MHz, 256 MB). In this paper, we 
proposed an algorithm which divides each system into 
smaller subsystems considering design principles of 
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process engineering. Individual components are 
simulated qualitatively from which their behavioral 
graph are produced. The algorithm joins this graphs and 
continues until a complete simulation is obtained. 
This paper is organized as follows. Section 2 gives an 
overview of QSIM and presents some execution times of 
components and simple systems. In section 3 the 
subsystem reduction algorithm is described. Section 4 
explains how using QSIM for individual components 
simulation and the subsystem reduction algorithm it is 
possible to find the behavior for large systems. Section 5 
presents some of experimental results using this 
approach. Related works are presented in Section 6. 
Finally, conclusions and future research directions are 
given in Section 7. 

2. QSIM 
QSIM is an approach to qualitative simulation that uses 
qualitative differential equations (QDE) to represent a 
system. QDE are relaxed versions of ordinary 
differential equations [6]. QSIM predicts the possible 
behavior set of a QDE. 
A QDE model is qualitative in two senses. First, the 
values of variables are described in terms of their ordinal 
relations with a finite set of symbolic landmark values. 
Second, functional relations may be described as 
monotonic functions [7]. Landmark values are the 
“natural joints” that break a continuous set of values into 
qualitatively distinct regions. A landmark value is a 
symbolic name for a particular real number, whose 
numerical value may or not be known. It serves as a 
precise boundary for a qualitative region. 
QSIM starts with a QDE and a qualitative description of 
an initial state. Given a qualitative description of a state, 
it predicts the possible qualitative state descriptions that 
can be direct successors of the current state description. 
Repeating this process produces a graph of qualitative 
descriptions, in which the paths starting from the root are 
the possible qualitative behaviors. The resulting behavior 
graph however can be huge. 
The main step in the QSIM algorithm is to generate all 
the successor states given a state. The successor 
generation algorithm performs the following steps [6]: 
 
1. Domain restriction 
2. Node consistency 
3. Arc consistency 
4. Exhaustive search 
5. Filtering 
To guarantee that all possible behaviors are predicted, it 
is required that all possible qualitative value transitions 
are predicted, and that the combinations of qualitative 
values are only deleted when they are inconsistent. The 
exhaustive nature of the QSIM simulation can produce 
excessive running times. 
When a qualitative model of a component is defined is 
very important to analyze the possible landmarks of each 
variable, the initial conditions and the constraints with 
the corresponding values because the execution time 
depends on all of these factors. 

Table 1 shows the number of variables and constraints of 
some chemical components. The average execution time 
considers 10 simulations in a Intel Pentium III 993 MHz, 
256 MB. 
 

Component # 
vari
a 
bles 

#  
constra 
ints 

# 
land 
marks 

# nodes 
behavior 
graph 

Average 
time 
(msec)  

Tank 4 4 9 10 69.1 
Valve 5 6 15 4 1837.7 
Separator 19 19 40 137 12087.3 
Reactor 9 9 21 32 1672.5 
Flash1 14 15 38 2 1978 
Flash2 14 14 38 32 201430.7

 
Table 1 Number of variables and constraints of  

some components 
 

The execution time not only depends on the number of 
variables and constraints. For example, the reactor 
variables and constraints (9) is greater than the valve (5 
and 6, respectively), but the average time of the first 
(1672.5 milliseconds) is shorter than the second 
(1837.7). 

2.1 System composition 
 
In systems composed of several units, it is convenient to 
use the component-connection approach [6] to construct 
complete system. The complete specification of a 
physical component in AGE, requires, besides a 
qualitative model, the semantic meaning of each state 
variable and all of its landmark values, as well as its 
input/output variables (called, terminalIn and 
terminalOut) in order to connect it with another 
component. Each component or unit is also associated 
with a meaningful name to the user and the name of the 
substance that it is carrying. AGE with this information 
produce several explanations (see [15] for more details. 
The relation between the number of variables, landmarks 
and behavior graph nodes is not simple. But in the 
majority of cases the initial values can significantly 
reduce the execution time. 
For example, in the case of a system composed by a 
mixer and a reactor, called MR, the number of equations 
is 15 and the variables are 14. If initial values are given 
for mixer inflow, (q, θ), the average execution time is 
44,446 milliseconds. If the mixer outflow is also fixed to 
a particular value then the average time is reduced to 
2003.8 milliseconds In both cases the behavior graph has 
18 nodes. 

3. Subsystem reduction 
For the subsystem reduction process, principles from 
classical design in process engineering [1], [2] were 
considered, where the component’s system are 
collocated in accordance of their type. This means that in 
a new design the first components that are considered are 
the reactors, then separators, energy transfers units, 



material management  units and lastly, the rest of the 
equipment. 
In our case, units are grouped together using the priority 
list, showed in Table 2. For example, it is common to 
mix two or more substances (mixer), heat the product  
(heater) and finally introduced the product into a reactor. 
These three units (mixer, heater and reactor) can be 
merged in one subsystem whose purpose is to react. 
 

PriorUnit type Examples 
1 Reactor All types of reactors 
2 Separator Filters, evaporators 
3 Energy transfer Heaters, coolers 
4 Material  

management 
Pumps, mixers, 
compressors 

5 Storage and  
control 

Tanks, valves 

 
Table 2 Priority of unit type 

 
Two units, A and B, can be merged in a subsystem A-B if 
A is adjacent to B, A has a priority equal or smaller than 
B, and A is topological smaller than B. 
In the topological sort each node is associated with a 
vertex and there is a directed edge from node x to node y 
if y cannot start until x is finished. 
A large system can go through several grouping 
processes, so this is an iterative process. After the first 
unit is selected the system tries to group it with its 
neighbors. A unit is considered first if it has more 
external substances, lower priority type and is first in the 
topological sort of all system. For more details of this 
algorithm see [3]. 
Consider the flow sheet of the hydrodealkylation of 
Toluene shown in Figure 2. Grouping the units result in 
the systems shown in Figures 3 and 4. Fig. 3 is the first 
iteration of the algorithm, the reactor systems groups the 
compressor, pump, mixer and the reactor; the separation 
system adjacent to the reactor system contains the flash 
and the separator, the separator system 1 groups valve1 
and separtor1 and separator system 2 groups the rest of 
the units. Note that the cycles in the reduced subsystems 
are conserved. 
Algorithm 1 shows the main steps to reduce subsystems, 
it select the initial node without considering the 
substances. When two or more units are grouped 
together in one subsystem, they are inserted into a list in 
order to save this information that is used later. 
 
FlowDiagram SubsystemReduction () 
{ 
 initialNode  select begin unit 
     //Create a new empty diagram 
 FlowDiagram newDiagram 
 insert initialNode in newDiagram 
 reduceUnits (initialNode, newDiagram) 

//insert links in accordance to  
//the  previous flow diagram 

 newDiagram.putLinks (this) 
  //insert substances in accordance to 
  //the previous flow diagram 
 newDiagram.createSubstances (this) 

} 
Algorithm 1.  Subsystem reduction 

 

 
Figure 2. Hydrodealkylation of Toluene 

 
 

 
 

Figure 3. Hydrodealkylation of Toluene first iteration 
of de subsystems reduction 

 
Figure 4 is obtained from Figure 3; here Reactor system, 
Separation system and Separation system 2 are grouped 
in one. With this reduction there are two subsystems: 
reactor and separation, and nine substances. 

 
Figure 4. Subsystems of the Hydrodealkylation of 

Toluene 
 



In Figure 5 all subsystems are grouped into one, where 
input and products substances are the only considered. 
 

 
Figure 5. Last iteration of the subsystem reduction of 

the Hydrodealkylation of Toluene 

4. Simulation by components 
Our algorithm simulate individual behaviour of each 
component in the system using QSIM. This process 
produces behavioural graphs for each component. To 
group two different behaviour nodes, both nodes must 
correspond in their time tag and their qualitative values 
of their corresponding terminalOut and terminalIn 
values must be equal. Individual behaviour graphs are 
grouped in subsystems, using the subsystem reduction 
algorithm. 
The main idea is to divide the system in subsystems at 
different abstractions levels, use QSIM to simulate each 
individual component and obtain their respective 
behaviour graph considering different abstractions 
levels. The behaviour graphs are grouped by the 
connection nodes in the subsystems and only when all 
their behaviour values are equals. Even though in the 
component level is possible to generate more states than 
necessary, they will be eliminated during the union 
process and significant reductions in execution time are 
obtained. 
To group two different behaviour graph nodes, both 
must correspond in time and the union qualitative values 
must be equal (terminalIn or terminalOut). 
For example, suppose we have a unit A with a behaviour 
graph g1 with an initial node "a" with set values {v_a}, 
where {v_a} corresponds to all the qualitative variable 
values of unit A at time t0. Now suppose we have a unit 
B with behaviour graph g2 and an initial node "b" with 
set values {v_b}. In addition, consider A to be before 
unit B in the topological sort of the flow sheet. Since a 
and b are initial states they both occur at time t0. If the 
terminalOut qualitative values in {v_a} are equal to 
terminalIn qualitative values in {v_b}, then they can be 
merge into one state. This new state contains all the 
values in {v_a} and all the values in {v_b}, except those 
in the intersection of terminalIn in A and terminalOut in 
B, that are considerer only once. The remaining nodes 
are merge in a similar form (see Figure 6). 
 

 
Figure 6 Joint two-behavior graphs 

 

A final node is considered quiescent, if the variable 
values are the same in the next time until a transition 
occur, these  nodes are called perdurables. In the case of 
merging, a behaviour graph with only one state (with a 
value set {a}) with another graph with several nodes, the 
single node needs to be mapped with all the nodes of the 
other behavioural graph (see Figure 7). So the mapping 
process is in general 1 to N, because one node can be 
consider more that one. 
 

 
Figure 7 Considering a perdurable node 

 

4.1 Example 
 
Consider a system with a mixer and a reactor, called MR. 
Suppose that the connecting variables are only the 
outflow of the mixer (M-outflow) and the inflow of the 
reactor (R-Fin). Suppose that the input flow of the mixer 
is constant in order to reduce its possible behaviours. 
The behaviour graph of each component is presented in 
Tables 3 and 4, respectively. Table 4 shows part of the 
behavioural graph represented in list form, some of the 
initial states are R0, R1, R2, R3, R4, R5, R6. The QSIM 
simulation produced 32 states. 
 
 

State Adyacents 
M0 - 

(a) Behaviour graph 
 

Variable  State M0 
M-amount  half,θ 
M-outflow   q, θ 
M-netflow  0, θ 
M-inflow  q, θ 
M-Qin1  q, θ 
M-Qin2  q, θ 

(b) Values of the state 
 

Table 3 Mixer behavior 
 
Initially consider the state M0, the only mixer initial 
state, and the reactor initial state R6. With this two states 
we construct a new one (MR6) of the behaviour graph of 
MR system. This is possible because M-outflow and R-
Fin have the same value (q, θ). First column of Table 5 
shows the values of this state. 



 
State Adjacents 
R0 - 
R1 - 
...  
R5 - 
R6 17, 18 
...  
R13 19, 20 
...  
R17 13, 14, 8, 9, 10 
...  
R19 7, 12, 10 
...  

(a) Segment of the behaviour graph 
 

Variable  State 
R0 

State 
R6 

State 
R13 

State R17 

R-dif 0, ↑ 0,↑ dif, θ <0, dif>,↑ 
R-Ca  0, ↑  0, ↑  c, θ  <0, c>,↑ 
R-Fin  q, θ q, θ q, θ q, θ 
R-Fout 0, ↑ 0, ↑ q, θ <0, q>,↑ 
R-Cb c, θ c, θ c, θ c, θ 
R-k k, θ k, θ k, θ k, θ 
R-kCa 0, ↑ 0, ↑ kc, θ <0, kc>,↑ 
R-MkCb 0, ↓ 0, ↓ -kc, θ <-kc, 0>, ↓ 
R-D 0, ↑ 0, θ 0, θ 0, θ 

 
(b) Values of some states 

 
Table 4 Segment of the reactor behaviour 

 
Variables MR6 MR17 MR13 
M-amount  some,θ some,θ some,θ 
M-outflow   q, θ q, θ q, θ 
M-netflow  0, θ 0, θ 0, θ 
M-inflow  q, θ q, θ q, θ 
M-Qin1  q, θ q, θ q, θ 
M-Qin2  q, θ q, θ q, θ 
R-dif 0,↑ <0, dif>,↑ dif, θ 
R-Ca   0, ↑  <0, c>,↑  c, θ 
R-Fin  q, θ q, θ q, θ 
R-Fout 0, ↑ <0, q>,↑ q, θ 
R-Cb c, θ c, θ c, θ 
R-k k, θ k, θ k, θ 
R-kCa 0, ↑ <0, kc>,↑ kc, θ 
R-MkCb 0, ↓ <-kc, 0>, ↓ -kc, θ 
R-D 0, θ 0, θ 0, θ 

 
Table 5 Some states of the MR system 

 
Next we consider state R17, because it is adjacent to R6. 
With M0 and R17 another new node of the behaviour 
graph is constructed. In this case MR6 and MR17 must 
be adjacent, so the behaviour graph of the system is 
constructed with these nodes linked together (see Figure 
8 (a) ). In the construction of this new state, M0 is 
consider perdurable. 
The construction process of the behaviour graph 
continues with the adjacents of M0 and R17, which are 
M0 (perdurable) and R13, respectively. These new states 

are merged and a new state MR13, is created, adjacent to 
MR17 (see Figure 8 (b) ). 
 

 
(a) First step 

 
(b) Second step 

 
Figure 8 Constructing behaviour graph of MR system 

 
This process continues until all nodes are visited. 
The algorithm is O(n2), without considering the QSIM 
simulation of individual components, because uses a 
depth first search in which the nodes of the second graph 
can be visited more than once. 
Although more states per component may be generated 
at the simulation time, all the inconsistent states are 
removed by this merging procedure. We have observed 
in all of our experiments that our merging procedure 
produces only qualitatively consistent behavioural 
graphs, and as part of our future work, we are working 
on a formal proof of this. 
By joining individual behavioural graphs of single 
components, we are able to substantially reduced the 
computational time required by QSIM. 

5. Evaluation 
All the experiments in this section was done using Intel 
Pentium III 993 MHz, 256 MB. 
The execution time of the MRF system (presented in 
section 4) using this algorithmis considerably reduced (it 
uses 5.6% of the time used by QSIM), and most of this 
time is consumed in the individual components 
simulation. Another advantage of our approach, is that 
we can store behavioural graphs of individual 
components and re-use them in other systems. This 
again, can produce significant time reductions. 
AGE has been tested on a wide variety of engineering 
systems ranging from single components to industrial 
plants. For example, the average execution time of the 
acyclic process [12] of Figure 9 is 57,893 milliseconds, 
and the average execution time to simulate the cyclic 
process [12] of Figure 10 is 76,579 milliseconds. 
 



 
 Figure 9 Acyclic process 

 

 
 

Figure 10 Cyclic process 
 

The average time of the Hydrodealkylation of Toluene of 
Figure 2 is 60,587 milliseconds. 
As another examples, the normal paraffin extraction [5] 
(see Figure 11) takes 162,688 milliseconds and the 
production of nitric ammonium (see Figure 12) takes 
97,431 milliseconds. 
 
 

 
 

Figure 11 Normal paraffin extraction 
 

 

 
 

Figure 12 Production of nitric ammonium 
 

We illustrate the reductions achieve by our algorithm 
and the capabilities of AGE qualitative simulation 
algorithm with the Empress plant [5]. This plant, showed 
in Figure 13. It has 132 flows, 88 units and are 638 
variables in its qualitative representation. The average 
execution time is 404343.4 milliseconds (6.74 minutes). 
The average time to simulate individual components is 
129868.7 milliseconds (2.16 minutes). This is a huge 
reduction in processing time, considering that we were 
not able to simulate this plant with our re-
implementation of QSIM after 1 day of simulation. This 
time is very reasonable considering the size of the plant. 
 

 
 

Figure 13 Empress plant 
 

6. Related Work 
 
Several improvements have been suggested on QSIM, 
however, must of them have been oriented towards more 
efficient filtering mechanism and extensions to combine 
it with numerical data [7], [6], and little has been done 
on component decomposition.  
They however, do not reduce the combinational process 
that QSIM follows to produce subsequent qualitative 
states. So the related works are only a few. 
Catino in [4] simulated a nitric acid plant with 217 
variables and 287 constraints in a 224 Mb Sun 
SparcStation ELC using QSIM. The approximated time 
was 12 hours and some components could not be 
simulated. 
In terms of dividing systems into subsystems, Chong 
[10] find the system functionality of a chemical 
processes. The unit representation in based in 



Chandrasekarans works [11] and uses a functionality 
precedence to group immediately neighbors. This works 
is similar to the subsystem reduction algorithm presented 
but Chong work is not able to consider cycles, that are 
very important to chemical engineers. 
DecSIM [14] is a model decomposition and simulation 
algorithm that uses a divide and conquer approach. 
Variables with the system are partitioned into 
components so that closely related variables are 
constrained with the same partition describing the 
relationships between variables with partition. Each 
component is viewed as a separate system and is 
simulate using a state-based representation limited to the 
variables within the component. Interactions between 
components are reasoned about as needed to constrain 
each component. Two types of variables are constrained 
within each sub-model, within-partition and boundary. 
DecSIM uses QSIM. 

7. Conclusions and future work 
 
QSIM simulation can be very inefficient for large 
systems due to its combinational components to generate 
possible qualitative states. In order to scale-up QSIM to 
larger devices, AGE divides each system into 
subsystems at different abstraction levels. This algorithm 
is used to simulate each individual component from 
which their behavioral graph are obtained. Graphs of 
contiguous components are joined together using 
connecting nodes with the same state values and 
corresponding time stamps. The same process continues 
(without any further simulation) for contiguous 
subsystems until a global behavioral graph is 
constructed.  
With this algorithm, it is possible to simulate chemical 
plants with a large number of states in a reasonable time. 
An important disadvantage of this approach is the strong 
dependence of the component library, because the 
representation of all components need to be correct, 
sound and have compatibles terminalIn and terminalOut 
variables. For this reason, components designers needs 
to have knowledge of processes engineering and is very 
desirable automatic tools for this task. 
The generated behavior graphs were used in a system to 
generate chemical process explanations in natural 
language with success.  
As part of our future work, we would like to produce a 
formal proof that our reduction algorithm is able to 
produce only qualitative consistent behaviors (sound) 
and that it produces all the qualitative consistent 
behaviors (complete). Also we plan try in other domains 
such as electrical and mechanical. 
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